
INSTRUCTION SET OF PLC TECOMAT
32 BIT MODEL

Contents

TXV 004 01.02 2

INSTRUCTION SET OF PLC TECOMAT
32 BIT MODEL

8th edition - January 2005

CONTENTS

Introduction...5

1. DATA LOAD AND WRITE INSTRUCTIONS...8
LD, LDQ, LDC ...8
LDIB, LDI, LDIW, LDIL, LDIQ ..11
LEA..13
WR, WRC..14
WRIB, WRI, WRIW, WRIL, WRIQ ...17
WRA ..19
PUT ...21

2. LOGICAL INSTRUCTIONS...23
AND, ANC ...23
OR, ORC ...26
XOR, XOC...29
NEG...32
SET, RES ..33
LET, BET...35
FLG..37
STK..39
ROL, ROR ...40
SHL, SHR..42
SWP, SWL...43

3. COUNTERS, SHIFT REGISTERS, TIMERS, STEP SEQUENCER44
CTU, CTD, CNT ..44
SFL, SFR...50
TON, TOF..52
RTO...56
IMP ..59
STE..61

4. ARITHMETIC INSTRUCTIONS...63
ADD, SUB..63
MUL, MULS...64
DIV, DID, DIVL, DIVS, MOD, MODS ...65
INR, DCR...68
EQ, LT, LTS, GT, GTS ..70
CMP, CMPS ..72
MAX, MAXS, MIN, MINS ...73
ABSL, CSGL, EXTB, EXTW ..74
BIN, BIL, BCD, BCL...75

Instruction set of PLC TECOMAT - 32 bit model

3 TXV 004 01.02

5. STACK OPERATIONS..77
POP...77
NXT, PRV, CHG, CHGS..78
LAC, WAC ...79
PSHB, PSHW, PSHL, PSHQ, POPB, POPW, POPL, POPQ..80

6. JUMP AND CALL INSTRUCTIONS..82
JMP, JMD, JMC, JMI...82
JZ, JNZ, JC, JNC, JB, JNB, JS, JNS...83
CAL, CAD, CAC, CAI...85
RET, RED, REC ..86
L ..87

7. OPERATING INSTRUCTIONS..88
P, E, ED, EC ...88
NOP...90
BP..91
SEQ...92

8. TABLE INSTRUCTIONS ...93
LTB..93
WTB...96
FTB, FTBN ..99
FTM, FTMN ...102
FTS, FTSF, FTSS..105

9. BLOCK OPERATIONS ...107
SRC, MOV...107
MTN, MNT...109
FIL ...111
BCMP ..112

10. OPERATIONS WITH STRUCTURED TABLES ..113
LDSR, LDS..113
WRSR, WRS ...115
FIS, FIT..117
FNS, FNT ..119

11. FLOATING POINT ARITHMETIC INSTRUCTIONS..121
ADF, ADDF, SUF, SUDF...121
MUF, MUDF, DIF, DIDF ..123
EQF, EQDF, LTF, LTDF, GTF, GTDF, CMF, CMDF ...125
MAXF, MAXD, MINF, MIND ..127
CEI, CEID, FLO, FLOD, RND, RNDD..128
ABS, ABSD, CSG, CSGD..129
LOG, LOGD, LN, LND, EXP, EXPD, POW, POWD, SQR, SQRD, HYP, HYPD130
SIN, SIND, COS, COSD, TAN, TAND, ASN, ASND, ACS, ACSD, ATN, ATND..........132
UWF, IWF, ULF, ILF..134
ULDF, ILDF, FDF ...135
UFW, IFW, UFL, IFL..136
UDFL, IDFL, DFF ..137

Contents

TXV 004 01.02 4

12. PID CONTROLLER INSTRUCTIONS ...138
CNV...138
PID ..143

13. INSTRUCTIONS OF TERMINAL OPERATION AND OPERATIONS WITH ASCII
CHARACTERS..155

TER ...155
BAS ...182
ASB ...183
STF, STDF ..185
FST, DFST ..187

14. SYSTEM INSTRUCTIONS ..189
RDT, WRT...189
RDB, WDB, IDB...191
STATM ...194
CHPAR..195
RFRM ..197
IDTM..199
TABM...200
CRCM..201

15. TRANSFER OF USER PROGRAM BETWEEN VARIOUS INSTRUCTION SET
MODELS ..203

15.1 Operations with variables ..203
15.2 Operations on stack...205
15.3 Reduction of instructions and their equivalents ..205
15.4 Instruction SWL does not swap A0 and A1..206
15.5 Cancel of arithmetic operations cascading ...207
15.6 Multiplication and division formats ..207
15.7 Direct access to peripheral modules..207
15.8 Support of high level language ..207

INSTRUCTIONS LIST ...209
Instruction list with permissible operands ..209
Alphabetical list of instructions...215

Instruction set of PLC TECOMAT - 32 bit model

5 TXV 004 01.02

INTRODUCTION

Principles of instruction description

In the following chapters individual PLC instructions are described. A great number of
instructions allow operands of various types from various spaces or they can be without
operand as well. Due to transparency of description, we will not be describing in detail all
possible combinations, but only typical examples. For example the access to the operands
X, Y, S, D, R is always analogical. Thus, if we describe the behaviour of the instruction
LD %R12.3, we will assume that instruction LD %X1.7 will behave similarly.

An overview with permissible operands and operation times for individual types of
central units are specified in an appendix.

In the header of each instruction there is its symbolical abbreviation and name
specified, followed by a table showing the state of stack and scratchpad before and after
the instruction. Then, permissible operands are specified (X, Y, S, D, R, #, T) and their
type for individual series of central units, function description, flags being effected and
typical examples of behaviour.

Since the central units with a stack of 32 bit width allow programming in a higher
language according to the IEC 61131 standard, we will use the types of variables
complying to this standard. They differ from the Teco variables (besides the name) mainly
that they differentiate signed and unsigned variables. A list of variables types according to
IEC 61131 and their equivalents according to Teco is given in Table 1.1.

Table 1.1: List of variables types acc. to IEC 61131 and their equivalents acc. to Teco
IEC 61131 Teco Description

bool bit 1 bit
byte byte 8 bits
usint byte 8 bits unsigned
sint byte 8 bits signed

word word 16 bits
uint word 16 bits unsigned
int word 16 bits signed

dword long 32 bits
udint long 32 bits unsigned
dint long 32 bits signed
real float 32 bits floating point
lreal double 64 bits floating point

Absolute addresses are written beginning with %, which is obligatory when
programming central units with a stack of 32 bit width. In the same way, the prefixes are
notated in the form __indx() (see chapter 15.8).

Central unit series and stack model

PLC TECOMAT and TECOREG controllers central units are divided into the following
series according to their characteristics:

Series B - NS950 CPM-1B, CPM-2B
Series C - TC700 CP-7001, CP-7002
Series D - TR050, TR200, TR300, TC400, TC500, TC600, NS950 CPM-1D
Series E - NS950 CPM-1E
Series M - NS950 CPM-1M

Introduction

TXV 004 01.02 6

Series S - NS950 CPM-1S, CPM-2S

PLC TECOMAT have two stack models that differ from each other by the width of one
layer. Series B, D, E, M and S have their individual stack layers 32 bits wide, while series
C have the width of the stack layers 32 bits. This results in certain differences in the
behaviour of individual models.

This manual deals exclusively with central units having their stack width of 32
bits. The instruction set for the central units with the stack width of 16 bits is described in
the Instruction set of PLC TECOMAT - 16 bit model, TXV 001 05.02.

The differences in behaviour of both models and transfer of the user program between
them are described in chapter 15 of this manual.

Principles of example illustrations

In the examples of some instructions memory spaces and PLC stack are shown
graphically in compliance with principles corresponding to the format being used. Lower
case letters are used for arbitrary unchanged values. The details on data formats in
memory spaces and in the stack can be found in the Programmer's manual for PLC
TECOMAT TXV 001 09.02.

When describing instructions, stack A is always used as the active one, but any other
stack can be used instead of it.

A brief overview of instruction set

1. Data load and write instructions
Data write and load in all formats, indirect write and load, conditional write and
write with alternation of the highest bit.

2. Logical instructions
Logical instructions AND, OR, XOR with direct as well as negated operands,
negation, leading edge detection, detection of both edges, conditional setup of
variables or setting variables to zero, rotate left, rotate right, shift left, shift right,
logical swap of stack, interchange of bytes of the stack top, logical functions on the
stack top.

3. Timers, shift registers, counters, step controllers
Ahead counter, back counter, bidirectional counter, shift register (left and right),
retentive timer with on / off, integrating timer, defined length pulse, step
sequencer.

4. Arithmetic instructions
Arithmetic instructions in fixed base point (8, 16, 32 bits) with sign, without sign,
addition, subtraction, multiplication, division, incrementation, decrementation,
comparison limit function, absolute value, sign change, conversion from binary
system to BCD code and vice versa.

5. Stack operations
Stack shift, stack interchange, value transfer among stacks, system stack.

6. Jump and call instructions
Direct, indirect jumps, conditional jumps, direct subroutine calls, indirect calls,
conditional calls, return from subroutine, conditional return from subroutine, labels.

7. Organizational instructions
Process start and end, conditional end of process, cycle end, no operation
instruction, breakpoint, conditional process interrupt.

Instruction set of PLC TECOMAT - 32 bit model

7 TXV 004 01.02

8. Table instructions
Load and write to the table or scratchpad field, search for value.

9. Block operations
Move data block, move table to scratchpad and vice versa, fill block with constant..

10. Operations with structured tables
Load and write items of structured tables, search for item, fill item with constant.

11. Floating point arithmetic instructions
Addition, subtraction, multiplication, division, comparison, rounding, absolute
value, logarithmic, exponential and goniometric functions, conversion between
formats with floating and fixed base point.

12. PID controller instructions
Conversion of measured analog values to standardized ones with diagnostics of
edge states, PID controller, PID controller with automatic debugging. .

13. Terminal operation instructions and operations with ASCII characters
Operation of alphanumerical display, conversion of numbers to ASCII strings and
vice versa.

14. System instructions
Scratchpad communication feedback control, access to real time circuit (RTC),
load and write to additional DataBox memory, peripheral system control.

There is one more group of the instructions that is not described in this manual. These
are the instructions used exclusively to support a higher language. They are not used in
user programs created in PLC instructions.

1. Data load and write instructions

TXV 004 01.02 8

1. DATA LOAD AND WRITE INSTRUCTIONS

LD, LDQ Load direct data

LDC Load complement data

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0
ope-
rand A7 A6 A5 A4 A3 A2 A1 A0

ope-
rand

LD a A6 A5 A4 A3 A2 A1 A0 a a
LD [lreal] a A5 A4 A3 A2 A1 A0 a a
LDQ a A5 A4 A3 A2 A1 A0 a a
LDC a A6 A5 A4 A3 A2 A1 A0 a a

Operands

bool byte
usint
sint

word
uint
int

dword
udint
dint

real lreal

LD X Y S D R C C C C C C
LD # C C
LDQ # C
LDC X Y S D R C C C C

Function

LD - load data on the stack top
LDQ - load 64-bit constant on the stack top
LDC - load complement data on the stack top

Description

Instructions LD and LDQ load data from the addressed location and save it without any
change on the stack top, instruction LDC negates the loaded data and saves it on the
stack top. The value of the source address remains unchanged.

Instructions with bool type operands shift the stack one level ahead and set identically
all 32 bits of A0 stack top.

Instructions with byte, usint and sint type operands shift the stack one level ahead and
write to the lower byte of A0 stack top. The other bytes of the stack top are set to zero.

Instructions with word, uint and int type operands shift the stack one level ahead and
write to the lower word of the A0 stack top. The upper word of the stack is set to zero.

Instructions with dword , udint , dint and real type operands move the stack one level
ahead and write to the entire A0 stack top.

Instructions with lreal type operands move the stack two levels ahead and write to A01
stack top.

Instruction set of PLC TECOMAT - 32 bit model

9 TXV 004 01.02

Example
#reg bool read, readc, write, writec
;
P 0

LD read
WR write
LDC readc
WR writec

E 0

Diagram
LD %R10.3

aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa

aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa

bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb

bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb

cccccccc cccccccc cccccccc cccccccc

cccccccc cccccccc cccccccc cccccccc

dddddddd dddddddd dddddddd dddddddd

dddddddd dddddddd dddddddd dddddddd

eeeeeeee eeeeeeee eeeeeeee eeeeeeee

eeeeeeee eeeeeeee eeeeeeee eeeeeeee

ffffffff ffffffff ffffffff ffffffff

ffffffff ffffffff ffffffff ffffffff

01101100

76543210bit

R10

gggggggg gggggggg gggggggg gggggggg

gggggggg gggggggg gggggggg gggggggg

hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

stack before instruction LD

stack after instruction LDscratch pad

11111111 11111111 11111111 11111111

A0

A0

A1

A1

A2

A2

A3

A3

A4

A4

A5

A5

A6

A6

A7

A7

LD %R10

aaaaaaaa
aaaaaaaabbbbbbbb
bbbbbbbbcccccccc
ccccccccdddddddd
ddddddddeeeeeeee
eeeeeeeeffffffff
ffffffff

$6CR10

gggggggg
gggggggghhhhhhhh

stack before instruction LD scratch pad

$0000006C

stack after instruction LD

A0 A0
A1 A1
A2 A2
A3 A3
A4 A4
A5 A5
A6 A6
A7 A7

1. Data load and write instructions

TXV 004 01.02 10

LD %RW10

aaaaaaaa
aaaaaaaabbbbbbbb
bbbbbbbbcccccccc
ccccccccdddddddd
ddddddddeeeeeeee
eeeeeeeeffffffff
ffffffff

$6C
$E7

R10
R11

gggggggg
gggggggghhhhhhhh

stack before instruction LD scratch pad

$0000E76C

stack after instruction LD

A0 A0
A1 A1
A2 A2
A3 A3
A4 A4
A5 A5
A6 A6
A7 A7

LD %RL10

aaaaaaaa
aaaaaaaabbbbbbbb
bbbbbbbbcccccccc
ccccccccdddddddd
ddddddddeeeeeeee
eeeeeeeeffffffff
ffffffff

$6C

$14
$E7

$10

R10

R12
R11

R13
gggggggg

gggggggghhhhhhhh

stack before instruction LD scratch pad

$1014E76C

stack after instruction LD

A0 A0
A1 A1
A2 A2
A3 A3
A4 A4
A5 A5
A6 A6
A7 A7

LD %RD10

aaaaaaaa

aaaaaaaa
bbbbbbbb

bbbbbbbb
cccccccc

cccccccc
dddddddd

dddddddd
eeeeeeee

eeeeeeee
ffffffff

ffffffff

$6C

$77

$14

$C5

$E7

$35

$10

$4A

R10

R14

R12

R16

R11

R15

R13

R17

gggggggg
hhhhhhhh

stack before instruction LD scratch pad

$1014E76C
$4AC53577

stack after instruction LD

A0 A01
A1
A2 A2
A3 A3
A4 A4
A5 A5
A6 A6
A7 A7

Instruction set of PLC TECOMAT - 32 bit model

11 TXV 004 01.02

LDIB, LDI, LDIW, LDIL, LDIQ Indirect data load

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0
ADR

A7 A6 A5 A4 A3 A2 A1 A0
ADR

LDIB, LDI ADR a a a
LDIW, LDIL ADR a a a
LDIQ ADR a A6 A5 A4 A3 A2 A1 a a
ADR - address being loaded (type udint)

Operands

bool byte
usint
sint

word
uint
int

dword
udint
dint

real lreal

LDIB w/o operand C
LDI w/o operand C
LDIW w/o operand C
LDIL w/o operand C C
LDIQ w/o operand C

Function

LDIB - load data bit from the bit address saved at the stack top
LDI - load 8 bits of data from the address saved at the stack top
LDIW - load 16 bits of data from the address saved at the stack top
LDIL - load 32 bits of data from the address saved at the stack top
LDIQ - load 64 bits of data from the address saved at the stack top

Description

Instructions LDIB , LDI, LDIW, LDIL and LDIQ use the content of the stack top as the
address. The content of this address is saved at the stack top without any change. The
content of the source location remains unchanged. The instruction LDIB processes the
stack top as so called bit address. The bit address from the byte address by multiplication
by 8 and by addition the bit number where we want to read from. The other instructions
use the byte address. To get the bit and byte base addresses, the LEA instruction is used.

The instruction LDIB sets identically all 32 bits of the A0 stack top to the value of the bit
loaded.

The instruction LDI writes the value loaded to the lowest byte of the A0 stack top. The
other bytes of the stack top are set to zero.

The instruction LDIW writes the value read to the lower word of the A0 stack top. The
upper word of the stack top is set to zero.

The instruction LDIL writes the value loaded to the entire A0 stack top.
The instruction LDIQ shifts the stack one level ahead and writes the value read to the

A01 stack top.
These instructions are useful for indirect data access, when the address is obtained by

calculation.

1. Data load and write instructions

TXV 004 01.02 12

Example
#reg usint array1[20], array2[20] ;arrays of byte size items
#reg usint index1, index2 ;pointers to array item
;
P 0

LEA array1
ADD index1
LDI
LEA array2
ADD index2
WRI

E 0

Diagram
LEA %R10.5
LDIB $00030050

bbbbbbbb bbbbbbbb
cccccccc cccccccc
dddddddd dddddddd
eeeeeeee eeeeeeee

10010011

ffffffff ffffffff

R10

gggggggg gggggggg
hhhhhhhh hhhhhhhh

$00000000

stack before instruction LDIB stack after instruction LDIB

A0 A0
A1 A1
A2 A2
A3 A3
A4 A4
A5 A5
A6 A6
A7 A7

76543210bit

scratch pad

LEA %RL10
LDIL $0000600 A

bbbbbbbb bbbbbbbb
cccccccc cccccccc
dddddddd dddddddd
eeeeeeee eeeeeeee
ffffffff ffffffff

$6C

$14
$E7

$10

R10

R12
R11

R13
gggggggg gggggggg
hhhhhhhh hhhhhhhh

stack before instruction LDIL scratch pad

$1014E76C

stack after instruction LDIL

A0 A0
A1 A1
A2 A2
A3 A3
A4 A4
A5 A5
A6 A6
A7 A7

Instruction set of PLC TECOMAT - 32 bit model

13 TXV 004 01.02

LEA Load address

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0
ope-
rand A7 A6 A5 A4 A3 A2 A1 A0

LEA ADR A6 A5 A4 A3 A2 A1 A0 ADR
ADR - address being loaded (type udint)

Operands

bool byte
usint
sint

word
uint
int

dword
udint
dint

real lreal

LEA X Y S D R C C C C C C

Function

LEA - load the address contained in the operand

Description

The instruction LEA is used to create a base address for the instructions of indirect lode
and write operations.

Instruction with bool type operand shifts the stack one level ahead and saves the bit
address at the stack top, i.e. the octuple of the byte address increased by the bit number.

Instructions with other types of operand shift the stack one level ahead and saves the
byte address at the stack top.

Example
#reg bool array1[20], array2[20] ;bit arrays
#reg usint index1, index2 ;pointers to array items
;
P 0

LEA array1
ADD index1
LDIB
LEA array2
ADD index2
WRIB

E 0

1. Data load and write instructions

TXV 004 01.02 14

WR Data write
WRC Write data complement

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0
ope-
rand A7 A6 A5 A4 A3 A2 A1 A0

ope-
rand

WR a a a
WR [lreal] a a a
WRC a a a

Operands

bool byte
usint
sint

word
uint
int

dword
udint
dint

real lreal

WR X Y S R C C C C C C
WRC X Y S R C C C C

Function

WR - data write from the stack top
WRC - write data complement from the stack top

Description:

The instruction WR loads the value of the stack top and saves it to the addressed
location without any change. The instruction WRC negates the loaded value and then it
saves it to the addressed location. The content of the entire stack remains unchanged.

Instructions with bool type operands carry out the OR operation of all bits of the A0
stack top and saves its value to the addressed bit, the bit instruction WRC saves the
negated value of this operation (NOR). If A0 = 0, then the instruction WR writes the value
of log.0 and the WRC instruction writes the value of log.1, in the other cases (A0 ≠ 0) the
instruction WR writes the value of log.1 and instruction WRC writes the value of log.0.

Important: Bit instruction WRC writes the negated value of the logic OR operation of
all A0 bits, thus the NOR function. Its result is not identical to the result
that we would get by logical addition of negated A0 bits.

Instructions with byte, usint and sint type operand work only with the lowest byte of the
stack top. The other three bytes of the A0 stack top are not processed.

Instructions with word, uint and int type operand work only with the lower word of the
stack top. The upper word of the A0 stack top is not processed.

Instructions with dword, udint, dint and real type operands work with the entire A0
stack top.

Instructions with lreal type operand work with the stack top consisting of the A01 double
layer.

Instruction set of PLC TECOMAT - 32 bit model

15 TXV 004 01.02

Example
#reg bool read, readc, write, writec
;
P 0

LD read
WR write
LD readc
WRC writec

E 0

Diagram
WR %R10.3

11100111 01101100 11010001 00111010
bbbbbbbb bbbbbbbb bbbbbbbb bbbbbbbb
cccccccc cccccccc cccccccc cccccccc
dddddddd dddddddd dddddddd dddddddd
eeeeeeee eeeeeeee eeeeeeee eeeeeeee
ffffffff ffffffff ffffffff ffffffff

01101100

76543210bit

R10

gggggggg gggggggg gggggggg gggggggg
hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

stack scratchpadafter instructionWR
A0
A1
A2
A3
A4
A5
A6
A7

WR %R10

$539DE76C
bbbbbbbb
cccccccc
dddddddd
eeeeeeee
ffffffff

$6CR10

gggggggg
hhhhhhhh

stack scratch pad after instruction WR
A0
A1
A2
A3
A4
A5
A6
A7

WR %RW10

$539DE76C
bbbbbbbb
cccccccc
dddddddd
eeeeeeee
ffffffff

$6C
$E7

R10
R11

gggggggg
hhhhhhhh

stack scratch pad after instruction WR
A0
A1
A2
A3
A4
A5
A6
A7

WR %RL10

$539DE76C
bbbbbbbb
cccccccc
dddddddd
eeeeeeee
ffffffff

$6C

$9D
$E7

$53

R10

R12
R11

R13
gggggggg
hhhhhhhh

stack scratch pad after instruction WR
A0
A1
A2
A3
A4
A5
A6
A7

1. Data load and write instructions

TXV 004 01.02 16

WR %RD10

$539DE76C
$967A3F01
cccccccc
dddddddd
eeeeeeee
ffffffff

$6C

$01

$9D

$7A

$E7

$3F

$53

$96

R10

R14

R12

R16

R11

R15

R13

R17

gggggggg
hhhhhhhh

stack scratch pad after instruction WR
A0
A1
A2
A3
A4
A5
A6
A7

Instruction set of PLC TECOMAT - 32 bit model

17 TXV 004 01.02

WRIB, WRI, WRIW, WRIL, WRIQ Indirect data write

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0
ADR

A7 A6 A5 A4 A3 A2 A1 A0
ADR

WRIB, WRI a ADR ADR A7 A6 A5 A4 A3 A2 a a
WRIW, WRIL a ADR ADR A7 A6 A5 A4 A3 A2 a a
WRIQ a ADR a A7 A6 A5 A4 A3 a a
ADR - address being written (type udint)

Operands

bool byte
usint
sint

word
uint
int

dword
udint
dint

real lreal

WRIB w/o operand C
WRI w/o operand C
WRIW w/o operand C
WRIL w/o operand C C
WRIQ w/o operand C

Function

WRIB - write data bit to the bit address saved at the stack top
WRI - write 8 bits of data to the address saved at the stack top
WRIW- write 16 bits of data to the address saved at the stack top
WRIL - write 32 bits of data to the address saved at the stack top
WRIQ - write 64 bits of data to the address saved at the stack top

Description

Instructions WRIB, WRI, WRIW, WRIL and WRIQ use the content of the stack top as
the address. They shift the stack one level ahead and the content of the new stack top is
saved without any change to this address. Instruction WRIB processes the stack top as so
called "bit address". The bit address from the byte address by multiplication by 8 and
adding the bit number to which we want to write. The other instructions use the byte
address. To obtain the bit and byte base addresses the LEA instruction is used.

The instruction WRIB carries out logic OR operation of all bits of the new A0 stack top
(former layer A1) and saves its value to the addressed bit. If A0 = 0, then the instruction
writes the value of log.0, in the other cases (A0 ≠ 0) it writes the value of log.1.

The instruction WRI writes to the given address the lowest byte of the new stack top
(former layer A1). The other three bytes of the A0 stack top are not processed.

The instruction WRIW writes to the given address the lower word of the new stack top
(former layer A1). The upper word of the A0 stack top is not processed.

The instruction WRIL writes to the given address the content of the new stack top
(former layer A1).

The instruction WRIQ writes to the given address the content of the new stack top
formed by double layer A01 (former double layer A12).

These instructions are useful for indirect data access, when the address is obtained by
calculation.

1. Data load and write instructions

TXV 004 01.02 18

Example
#reg usint array1[20], array2[20] ;arrays of byte size items
#reg usint index1, index2 ;pointers to array items
;
P 0

LEA array1
ADD index1
LDI
LEA array2
ADD index2
WRI

E 0

Diagram
LEA %R10.5
WRIB $00030050

$00000000
$00000000

cccccccc
cccccccc

dddddddd
dddddddd

eeeeeeee
eeeeeeee

10010011

ffffffff
ffffffff

R10

gggggggg
gggggggg

hhhhhhhh
hhhhhhhh

$00030050

stack before instruction WRIB

A0 A0
A1 A1
A2 A2
A3 A3
A4 A4
A5 A5
A6 A6
A7 A7

76543210bit

stack after instruction WRIBscratch pad after WRIB

LEA %RL10
WRIL $0000600 A

$1014E76C
$1014E76C

cccccccc
cccccccc

dddddddd
dddddddd

eeeeeeee
eeeeeeee

ffffffff
ffffffff

gggggggg
gggggggg

hhhhhhhh
hhhhhhhh

$0000600 A

stack before instruction WRIL stack after instruction WRIL

A0 A0
A1 A1
A2 A2
A3 A3
A4 A4
A5 A5
A6 A6
A7 A7

scratch pad after WRIL

$6C

$14
$E7

$10

R10

R12
R11

R13

Instruction set of PLC TECOMAT - 32 bit model

19 TXV 004 01.02

WRA Write data with alternation

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0
ope-
rand A7 A6 A5 A4 A3 A2 A1 A0

operand

WRA a b a ()maxb a

Operands

byte
usint

word
uint

dword
udint

WRA X Y S R C C C

Function

WRA - data write from the stack top with alternation of the highest bit

Description

The instruction WRA loads from the stack top, masks the highest bit and saves it at the
addressed location. Then, it negates the currently highest bit of the addressed location
(alternation). The content of the entire stack remains unchanged. This instruction can be
very useful when controlling intelligent peripheral units requiring alternation of the highest
bit during parameter passing (e.g. operation of the serial channel in UNI mode).

The instruction with the byte and usint types operand works only with the lowest byte of
the A0 stack top. The other three bytes of stack top are not processed by the instruction.

The instruction with the word and uint types operand works only with the lower word of
the A0 stack top. The upper word of the stack top is not processed.

The instruction with dword and udint types operand works with the entire the A0 stack
top.

Diagram
WRA %R10

1001010100111101

7654321076543210 bitbit

R10R10

scratch pad before instruction WRA stack scratch pad after instruction WRA
$00000015
bbbbbbbb
cccccccc
dddddddd
eeeeeeee
ffffffff
gggggggg
hhhhhhhh

A0
A1
A2
A3
A4
A5
A6
A7

WRA %RW10

00010101
10000000

00111101
01001100

7654321076543210 bitbit

R10
R11

R10
R11

scratch pad before instruction WRA stack scratch pad after instruction WRA
$00000015
bbbbbbbb
cccccccc
dddddddd
eeeeeeee
ffffffff
gggggggg
hhhhhhhh

A0
A1
A2
A3
A4
A5
A6
A7

1. Data load and write instructions

TXV 004 01.02 20

WRA %RL10

00010101

00000000
00000000

10000000

00111101

11010101
01001100

00011010

7654321076543210 bitbit

R10

R12
R11

R13

R10

R12
R11

R13

scratchpadbeforeWRA stack scratchpadafter instructionWRA
$00000015
bbbbbbbb
cccccccc
dddddddd
eeeeeeee
ffffffff
gggggggg
hhhhhhhh

A0
A1
A2
A3
A4
A5
A6
A7

Instruction set of PLC TECOMAT - 32 bit model

21 TXV 004 01.02

PUT Conditional data write

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0
S1.0

A7 A6 A5 A4 A3 A2 A1 A0
ope-
rand

PUT a 1 a a
a 0 a

Operands

bool byte
usint
sint

word
uint
int

dword
udint
dint

real

PUT X Y S R C C C C C

Function

PUT - data write from the stack top conditional on the value of log.1 of bit S1.0

Description

The instruction PUT is similar to instruction WR which is performed only if S1.0 = log.1.
If S1.0 = log.0 it does not do anything. The instruction PUT tests the bit S1.0 and if it
equals to log.1, it reads the value of the A0 stack top and saves it without any change to
the addressed location. The content of the entire stack as well as flag registers remains
unchanged.

The instruction with the bool type operand in case of S1.0 = log.1 performs the logic
OR operation of all bits of the A0 stack top and saves its value to the addressed bit. If
A0 = 0, then the instruction write the value of log.0, in the other cases (A0 ≠ 0) the
instruction writes the value of log.1.

Instructions with the byte , usint and sint types operand work only with the lowest byte
of the stack top. The other three bytes of the A0 stack top are not processed.

Instructions with the word , uint and int types operand work only with the lower word of
the stack top. The upper word of the A0 stack top is not processed.

Instructions with dword , udint , dint and real types operands work with the entire the
A0 stack top.

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S1 - - - - - - - S

S1.0 (S) - input condition of the instruction
0 - instruction is not performed
1 - instruction is fully performed

Example
#reg bool read, condition, write
;
P 0

LD condition
WR %S1.0
LD read
PUT write

E 0

1. Data load and write instructions

TXV 004 01.02 22

Diagram

If S1.0 has the value of log.1, the diagram of the instruction PUT is identical to the
instruction WR. If S1.0 has the value of log.0, the instruction behaves as a do-nothing
operation.

Instruction set of PLC TECOMAT - 32 bit model

23 TXV 004 01.02

2. LOGICAL INSTRUCTIONS

AND Function AND

ANC Function NAND

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0
ope-
rand A7 A6 A5 A4 A3 A2 A1 A0

ope-
rand

AND a b a b⋅ b
AND w/o op. a b b A7 A6 A5 A4 A3 A2 a b⋅
ANC a b a b⋅ b
ANC w/o op. a b b A7 A6 A5 A4 A3 A2 a b⋅

Operands

bool byte
usint
sint

word
uint
int

dword
udint
dint

AND X Y S D R C C C C
AND # C
AND w/o operand C
ANC X Y S D R C C C C
ANC # C
ANC w/o operand C

Function

AND - logical AND of the stack top with operand
ANC - logical AND of the stack top with negated operand

Description

The function of the logical AND operation assumes the value of log.1, if both of their
operands are log.1, otherwise it has the value of log.0. In Boolean algebra it represents
"simultaneity" ("and", "as well as", "simultaneously"). In relay diagrams, serial arrangement
of contacts corresponds to it. The function is clear from the truth table:

Input parameters Result

a b ba ⋅ ba ⋅
0 0 0 0
0 1 0 0
1 0 0 1
1 1 1 0

Operand instructions AND take the content of the addressed location and perform its
logical AND with the stack top. This is overwritten by the result of the operation. The
instruction ANC performs logical AND of negation of the taken content of the addressed
location with the stack top. The content of the source location remains unchanged.

Instructions with the bool type operand process the entire the A0 stack top in such a
way that it performs the specified operation with each of its bits. The instruction saves the
result of these 32 operations back on the A0 stack top.

2. Logical instructions

TXV 004 01.02 24

Instructions with the byte , usint and sint types operand process the lowest byte of the
A0 stack top as 8 bit operations among corresponding stack bits and the operand. The
result is saved at the lowest byte of the A0 stack top. The other three bytes of the A0 stack
top are set to zero (operation AND 0 is performed).

Instructions with the word , uint and int types operand process the lower word of the A0
stack top as 16 bit operations among corresponding stack bits and the operand. The result
is saved on the lower word of the A0 stack top. The upper word is set to zero (operation
AND 0 is performed).

Instructions with the dword , udint and dint types operand process the A0 stack top as
32 bit operations among corresponding stack bits and the operand. The result is saved on
the A0 stack top.

Instructions AND, ANC without operand perform 32 bit operations among
corresponding bits of layers A0 and A1 of the stack. Then they shift the stack one level
back and write the result of the operation on the new A0 stack top.

Examples

Logical AND cbay ⋅⋅=
#reg bool va, vb, vc, output
;
P 0

LD va
ANC vb
AND vc
WR output

E 0

Logical AND bay ⋅=
#reg bool va, vb, output
;
P 0

LD va
LD vb
AND
WR output

E 0

Instruction set of PLC TECOMAT - 32 bit model

25 TXV 004 01.02

Diagram
LD $9B35E76C
AND %R10.3 $9B35E76C $9B35E76C

bbbbbbbb bbbbbbbb
cccccccc cccccccc
dddddddd dddddddd
eeeeeeee eeeeeeee
ffffffff ffffffff01101100

76543210bit

R10
gggggggg gggggggg
hhhhhhhh hhhhhhhh

stack before instruction AND stack after instruction AND

scratch pad
ANDA0 A0

A1 A1
A2 A2
A3 A3
A4 A4
A5 A5
A6 A6
A7 A7

LD $9B35E76C
AND %R10 $9B35E76C $00000028

bbbbbbbb bbbbbbbb
cccccccc cccccccc
dddddddd dddddddd
eeeeeeee eeeeeeee
ffffffff ffffffff$38R10
gggggggg gggggggg
hhhhhhhh hhhhhhhh

stack before instruction AND stack after instruction AND

scratch pad
ANDA0 A0

A1 A1
A2 A2
A3 A3
A4 A4
A5 A5
A6 A6
A7 A7

LD $9B35E76C
AND %RW10 $9B35E76C $0000E428

bbbbbbbb bbbbbbbb
cccccccc cccccccc
dddddddd dddddddd
eeeeeeee eeeeeeee
ffffffff ffffffff$F4

$38
R11
R10

gggggggg gggggggg
hhhhhhhh hhhhhhhh

stack before instruction AND stack after instruction AND

scratch pad
ANDA0 A0

A1 A1
A2 A2
A3 A3
A4 A4
A5 A5
A6 A6
A7 A7

LD $9B35E76C
AND %RL10 $9B35E76C $8315E428

bbbbbbbb bbbbbbbb
cccccccc cccccccc
dddddddd dddddddd
eeeeeeee eeeeeeee
ffffffff ffffffff$F4

$C7

$38

$15
R11

R13

R10

R12gggggggg gggggggg
hhhhhhhh hhhhhhhh

stack before instruction AND stack after instruction AND

scratch pad
ANDA0 A0

A1 A1
A2 A2
A3 A3
A4 A4
A5 A5
A6 A6
A7 A7

LD $C715F438
LD $9B35E76C
AND

$C715F438

$C715F438

$9B35E76C
$8315E428

cccccccc
cccccccc

dddddddd
dddddddd

eeeeeeee
eeeeeeee

ffffffff
ffffffff

gggggggg
gggggggg

hhhhhhhh
hhhhhhhh

stack before instruction AND stack after instruction AND

ANDA0 A0
A1 A1
A2 A2
A3 A3
A4 A4
A5 A5
A6 A6
A7 A7

2. Logical instructions

TXV 004 01.02 26

OR Function OR
ORC Function NOR

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0
ope-
rand A7 A6 A5 A4 A3 A2 A1 A0

ope-
rand

OR a b a b+ b
OR w/o op. a b b A7 A6 A5 A4 A3 A2 a b+
ORC a b a b+ b
ORC w/o op. a b b A7 A6 A5 A4 A3 A2 a b+

Operands

bool byte
usint
sint

word
uint
int

dword
udint
dint

OR X Y S D R C C C C
OR # C
OR w/o operand C
ORC X Y S D R C C C C
ORC # C
ORC w/o operand C

Function

OR - logical OR of the stack top with operand
ORC - logical OR of the stack top with negated operand

Description

The function of the logical OR operation assumes the value of log.1, if at least one of
their parameters is log. 1, otherwise it has the value of log. 0. In Boolean algebra it is
represented by „or“. In relay diagrams, parallel arrangement of contacts corresponds to it.
The function is clear from the truth table:

Input parameters Result

a b ba + ba +
0 0 0 1
0 1 1 0
1 0 1 1
1 1 1 1

Operand instructions OR take the content of the addressed location and perform its
logical OR operation with the stack top. This is overwritten by the result of the operation.
The instruction ORC performs logical OR of negation of the taken content of the
addressed location with the stack top. The content of the source location remains
unchanged.

Instructions with the bool type operand process the entire the A0 stack top in such a
way that it performs the specified operation with each of its bits. The instruction saves the
result of these 32 operations back on the A0 stack top.

Instructions with the byte , usint and sint types operand process the lowest byte of the
A0 stack top as 8 bit operations among corresponding stack bits and the operand. The

Instruction set of PLC TECOMAT - 32 bit model

27 TXV 004 01.02

result is saved at the lowest byte of the A0 stack top. The other three bytes of the A0 stack
top are left unchanged (operation OR 0 is performed).

Instructions with the word , uint and int types operand process the lower word of the A0
stack top as 16 bit operations among corresponding stack bits and the operand. They save
the result on the lower word of the A0 stack top. The upper word is left unchanged
(operation OR 0 is performed).

Instructions with the dword , udint and dint types operand process the A0 stack top as
32 bit operations among corresponding stack bits and the operand. They save the result
on the A0 stack top.

Instructions OR, ORC without operand perform 32 bit operations among corresponding
bits of layers A0 and A1 of the stack. They then shift the stack one level back and write the
result of the operation on the new A0 stack top.

Examples

Logical OR cbay ++=
#reg bool va, vb, vc, output
;
P 0

LD va
OR vb
ORC vc
WR output

E 0

Logical OR bay +=
#reg bool va, vb, output
;
P 0

LD va
LD vb
OR
WR output

E 0

2. Logical instructions

TXV 004 01.02 28

Diagram
LD $9B35E76C
OR %R10.3 $9B35E76C $FFFFFFFF

bbbbbbbb bbbbbbbb
cccccccc cccccccc
dddddddd dddddddd
eeeeeeee eeeeeeee
ffffffff ffffffff01101100

76543210bit

R10
gggggggg gggggggg
hhhhhhhh hhhhhhhh

stack before instruction OR stack after instruction OR

scratch pad
ORA0 A0

A1 A1
A2 A2
A3 A3
A4 A4
A5 A5
A6 A6
A7 A7

LD $9B35E76C
OR %R10 $9B35E76C $9B35E77C

bbbbbbbb bbbbbbbb
cccccccc cccccccc
dddddddd dddddddd
eeeeeeee eeeeeeee
ffffffff ffffffff$38R10
gggggggg gggggggg
hhhhhhhh hhhhhhhh

stack before instruction OR stack after instruction OR

scratch pad
ORA0 A0

A1 A1
A2 A2
A3 A3
A4 A4
A5 A5
A6 A6
A7 A7

LD $9B35E76C
OR %RW10 $9B35E76C $9B35F77C

bbbbbbbb bbbbbbbb
cccccccc cccccccc
dddddddd dddddddd
eeeeeeee eeeeeeee
ffffffff ffffffff$F4

$38
R11
R10

gggggggg gggggggg
hhhhhhhh hhhhhhhh

stack before instruction OR stack after instruction OR

scratch pad
ORA0 A0

A1 A1
A2 A2
A3 A3
A4 A4
A5 A5
A6 A6
A7 A7

LD $9B35E76C
OR %RL10 $9B35E76C $DF35F77C

bbbbbbbb bbbbbbbb
cccccccc cccccccc
dddddddd dddddddd
eeeeeeee eeeeeeee
ffffffff ffffffff$F4

$C7

$38

$15
R11

R13

R10

R12gggggggg gggggggg
hhhhhhhh hhhhhhhh

stack before instruction OR stack after instruction OR

scratch pad
ORA0 A0

A1 A1
A2 A2
A3 A3
A4 A4
A5 A5
A6 A6
A7 A7

LD $C715F438
LD $9B35E76C
OR

$C715F438

$C715F438

$9B35E76C
$DF35F77C

cccccccc
cccccccc

dddddddd
dddddddd

eeeeeeee
eeeeeeee

ffffffff
ffffffff

gggggggg
gggggggg

hhhhhhhh
hhhhhhhh

stack before instruction OR stack after instruction OR

ORA0 A0
A1 A1
A2 A2
A3 A3
A4 A4
A5 A5
A6 A6
A7 A7

Instruction set of PLC TECOMAT - 32 bit model

29 TXV 004 01.02

XOR Function Exclusive OR
XOC Function Exclusive NOR

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0
ope-
rand A7 A6 A5 A4 A3 A2 A1 A0

ope-
rand

XOR a b a b⊕ b
XOR w/o op. a b b A7 A6 A5 A4 A3 A2 a b⊕
XOC a b a b⊕ b
XOC w/o op. a b b A7 A6 A5 A4 A3 A2 a b⊕

Operands

bool byte
usint
sint

word
uint
int

dword
udint
dint

XOR X Y S D R C C C C
XOR # C
XOR w/o operand C
XOC X Y S D R C C C C
XOC # C
XOC w/o operand C

Function

XOR - exclusive logical OR of the stack top with operand
XOC - exclusive logical OR of the stack top with negated operand

Description

The function of the exclusive OR operation (XOR) assumes the value of log.1, if just
one of its operands is log.1, otherwise it has the value of log.0. In Boolean algebra it is
represented by „either..., or“. For two variables is the function XOR identical to the
functions of inequality, modulo 2 and odd parity. For a greater number of inputs this
identity is not valid any more. The two-input function can be explained also as mismatch -
it equals to log.1, if both operands differ from each other. The function is clear from the
following truth table:

Input parameters Result

a b ba⊕ ba ⊕
0 0 0 1
0 1 1 0
1 0 1 0
1 1 0 1

Operand instructions XOR take the content of the addressed location and perform its
exclusive logical OR with the stack top. This is overwritten by the result of the operation.
The instruction XOC performs exclusive logical OR of negation of the taken content of the
addressed location with the stack top. The content of the source location remains
unchanged.

Instructions with the bool type operand process the entire the A0 stack top in such a
way that it performs the specified operation with each of its bits. The instruction saves the
result of these 32 operations back on the A0 stack top.

2. Logical instructions

TXV 004 01.02 30

Instructions with the byte , usint and sint types operand process the lowest byte of the
A0 stack top as 8 bit operations among corresponding stack bits and the operand. The
result is saved at the lowest byte of the A0 stack top. The other three bytes of the A0 stack
top are left unchanged (operation XOR 0 is performed).

Instructions with the word , uint and int types operand process the lower word of the A0
stack top as 16 bit operations among corresponding stack bits and the operand. They save
the result on the lower word of the A0 stack top. The upper word is left unchanged
(operation XOR 0 performed).

Instructions with the dword , udint and dint types operand process the A0 stack top as
32 bit operations among corresponding stack bits and the operand. They save the result
on the A0 stack top.

Instructions XOR, XOC without operand perform 32 bit operations among
corresponding bits of layers A0 and A1 of the stack. They then shift the stack one level
back and write the result of the operation on the new A0 stack top.

Examples

Logical exclusive OR babay ⋅+⋅=
#reg bool va, vb, output
;
P 0

LD va
XOR vb
WR output

E 0

#reg bool va, vb, output
;
P 0

LD va
LD vb
XOR
WR output

E 0

Instruction set of PLC TECOMAT - 32 bit model

31 TXV 004 01.02

Diagram
LD $9B35E76C
XOR %R10.3 $9B35E76C $64CA1893

bbbbbbbb bbbbbbbb
cccccccc cccccccc
dddddddd dddddddd
eeeeeeee eeeeeeee
ffffffff ffffffff01101100

76543210bit

R10
gggggggg gggggggg
hhhhhhhh hhhhhhhh

stack before instruction XOR stack after instruction XOR

scratch pad
XORA0 A0

A1 A1
A2 A2
A3 A3
A4 A4
A5 A5
A6 A6
A7 A7

LD $9B35E76C
XOR %R10 $9B35E76C $9B35E754

bbbbbbbb bbbbbbbb
cccccccc cccccccc
dddddddd dddddddd
eeeeeeee eeeeeeee
ffffffff ffffffff$38R10
gggggggg gggggggg
hhhhhhhh hhhhhhhh

stack before instruction XOR stack after instruction XOR

scratch pad
XORA0 A0

A1 A1
A2 A2
A3 A3
A4 A4
A5 A5
A6 A6
A7 A7

LD $9B35E76C
XOR %RW10 $9B35E76C $9B358354

bbbbbbbb bbbbbbbb
cccccccc cccccccc
dddddddd dddddddd
eeeeeeee eeeeeeee
ffffffff ffffffff$F4

$38
R11
R10

gggggggg gggggggg
hhhhhhhh hhhhhhhh

stack before instruction XOR stack after instruction XOR

scratch pad
XORA0 A0

A1 A1
A2 A2
A3 A3
A4 A4
A5 A5
A6 A6
A7 A7

LD $9B35E76C
XOR %RL10 $9B35E76C $5C208354

bbbbbbbb bbbbbbbb
cccccccc cccccccc
dddddddd dddddddd
eeeeeeee eeeeeeee
ffffffff ffffffff$F4

$C7

$38

$15
R11

R13

R10

R12gggggggg gggggggg
hhhhhhhh hhhhhhhh

stack before instruction XOR stack after instruction XOR

scratch pad
XORA0 A0

A1 A1
A2 A2
A3 A3
A4 A4
A5 A5
A6 A6
A7 A7

LD $C715F438
LD $9B35E76C
XOR

$C715F438

$C715F438

$9B35E76C
$5C208354

cccccccc
cccccccc

dddddddd
dddddddd

eeeeeeee
eeeeeeee

ffffffff
ffffffff

gggggggg
gggggggg

hhhhhhhh
hhhhhhhh

stack before instruction XOR stack after instruction XOR

XORA0 A0
A1 A1
A2 A2
A3 A3
A4 A4
A5 A5
A6 A6
A7 A7

2. Logical instructions

TXV 004 01.02 32

NEG Negation

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
NEG a a

Operands

dword udint
NEG w/o operand C

Function

NEG - negation of the stack top

Description

The instruction NEG performs negation of all bits of the A0 stack top. The other stack
levels remain unchanged.

Diagram
LD $9B35E76C
NEG $9B35E76C $64CA1893

bbbbbbbb bbbbbbbb
cccccccc cccccccc
dddddddd dddddddd
eeeeeeee eeeeeeee
ffffffff ffffffff
gggggggg gggggggg
hhhhhhhh hhhhhhhh

stack before instruction NEG stack after instruction NEG

NEGA0 A0
A1 A1
A2 A2
A3 A3
A4 A4
A5 A5
A6 A6
A7 A7

Instruction set of PLC TECOMAT - 32 bit model

33 TXV 004 01.02

SET Conditional set
RES Conditional reset

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0
op.

A7 A6 A5 A4 A3 A2 A1 A0
operand

SET a a a b+
RES a a a b⋅

Operands

bool byte
usint

word
uint

dword
udint

SET X Y S R C C C C
RES X Y S R C C C C

Function

SET - conditional write of log.1 to memory, R - S type flip-flop setting
RES - conditional write log.0 to memory, setting of the R - S type flip-flop to zero

Description

Instruction SET performs conditional write of log.1 to the addressed location, instruction
RES performs conditional write of log.0. If both instructions work with the same memory
location then we can understand its content as the analogy of the R - S type flip-flop or
another flip-flop with asynchronous inputs R and S.

The instruction does not change the content of the stack.

Function SET sets the content of the addressed location to log.1 only if the control
variable loaded from the stack top the value of log. 1, otherwise the content of the location
remains unchanged. Function RES sets the content of the addressed location to zero only
when the control variable has the value of log. 1, otherwise the content remains
unchanged. It can be said that the function SET and RES are active (the content of the
addressed location changes) only when the control variable has the value of log. 1 and in
this case the function SET writes log.1 and function RES writes log.0. If the control
variable has the value of log.0 then the content of the memory location remains
unchanged neither after SET or RES (the previous content is retained). Functions SET
and RES can be described with the following truth table:

Input parameters Result

a b ba + (SET) ba ⋅ (RES)
0 0 0 0
0 1 1 1
1 0 1 0
1 1 1 0

For instructions with the bool type operand the control variable equals to logical OR of
all 16 bits of the A0 stack top. If the content of A0 is non-zero (A0 ≠ 0) then the instruction
SET sets the addressed bit to log.1 and instruction RES writes log. 0 under this condition.
If the content of level A0 is zero (A0 = 0) then no instruction does not change the content
of the addressed location.

2. Logical instructions

TXV 004 01.02 34

Instructions with the byte and usint types operand perform at a stroke 8 bit operations
for homothetic bits of the lowest byte of the A0 stack top (a file of 8 control variables a) and
addressed location (a file of 8 status variables b).

Instructions with the word and uint types operand perform at a stroke 16 bit operations
for homothetic bits of the lower word of the A0 stack top (a file 16 control variables a) and
addressed location (a file of 16 status variables b).

Instructions with the dword and udint types operand perform at a stroke 32 bit
operations for homothetic bits of the A0 stack top (a file of 32 control variables a) and
addressed location (a file of 32 status variables b).

Note

From the technical point of view it is possible to address any location to which it can be
written. From the functional point of view some possibilities make no sense since they do
not guarantee the correct performance of the instructions (e.g. occupied inputs X, active
system registers S).

During one cycle of user program, more SET or RES instructions can be activated,
addressing the common state variable. When activating the same instructions (either SET
only, or RES only), the result is identical after the last instruction as if we performed the
only operation with the adding control variable (added OR function).

If the active instructions are performed above the common variable in the sequence of
SET and RES (with the control variable having the value of log. 1), the state after
instruction RES will be valid (memory with prevailing zero setting).

In the reverse order of the instructions (RES and then SET) the state after instruction
SET will be valid (memory with prevailing one setting) - always the last active instruction
prevails.

Instruction set of PLC TECOMAT - 32 bit model

35 TXV 004 01.02

LET Pulse from the leading edge
BET Pulse from any edge

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0
ope
rand A7 A6 A5 A4 A3 A2 A1 A0

ope
rand

LET a b a b⋅ a
BET a b a b⊕ a

Operands

bool byte
usint

word
uint

dword
udint

LET X Y S R C C C C
BET X Y S R C C C C

Function

LET - generating of start pulse from the leading edge
BET - generating of start pulse from any edge

Description

The instructions set its addressed status variable according to same rules as the
instruction WR or WRX. In addition to this they compare the original a newly written
content of the status variables (before and after write).

Instruction LET sets the result at the stack top to log.1 only when the status variable
changes from log.0 to log.1 (leading edge), otherwise they set it to zero.

Instruction BET sets the result at the stack top to log.1 only when the status variable
changes from log.0 to log.1 or from log.1 to log.0 (any edge), otherwise they set it to zero.

The instruction does not change the content of the stack.

Logical functions LET and BET (value set on the stack top) can be defined with the
following truth table:

Input parameters Result

a b ba ⋅ (LET) ba⊕ (BET)
0 0 0 0
0 1 0 1
1 0 1 1
1 1 0 0

Instructions with the bool type operand perform the OR operation of all 16 bits of the A0
stack top and the value of this operation will be saved in the addressed bit after the stack
top has been tested and set. The result of comparison at the stack top is identical in all 16
bits. Setting of the stack top to log.1 thus represented by the value of 65 535 (all ones).

Instructions with the byte and usint types operand perform at a stroke 8 bit operations
for the homothetic bits of the lowest byte of the A0 stack top (a file of 8 control variables a)
and addressed location (a file of 8 status variables b). The results of comparison are saved
at the lowest byte of the A0 stack top (a file 8 results). The other three bytes A0 are set to
zero.

2. Logical instructions

TXV 004 01.02 36

Instructions with the word and uint types operand perform at a stroke 16 bit operations
for the homothetic bits of the lower word of the A0 stack top (a file of 16 control variables
a) and addressed location (a file of 16 status variables b). The results of comparison are
saved in the lower word of the A0 stack top (a file of 16 results). The upper word A0 is set
to zero.

Instructions with the dword and udint types operand perform at a stroke 32 bit
operations for the homothetic bits of the A0 stack top (a file of 32 control variables a) and
addressed location (a file of 32 status variables b). The results of comparison are saved at
the A0 stack top (a file of 32 results).

Note

For correct function of the instructions LET, BET it is necessary that writing to the status
variable performs only one instruction LET, BET (once at each cycle) and that the system
program does not work on its content.

If we process the output of the instructions LET, BET only in internal variables, the
pulse can be shorter. The time displacement between the leading edges must be reliably
longer than the double of the cycle time is (during one cycle it is not possible to evaluate
the leading and trailing edge, if we do not evaluate it in the interrupting process). But if the
control variable derives from the internal variables of the user program (not from the inputs
or system variables) then it is possible to evaluate also more leading edges.

During the first activation of the system program (after restart) the instructions LET,
BET can accidentally generate false information. This can be avoided by either ignoring
the results of the first cycle which will be understood as stabilization of a transient
performance or before the first cycle during the process of restart handling the user sets all
status variables do ones for instructions LET or to the state that corresponds to the idle
steady state, for instructions BET.

Instruction set of PLC TECOMAT - 32 bit model

37 TXV 004 01.02

FLG Logical flags of the stack top

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
S0

FLG VAL A6 A5 A4 A3 A2 A1 VAL N4 NFLG
VAL processed value (type uint)
N4 - logical product AND of the lower word of the A0 stack top (see description)
NFLG - file of logical functions above the A0 stack top (see description)

Operands

word uint
FLG w/o operand C

Function

FLG - logical AND and transverse functions of bytes of the lower word of A0 at S1

Description

The instruction FLG processes the content of A0, moves the stack ahead and performs
the following operations:

• It determines the number one-bits at the lower word of the original top of A0. This
number N assumes a value of 0 to 16, in the binary system it can be written on five bits.
The four lower bits N3 to N0 are saved at the lower half of the system register S1. The
highest bit N4 having the meaning of longitudinal logical AND operation that
simultaneously has a meaning of the logical AND operation of all A0 bits, is saved in all
bits of the new A0 stack top.
The item N can be advantageously used for realization of symmetrical functions (parity,
majority, threshold functions, etc.), for example:
N > 0 (N ≠ 0) - logical OR
N0 = S1.0 - odd parity, product above 2
N4 = A0 - logical product AND of the lower word of the A0 stack top
N3 = S1.3 - if the second lowest byte of the A0 stack top was zero, logical

product AND of the A0 lowest byte

N = 2 - threshold function
16

2

F or
nF
2

N = k - threshold function
16

k

F or
n

k

F
N = 1 - just 1 of 16 (1 of n), function „either, or“, „exclusive or“
N = {number file} - any symmetrical function defined by a number file

• It performs separately the functions of logical OR and logical AND for both lower bytes
of the original A0 stack top and saves the results to register S1.

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S1 ORH ORL ANH ANL N3 N2 N1 N0

S1.3 to S1.0 (N3 to N0)
- Together with the value of bit N4, which is saved in all bits of the new A0

stack top it forms a five-bit number N specifying the number of one-bits in
the original lower word of the A0 stack top.

S1.0 (N0) - odd parity of the lower word of the original stack top

2. Logical instructions

TXV 004 01.02 38

S1.4 (ANL) - longitudinal logical product of all bits of the lowest byte of the original
stack top

S1.5 (ANH) - longitudinal logical product of all bits of the second lowest byte of the
original stack top

S1.6 (ORL) - longitudinal logical OR of all bits of the lowest byte of the original stack top
S1.7 (ORH) - longitudinal logical OR of all bits of the second lowest byte of the original

stack top

Note

The instruction FLG is contained in the instruction file of the 32 bit model due to
compatibility of the user programs transferred from a 16 bit model. We do not recommend
using of this instruction for new user programs.

Instruction set of PLC TECOMAT - 32 bit model

39 TXV 004 01.02

STK Transpose stack

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
STK h g f e d c b a h g f e d c b NSTK
NSTK - logical OR operations of all stack layers (usint - see description)

Operands

dword udint
STK w/o operand C

Function

STK - transposing of logical values of 8 stack levels to A0

Description

The instruction STK performs for each layer of the stack A0 to A7 logical OR operation
of all 16 bits of the level and then this "column" is "transposed" to the layer A0L according
to the following scheme:

A0.7 A0.6 A0.5 A0.4 A0.3 A0.2 A0.1 A0.0
OR7 OR6 OR5 OR4 OR3 OR2 OR1 OR0

OR0 to OR7 are the values of the logical OR operations of the individual layers A0 to
A7.

The other three bytes of the stack top are set to zero, the other stack levels remain
unchanged.

2. Logical instructions

TXV 004 01.02 40

ROL Rotate left
ROR Rotate right

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0
ope-
rand A7 A6 A5 A4 A3 A2 A1 A0

ROL n a n a n〈〈

ROL a n n A7 A6 A5 A4 A3 A2 a n〈〈

ROR n a n a n〉〉

ROR a n n A7 A6 A5 A4 A3 A2 a n〉〉

Operands

word
uint

dword
udint

ROL n C
ROL w/o operand C
ROR n C
ROR w/o operand C

Function

ROL - n-multiple rotation of the value of the A0 stack top to the left
ROR - n-multiple rotation of the value of the A0 stack top to the right

Description

The instruction ROL with parameter n performs a circular shift of the lower 16 bits of the
A0 stack top to the left. The instruction ROR with parameter n performs the same to the
right. The parameter of the instruction specifies the number of unit shift, i.e. by how many
bits the content is shifted. If the operand is greater than 15, modulo 16 is recalculated, so
that there are never more than 15 shifts performed. When the parameter is zero, no shift is
performed, only flags are set.

The upper 16 bits of the stack top (A0.16 to A0.31) are set to zero.
A schematic representation of the instruction ROL n:

A0

S0

15.14.13.12.11.10. 9. 8.

7. 6. 5. 4. 3. 2. 1. 0.

7. 6. 5. 4. 3. 2. 1. 0.

A schematic representation of the instruction ROR n:

15.14.13.12.11.10. 9. 8.

S0
7. 6. 5. 4. 3. 2. 1. 0.

7. 6. 5. 4. 3. 2. 1. 0.
A0

Instruction set of PLC TECOMAT - 32 bit model

41 TXV 004 01.02

Instructions ROL and ROR without operand process the content of the stack top as the
number of shifts. They then move the stack by one layer back and perform a circular shift
of the new stack top (original layer A1) by the corresponding number of bits. If the number
of shifts is greater than 31, modulo 32 is recalculated, so that there are never more than
31 shifts are performed. When the parameter is zero, no shift is performed, only flags are
set.

The instruction ROL without operand performs a circular shift of all 32 bits of the A0
stack top to the left. The instruction ROR without operand performs the same to the right.

A schematic representation of the instruction ROL:

15.14.13.12.11.10. 9. 8.31.30.29.28.27.26.25.24.

S0
7. 6. 5. 4. 3. 2. 1. 0.

7. 6. 5. 4. 3. 2. 1. 0.23.22.21.20.19.18.17.16.
A0

A schematic representation of the instruction ROR:

15.14.13.12.11.10. 9. 8.31.30.29.28.27.26.25.24.

S0
7. 6. 5. 4. 3. 2. 1. 0.

7. 6. 5. 4. 3. 2. 1. 0.23.22.21.20.19.18.17.16.
A0

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S0 - - - - - ≤ CO ZR

S0.0 (ZR) - zero value of result
1 - the result is 0

S0.1 (CO) - carry out
1 - the value of the last bit transferred in the circle (from the highest bit to

the lowest at ROL, or from the lowest bit to the highest one at ROR
log. 1 is transferred)

S0.2 (≤) - logical OR S0.0 OR S0.1

Note

Instructions ROL and ROR with parameter n are contained in the instruction set of the
32 bit model due to compatibility of the user programs transferred from a 16 bit model. We
do not recommend using these instructions for new user programs but replace them with
instructions ROL and ROR without operand.

2. Logical instructions

TXV 004 01.02 42

SHL Shift number to the left
SHR Shift number to the right

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
SHL a n n A7 A6 A5 A4 A3 A2 a n〈〈

SHR a n n A7 A6 A5 A4 A3 A2 a n〉〉

Operands

dword
udint

SHL w/o operand C
SHR w/o operand C

Function

SHL - n-multiple shift of the content of the A0 stack top to the left
SHR - n-multiple shift of the content of the A0 stack top to the right

Description

Instructions SHL and SHR process the content of the stack top as the number of shifts.
They then shift the stack by one layer back and perform the shift of the new stack top
(original layer A1) by the corresponding number of bits. If the number of shifts is greater
than 31, modulo 32 is recalculated, so that there are never more than 31 shifts performed.
When the parameter is zero, no shift is performed, only flags are set.

The instruction SHL performs the shift of all 32 bits of the A0 stack top to the left. The
instruction SHR performs the same to the right. The empty bits are filled with log.0.

A schematic representation of the instruction SHL:

7. 6. 5. 4. 3. 2. 1. 0.15.14.13.12.11.10. 9. 8.23.22.21.20.19.18.17.16.31.30.29.28.27.26.25.24.

S0
7. 6. 5. 4. 3. 2. 1. 0.

A0

A schematic representation of the instruction SHR:

15.14.13.12.11.10. 9. 8.23.22.21.20.19.18.17.16.31.30.29.28.27.26.25.24.

S0
7. 6. 5. 4. 3. 2. 1. 0.

7. 6. 5. 4. 3. 2. 1. 0.
A0

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S0 - - - - - - CO -

S0.1 (CO) - carry out - the content of the last shifted bit

Instruction set of PLC TECOMAT - 32 bit model

43 TXV 004 01.02

SWP Swap of two lower bytes of the stack top
SWL Swap of words of the stack top

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
SWP abcd abdc
SWL abcd cdab

Operands

word
uint

dword
udint

SWP w/o operand C
SWL w/o operand C

Function

SWP - swap of two lower bytes of the stack top
SWL - swap of both words of the stack top

Description

The instruction SWP swaps the content of two lower bytes of the A0 stack top, the
instruction SWL swaps the content of both words of the A0 stack top. The other stack
levels remain unchanged.

3. Counters, shift registers, timers, step sequencer

TXV 004 01.02 44

3. COUNTERS, SHIFT REGISTERS, TIMERS, STEP
SEQUENCER

CTU Upward counter
CTD Downward counter

CNT Bidirectional counter

Instr. Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0
ope-
rand A7 A6 A5 A4 A3 A2 A1 A0

ope-
rand

CTU UP RES VAL0 A6 A5 A4 A3 A2 UPC RES VAL VAL
CTD DWN SET VAL0 A6 A5 A4 A3 A2 DNC SET VAL VAL
CNT UP DWN RES VAL0 A6 A5 A4 A3 UPC DNC RES VAL VAL
UP - control variable for counting up (type bool)
DWN - control variable for counting down (type bool)
RES - zero-setting variable of the counter (type bool)
SET - setup variable of the counter (type bool)
VAL0 - numerical value of the counter before instruction (type according to the operand)
UPC - counting up transfer to a higher cascade (type bool)
DNC - counting down transfer to a higher cascade (type bool)
VAL - current numerical value of the counter (type according to the operand)

Operands

uint udint
CTU R C C
CTD R C C
CNT R C C

Function

CTU - upward counter
CTD - downward counter
CNT - bidirectional counter

Description

The instruction CTU tests, whether the UP value has changed after activation of the
instruction CTU or CNT from log.0 to log.1 (leading edge). If so, the counter value VAL
addressed by the instruction is increased by one. If not, the content of the counter remains
unchanged. At the same time, the instruction CTU moves the stack ahead and saves the
current content of the counter on the new stack top. Provided carry was performed during
counting (change of the content of the counter from the maximum value to 0), log.1 is
saved to the variable UPC (all ones). Provided no carry was performed, UPC equals
to log.0. The variable RES remains unchanged.

If the variable RES = log.1, the content of the counter is set to zero. Provided the
leading edge is evaluated at the same time, setting to zero is of priority and the information
on the edge is lost. But setting to zero does not effect the mechanism of the evaluation of
leading edges, so that after RES is off, the first leading edge of the UP is processed
normally.

The instruction CTD tests, whether the value of DWN has changed against the state of
DWN after the last activated function CTD or CNT from log.0 to log.1 (leading edge), then

Instruction set of PLC TECOMAT - 32 bit model

45 TXV 004 01.02

the content of the counter which is addressed by the instruction, decreases by 1. If not, the
content of the counter remains unchanged. At the same time, the instruction CTD moves
the stack ahead and the content of the counter is saved on the new stack top. If carry
takes place during counting, (change of the counter content from zero to the maximum
value, log.1 is saved to the DNC (all ones). If carry did not take place, DNC = log.0. The
variable SET remains unchanged.

If the variable SET = log.1, the counter content is set to the maximum value. If the
leading edge is evaluated at the same time, SET is of higher priority and the leading edge
data will be lost. But setting does not cancel the evaluation of leading edges. After the SET
signal is off, the first leading edge of DWN is processed normally.

The instruction CNT tests inputs UP and DWN. If the value of UP changed against the
state of UP after the last activated function CTU or CNT from log.0 to log.1 (leading edge),
then the content of the counter which is addressed by the instruction, increases by 1. If the
value of DWN changed against the state of DWN after the last activated function CTD or
CNT from log.0 to log.1 (leading edge), then the content of the counter word, which is
addressed by the instruction, decreases by 1. When both leading edges occur at the same
time, the counter content remains unchanged (mutual elimination).

At the same time, the instruction CNT moves the stack ahead and the counter content is
saved on the new stack top. Should carry up take place during counting (change of the
counter content from the maximum value to 0), log.1 is saved to the variable UPC (all
ones). Should carry down take place during counting (change of the counter content from
0 to the maximum value), log.1 is saved to the variable DNC (all ones). If carry does not
take place, both variables will have zero value. The variable RES remains unchanged.

If the variable RES = log.1, the content of the counter is set to zero. If the leading edge
is evaluated at the same time, setting to zero is of higher priority and the leading edge
information will be lost. But setting to zero does not cancel the mechanism of leading edge
evaluation, so after RES is off, the first leading edge of UP or DWN is processed normally.

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S0 - - - - - ≤ CO ZR

S0.0 (ZR) - zero value of result
1 - counter value is zero

S0.1 (CO) - carry out
1 - counter valued exceeded the maximum

S0.2 (≤) - logical OR S0.0 OR S0.1

Note

During the first activation of the counter (after switching on or change of counter mode)
log.1 is saved to the memory of the recent value of the control variable XT, so counting will
begin by the first leading edge being really evaluated, not by a random transition.

Any of the instructions CTU, CTD, CNT, SFL and SFR can work above one object,
change of the instruction type does not activate initialization. But it is necessary to ensure
that only one of these instructions for the same direction of counting is performed at one
cycle (for example, it is not possible to use CTU or CTD and CNT twice at one cycle).

Examples

Let us realize an upward counter:

#reg uint Counter
#reg bool UP, RESET, Output1, Output 2, Output 3

3. Counters, shift registers, timers, step sequencer

TXV 004 01.02 46

#def Preset 50
;
P 0

LD UP
LD RESET
CTU Counter
WR Output1
LD Counter
EQ Preset
WR Output2
LD Counter
LT Preset
WR Output3

E 0

UP

RESET

1
0
1
0

Preset

Counter

0

1
0

1
0
1
0

Output1

Output2

Output3

Behaviour of an upward counter according to an example

Instruction set of PLC TECOMAT - 32 bit model

47 TXV 004 01.02

Let us realize a downward counter:

#reg uint Counter
#reg bool DOWN, SET, Output1, Output2, Output3
#def Preset 65500
;
P 0

LD DOWN
LD SET
CTD Counter
GT Preset
WR Output1
LD Counter
EQ Preset
WR Output 2
LD Counter
LT Preset
WR Output 3

E 0

3. Counters, shift registers, timers, step sequencer

TXV 004 01.02 48

UP

RESET

1
0
1
0

65 535

Preset

Counter

1
0

1
0
1
0

Output1

Output2

Output3

Behaviour of a downward counter according to an example

Let us realize a bidirectional counter:

#reg uint Counter
#reg bool DOWN, UP, RESET, Output1, Output2, Output3
#def Preset 50
;
P 0

LD UP
LD DOWN
LD RESET
CNT Counter
GT Preset
WR Output1
LD Counter
EQ Preset
WR Output2
LD Counter
LT Preset
WR Output3

E 0

Instruction set of PLC TECOMAT - 32 bit model

49 TXV 004 01.02

DOWN

UP

RESET

1

1

0

0

1
0

Preset
Counter

0

1
0

1
0
1
0

Output1

Output2

Output3

Behaviour of a bidirectional counter according to an example

3. Counters, shift registers, timers, step sequencer

TXV 004 01.02 50

SFL Shift register to the left
SFR Shift register to the right

Instr. Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0
ope-
rand A7 A6 A5 A4 A3 A2 A1 A0

ope-
rand

SFL CLC DATAI VAL0 A6 A5 A4 A3 A2 CLC DATAO VAL VAL
SFR CLC DATAI VAL0 A6 A5 A4 A3 A2 CLC DATAO VAL VAL
CLC - control variable for shift (type bool)
DATAI - data input (type bool)
VAL0 - numerical value of the register before instruction (type according to the operand)
DATAO- data output (type bool)
VAL - current numerical value of the register (type according to the operand)

Operands

word
uint

dword
udint

SFL R C C
SFR R C C

Function

SFL - shift register value to the left
SFR - shift register value to the right

Description

If the value of CLC changes against the state of CLC after the last activated function
SFL or SFR from log.0 to log.1 (leading edge), then the entire content of the shift register
shifts by one bit. After the instruction SFL the addressed register shifts by one bit to the
left, the content of variable DATAI shifts to the position of the least significant bit and, from
the position of the most significant bit, the content moves to the variable DATAO. After the
instruction SFR, the addressed register shifts by one bit to the right, the content of variable
DATAI shifts to the position of the most significant bit and, from the position of the least
significant bit, the content shifts to the variable DATAO.

If the leading edge is not evaluated, the register content remains unchanged. At the
same time, the instruction moves the stack ahead and saves the current content of the
register to the new stack top. The variable CLC remains unchanged.

A schematic representation of the instruction SFL with word type operand (instruction
SFL with long type operand behaves by analogy):

Rn+1 Rn
7. 6. 5. 4. 3. 2. 1. 0. 7. 6. 5. 4. 3. 2. 1. 0.

DATAO DATAI

A schematic representation of the instruction SFR with word and uint types operand
(instruction SFR with dword and udint types operand behaves by analogy):

Rn+1 Rn
7. 6. 5. 4. 3. 2. 1. 0. 7. 6. 5. 4. 3. 2. 1. 0.

DATAI DATAO

Instruction set of PLC TECOMAT - 32 bit model

51 TXV 004 01.02

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S0 - - - - - ≤ CO ZR

S0.0 (ZR) - zero value of result
1 - register value is zero

S0.1 (CO) - carry
S0.2 (≤) - logical OR S0.0 OR S0.1

Note

Above one object, any of the instructions CTU, CTD, CNT, SFL and SFR can work, the
change of the instruction type does not activate initialization. But it is necessary to ensure
that only one of these instructions is performed at one cycle for the same direction of
counting or shift (for example, it is not possible to use the SFL instruction twice, etc.)

3. Counters, shift registers, timers, step sequencer

TXV 004 01.02 52

TON Timer (on delay)
TOF Timer (off delay)

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0
ope-
rand A7 A6 A5 A4 A3 A2 A1 A0

ope-
rand

TON XT VAL TIM XT YT TIM
TOF XT VAL TIM XT YT TIM
XT - control variable (type bool)
VAL - numerical value of preset (type uint)
TIM - numerical value of timer (type uint) - units given by the parameter k
YT - output variable, the result of comparison of the current value of timer to preset (type bool)

Operands

uint
TON R.k C
TOF R.k C

k - time unit code (if it is not specified, then k = 0)
k = 0 - 10 ms, 1 - 100 ms, 2 - 1 s, 3 - 10 s

Function

TON - timing from start of input (leading edge is delayed)
TOF - timing from input OFF (trailing edge is delayed)

Description

The instruction TON tests the control variable XT. If XT = log.0, the timer is passive. If
XT = log.1, it is active. The passive timer is set to zero and flags S0.4 and S0.5 are set to
zero, too. If the preset is not zero, the entire register of S0 is set to zero. The active timer
updates the time data and saves the result of the comparison with preset on the stack top.
If preset is not reached, then YT = log.0. If the preset is reached or exceeded, then
YT = log.1 (all ones). An overflow of timer range initiates setting of bits S0.4 and S0.5.

The instruction TOF tests the control variable XT. If XT = log.1, the timer is passive. If
XT = log.0, it is active. The passive timer is set to zero and flags S0.4 and S0.5 are set to
zero, too. If the preset is not zero, also flags S0.2 to S0.0 are set to zero and the timer
output YT is set to the value of log.1 (A0 stack top). The active timer updates the time data
and saves the result of the comparison with preset on the stack top. If the preset is not
reached, then YT = log.1 (all ones). If the preset is reached or exceeded, then YT = log.0.
An overflow of timer range initiates setting of bits S0.4 and S0.5.

Note

Above one object, just one type of timer instruction with the only time unit can be used.
At any change of the instruction type or time unit, initialization is performed - the timer is
set to zero.

Above one object, just one timer instruction can be active. Time-measuring system
variables are updated only at the I/O scan (time is running by sudden changes). During the
cycle, they have still the same value, so it is not important, in which location of the program
the timer instruction is located. But if the timer instruction is omitted at one cycle, then it is
not at the next I/O scan - the timer stops timing. It again starts timing, when the program
passes through the timer instruction, but this value is disturbed by the corresponding time
failure.

Instruction set of PLC TECOMAT - 32 bit model

53 TXV 004 01.02

If the preset VAL is 0, the output of variable YT is identical to the control variable XT.
The state of system flags S0 is not defined.

If the time unit k is approx. of the same value or less than the PLC cycle time, the
function of flags S0.0 and S0.5 is not reliable (the timer value increases by bigger changes
and the preset value or timer range is directly exceeded, so its teaching might not be
detected). Flags S0.0 and S0.5 can be replaced by the test of the leading edge of flags
S0.2 and S0.4.

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S0 - - OC OV - ≤ CO ZR

S0.0 (ZR) - preset reached
1 - preset reached at this cycle

S0.1 (CO) - preset exceeding
1 - preset exceeded

S0.2 (≤) - logical OR S0.0 OR S0.1
1 - preset reached or exceeded

S0.4 (OV) - exceeding of the maximum range of the timer
1 - the timer range was exceeded during the last activation

S0.5 (OC) - timer cascading
1 - the timer range was exceeded at this cycle

Examples
#reg uint Timer
#reg bool XT, YT
#def VAL 5
#def sec 2
;
P 0

LD XT
LD VAL
TON Timer.sec
WR YT

E 0

3. Counters, shift registers, timers, step sequencer

TXV 004 01.02 54

XT

65 535

1
0

VAL
Timer

0

1
0

1
0
1
0
1
0

1
0

YT

S0.0

S0.2

S0.4

S0.5

Timing diagram of a TON timer

#reg uint Timer
#reg bool XT, YT
#def VAL 5
#def sec 2
;
P 0

LD XT
LD VAL
TOF Timer.sec
WR YT

E 0

Instruction set of PLC TECOMAT - 32 bit model

55 TXV 004 01.02

XT

65 535

1
0

VAL
Timer

0

1
0

1
0
1
0
1
0

1
0

YT

S0.0

S0.2

S0.4

S0.5

Timing diagram of a TOF timer

3. Counters, shift registers, timers, step sequencer

TXV 004 01.02 56

RTO Retentive timer on

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0
ope-
rand A7 A6 A5 A4 A3 A2 A1 A0

ope-
rand

RTO XT RT VAL TIM YC RT YT TIM
XT - control variable (type bool)
RT - zero setting variable (type bool)
VAL - preset numerical value (type uint)
TIM - numerical value of timer (type uint) - units given by the parameter k
YC - maximum range overflow (type bool)
YT - output variable, the result of comparison of the current value of timer to preset (type bool)

Operands

word uint
RTO R.k C

k - time unit code (if it is not specified, then k = 0)
k = 0 - 10 ms, 1 - 100 ms, 2 - 1 s, 3 - 10 s

Function

RTO - retentive timer on

Description

If the zero setting variable RT = log.1, the timer is passive. The passive timer sets the
output of YT at the A0 stack top, carry from the timer YC and also the S0 flags are set to
zero, too.

If the zero setting variable RT = log.0 and control variable XT = log.1, the timer is active.
The active timer updates the time data and saves the result of the comparison with preset
on the A0 stack top. If the preset value is not reached, then YT = log.0. If the preset value
is reached or exceeded, then YT = log.1.

An overflow of timer range initiates setting of bits S0.4 and S0.5. The bit S0.5 is copied
into all bits of the A2 layer (carry YC). It equals to log.1 only at the cycle where the
overflow took place.

If the zero setting variable RT = log.0 and control variable XT = log.0, the timer is in the
waiting state. The timer is not either timing in this state or setting to zero, but comparison
with the preset value and setting the flags at S0 take place.

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S0 - - OC OV - ≤ CO ZR

S0.0 (ZR) - preset value reached
1 - preset value reached at this cycle

S0.1 (CO) - exceeding of preset value
1 - preset value exceeded

S0.2 (≤) - logical OR S0.0 OR S0.1
1 - preset value reached or exceeded

S0.4 (OV) - exceeding of timer maximum range
1 - timer range exceeded during the last activation

S0.5 (OC) - timer cascading
1 - timer range exceeded at this cycle

Instruction set of PLC TECOMAT - 32 bit model

57 TXV 004 01.02

Note

Above one object, just one type of timer instruction with the only time unit can be used.
At any change of the instruction type or time unit, initialization is performed - the timer is
set to zero.

Above one object, just one timer instruction can be active. Time measuring system
variables are updated only at the I/O scan (time is running by sudden changes). During the
cycle, they have still the same value, so it is not important, in which location of the program
the timer instruction is located. But if the timer instruction is omitted at one cycle, then it is
not at the next I/O scan - the timer stops timing. It again starts timing, when the program
passes through the timer instruction, but this value is disturbed by the corresponding time
failure.

If the preset of value VAL is 0, the output variable YT is still log.1, only in case of
RT = log.1, then YT = log.0. The state S0 system flags are not defined.

If the time unit k is approx. of the same value or less than the PLC cycle time, the
function of flags S0.0 and S0.5 is not reliable (the timer value increases by bigger
changes) and the preset value or timer range is directly exceeded, so its teaching might
not be detected). Flags S0.0 and S0.5 can be replaced by the test of the leading edge of
flags S0.2 and S0.4.

Example
#reg uint Timer
#def bool XT, RT, YT
#def VAL 5
#def sec 2
;
P 0

LD XT
LD RT
LD VAL
RTO Timer.sec
WR YT

E 0

3. Counters, shift registers, timers, step sequencer

TXV 004 01.02 58

RT

XT

65 535

1
0
1
0

VAL
Timer

0

1
0

1
0
1
0
1
0

1
0

YT

S0.0

S0.2

S0.4

S0.5

Timing diagram of an RTO timer

Instruction set of PLC TECOMAT - 32 bit model

59 TXV 004 01.02

IMP Pulse

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0
ope-
rand A7 A6 A5 A4 A3 A2 A1 A0

ope-
rand

IMP XT VAL TIM XT YT TIM
XT - control variable (type bool)
VAL - numerical value of preset (type uint)
TIM - numerical value of timer (type uint) - units given by the parameter k
YT - output variable, the result of comparison of the current value of timer to preset (type bool)

Operands

uint
IMP R.k C

k - time unit code (if it is not specified, then k = 0)
k = 0 - 10 ms, 1 - 100 ms, 2 - 1 s, 3 - 10 s

Function

IMP - pulse generating from the leading edge

Description

After initialization, the timer is passive. The passive timer is set to zero and also the
flags S0.4 and S0.5 are set to zero. If the preset is not zero, flags S0.2 to S0.0 are set to
zero.

The timer it is active after the first leading edge of the variable XT comes (transition
from log.0 to log.1). The active timer updates the time data and saves the result of the
comparison with the preset value on the A0 stack top. If the preset value is not reached,
then YT = log.1 (all ones). If the preset value is reached, then YT = log.0, the timer
becomes passive again and waits for a new leading edge of the variable XT.

The pulse length cannot be changed. The timer can be prematurely stopped only by
initialization (system restart or change of timer mode - see note).

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S0 - - - - - ≤ - ZR

S0.0 (ZR) - preset value reached
1 - preset value reached at this cycle

S0.2 (≤) - logical OR S0.0 OR S0.1

Note

Above one object, just one type of timer instruction with the only time unit can be used.
At any change of the instruction type or time unit initialization is performed - the timer is set
to zero.

Above one object, just one timer instruction can be active. Time measuring systen
variables are updated only at the I/O scan (time is running by sudden changes). During the
cycle, they have still the same value, so it is not important, in which location of the program
the timer instruction is located. But if the timer instruction is omitted at one cycle, then it is
not at the next I/O scan - the timer stops timing. It again starts timing, when the program

3. Counters, shift registers, timers, step sequencer

TXV 004 01.02 60

passes through the timer instruction, but this value is disturbed by the corresponding time
failure.

If the preset value of VAL is 0, the output variable YT is still log.0 (zero length pulse).
The state of S0 system flags is not defined.

If the time unit k is approximately of the same value or less than the PLC cycle time, the
S0.0 flag is not reliable (the timer value increases by bigger changes and the preset value
is directly exceeded, so its reaching might not be detected). The S0.0 flag can be replaced
by the S0.2 flag detecting also exceeding of the preset value.

Example
#reg uint Timer
#def bool XT, YT
#def VAL 5
#def sec 2
;
P 0

LD XT
LD VAL
IMP Timer.sec
WR YT

E 0

XT
1
0

VAL
Timer

0

1
0

1
0

YT

S0.0

Timing diagram of an IMP timer

Instruction set of PLC TECOMAT - 32 bit model

61 TXV 004 01.02

STE Step sequencer

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0
ope-
rand A7 A6 A5 A4 A3 A2 A1 A0

ope-
rand

STE VEC STP0 VAL STP
VEC - conditional vector - a set of conditions for rotation of the state mask (type according to the operand)
STP0 - state of the step sequencer before instruction
VAL - resulting value of state mask (type according to the operand)
STP - current state of the step sequencer

Operands

uint udint
STE R C C

Function

STE - step sequencer

Description

The instruction STE with word and uint type operand performs the following complex of
activities. The lower byte of the addressed register (lower address) has the meaning of the
state of the step sequencer. Only the lower 4 bits are of importance (values 0 to 15). The
other 4 bits are ignored. The value of the lower 4 bits is converted to a mask 1 of 16
(status mask):

state (bits 3 - 0) bit mask
0 00000000 00000001
1 00000000 00000010
: :

14 01000000 00000000
15 10000000 00000000

After converting the state number to the state mask it is tested, if the condition vector
has the one-condition bit at the corresponding position of the one in the mask. If so, the
state number in the lower byte of the addressed register is increased by 1, the status mask
shifts 1 bit to the left in a circle (the value of the highest bit goes to the lowest) and the
S1.0 flag is set. If a carry took place (change of state from 15 to 0), the S1.1 flag is set,
too. If the corresponding bit in the condition vector is zero, then neither the state number
nor the status mask change and register S1 = 0. The updated value of the status mask is
written on the A0 stack top. The updated state number is saved in the lower byte of the
addressed register (lower address). The value is not corrected modulo 16, but assumes a
value of up to 255. The content of the upper 4 bits from the lower byte (a value of 0 to 15)
is saved to the lower byte of the addressed register (higher address) signifying a carry or
overflow. Thus, the number of status mask "rotations" is saved here.

The instruction STE with dword and udint types operand performs the following
complex of activities. The lower word of the addressed register (lower address) has the
meaning of the state of the step sequencer. Only the lower five bits are of importance
(values 0 to 31). The other 11 bits are ignored. The value of the lower five bits is converted
to a mask 1 of 32 (status mask):

3. Counters, shift registers, timers, step sequencer

TXV 004 01.02 62

state (bits 4 - 0) bit mask
0 00000000 00000000 00000000 00000001
1 00000000 00000000 00000000 00000010
: :

30 01000000 00000000 00000000 00000000
31 10000000 00000000 00000000 00000000

After converting the state number to the status mask it is tested, if the condition vector
has the one-condition bit at the corresponding position of the one in the mask. If so, the
state number in the lower word of the addressed register is increased by 1, the status
mask shifts 1 bit to the left in a circle (the value of the highest bit goes to the lowest) and
the S1.0 flag is set. If a carry took place (change of state from 31 to 0), the S1.1 flag is set,
too. If the corresponding bit of the condition vector is zero, then neither the state number
nor the status mask change and the register S1 = 0. The updated value of the status mask
is written on the A01 stack top. The updated state number is saved to the lower word of
the addressed register (lower address). The value is not corrected modulo 32, but
assumes a size of up to 65 535. The content of the upper 11 bits from the lower byte (a
value of 0 to 15) is saved to the lower byte of the addressed register (higher address)
signifying a carry or overflow. Thus, the number of status mask "rotations" is saved here.

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S1 - - - - - - OM ST

S1.0 (ST) - transition in sequencer
1 - change of state and the status mask

S1.1 (OM) - carry in sequencer
1 - „rotation“ of the status mask (the one was transferred from the highest
bit to bit 0)

Note

If the condition vector is still zero, the instruction STE works as a decoder number →
mask „1 of n“.

If the condition vector contains all ones, the instruction STE performs mask rotation and
incrementation of the number state at the same time.

Instruction set of PLC TECOMAT - 32 bit model

63 TXV 004 01.02

4. ARITHMETIC INSTRUCTIONS

ADD Addition

SUB Subtraction

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0
ope-
rand A7 A6 A5 A4 A3 A2 A1 A0

ope-
rand

ADD a b a b+ b
ADD w/o op. a b b A7 A6 A5 A4 A3 A2 a b+
SUB a b a b− b
SUB w/o op. a b b A7 A6 A5 A4 A3 A2 a b−

Operands

usint
sint

uint
int

udint
dint

ADD X Y S D R C C C
ADD # C
ADD w/o operand C
SUB X Y S D R C C C
SUB # C
SUB w/o operand C

Function

ADD - addition
SUB - subtraction

Description

The instruction ADD with operand adds the content of the given operand to the A0 stack
top. The instruction SUB with operand subtracts the content of the given operand from the
A0 stack top. The content of the other layers remains unchanged. The value on the stack
is processed always as a 32-bit number regardless of the operand width.

The instruction ADD w/o operand moves the stack one level back and adds the original
content of the A0 stack top to the stack top (originally A1).

The instruction SUB w/o operand moves the stack one level back and subtracts the
original content of the A0 stack top from the stack top (originally A1).

Example

Realization of the expression ()cbad −+=
#reg udint va, vb, vc, vd
;
P 0

LD vb
SUB vc ;(b - c)
ADD va ;a + ()
WR vd

E 0

4. Arithmetic instructions

TXV 004 01.02 64

MUL Multiplication
MULS Multiplication with sign

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0
ope-
rand A7 A6 A5 A4 A3 A2 A1 A0

ope-
rand

MUL a b a b⋅ b
MUL w/o op. a b b A7 A6 A5 A4 A3 A2 a b⋅
MULS a b a b⋅ b
MULS w/o op. a b b A7 A6 A5 A4 A3 A2 a b⋅

Operands

usint sint uint int udint dint
MUL X Y S D R C C C
MUL # C
MUL w/o operand C
MULS X Y S D R C C C
MULS # C
MULS w/o operand C

Function

MUL - multiplication
MULS -multiplication with sign

Description

Instruction MUL and MULS with operand multiplies the content of the A0 stack top by
the content of the given operand. The result is saved on A0 the stack top. The content of
the other stack levels remains unchanged.

The instructions MUL and MULS w/o operand multiply the content of the A1 layer by the
content of the A0 layer. They then move the stack one level back and save the result on
the new A0 stack top.

The instruction MUL considers the processed values as positive numbers, while the
instruction MULS accepts the state of the highest bit of the value as a sign. The value on
the stack is processed always as a 32-bit number regardless of the operand width.

Example

Realization of the expression ()cbad ⋅+=
#reg udint va, vb, vc, vd
;
P 0

LD vb
MUL vc ;(b . c)
ADD va ;a + ()
WR vd

E 0

Instruction set of PLC TECOMAT - 32 bit model

65 TXV 004 01.02

DIV, DID Division with reminder
DIVL Division

DIVS Division with sign
MOD Division reminder
MODS Division reminder with sign

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0
ope-
rand A7 A6 A5 A4 A3 A2 A1 A0

op.

DIV a b M a b/ b
DIV w/o op. a b b A7 A6 A5 A4 A3 A2 M a b/
DID a b A6 A5 A4 A3 A2 A1 M a b/ b
DID w/o op. a b M a b/
DIVL a b a b/ b
DIVL w/o op. a b b A7 A6 A5 A4 A3 A2 a b/
DIVS a b a b/ b
DIVS w/o op. a b b A7 A6 A5 A4 A3 A2 a b/
MOD w/o op. a b b A7 A6 A5 A4 A3 A2 M
MODS w/o op. a b b A7 A6 A5 A4 A3 A2 M
M -division reminder (a % b)(type according to the result type)

Operands

usint sint uint int udint dint
DIV X Y S D R C
DIV # C
DIV w/o operand C
DID X Y S D R C C C
DID # C
DID w/o operand C
DIVL X Y S D R C C C
DIVL # C
DIVL w/o operand C
DIVS X Y S D R C C C
DIVS # C
DIVS w/o operand C
MOD w/o operand C
MODS w/o operand C

Function

DIV - division with reminder (usint / usint = usint)
DID - division with reminder
DIVL - division
DIVS - division with sign
MOD - division reminder
MODS- division reminder with sign

4. Arithmetic instructions

TXV 004 01.02 66

Description

The instruction DIV with operand divides the lowest byte of the A0 stack top by the
content of the given operand. It saves the integral quotient in the lowest byte of the stack
top, the reminder is saved in the second lowest byte. The content of the other stack levels
remains unchanged.

The instruction DID with operand divides the content of the A0 stack top by the content
of the given operand. It then moves the stack one level ahead and writes the integral
quotient on the new A0 stack top, the reminder is saved to the A1 layer. The value on the
stack is processed always as a 32-bit number regardless of the operand width.

The instructions DIVL and DIVS with operand divide the content of the A0 stack top by
the content of the given operand. They write the integral quotient on the A0 stack top. The
content of the other stack levels remains unchanged. The value on the stack is processed
always as a 32-bit number regardless of the operand width.

The instruction DIV w/o operand divides the lowest byte of the A1 layer by the lowest
byte of the A0 layer. It then moves the stack one level back and writes the integral quotient
to the lowest byte of the stack top on the new stack top, the reminder is saved to the
second lowest byte of the stack top.

The instruction DID w/o operand divides the content of the A1 layer by the content of
the A0 layer. It writes the integral value on the A0 stack top, the reminder is saved at the
A1 layer. The content of the other stack levels remains unchanged.

The instructions DIVL and DIVS w/o operand divide the content of the A1 layer by the
content of the A0 layer. They then move the stack one level back and write the integral
value on the new A0 stack top.

The instructions MOD and MODS w/o operand divide the content of the A1 layer by the
content of the A0 layer. They then move the stack one level back and write the division
reminder on the new A0 stack top.

The instructions DIV, DID, DIVL, MOD consider the values being processed as positive
numbers, while the instructions DIVS, MODS accept the state of the highest bit of the
value as a sign.

If division by zero is performed, the S0.0 bit is set to log.1 and error 16 is written to the
S34 register. The stack top contains the value of $FFFFFFFF (all ones).

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S0 - - - - - - - ZR

S0.0 (ZR) - division by zero
1 - division by zero performed, the result is not valid

S34 = 16 ($10) error of division by zero

Note

The instruction DIV is contained in the instruction file of the 32 bit model due to
compatibility of the user programs transferred from a 16 bit model. We do not recommend
using this instruction for new user programs.

The instruction DID computes the integral ration as well as the division reminder. If both
results are not needed at the same time, we recommend the instruction DIVL or MOD,
which are significantly faster.

Instruction set of PLC TECOMAT - 32 bit model

67 TXV 004 01.02

Example

Realization of the expression
c

b
ad +=

#reg udint va, vb, vc, vd
;
P 0

LD vb
DIVL vc ;(b / c)
ADD va ;a + ()
WR vd

E 0

4. Arithmetic instructions

TXV 004 01.02 68

INR Incrementation
DCR Decrementation

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0
ope-
rand A7 A6 A5 A4 A3 A2 A1 A0

ope-
rand

INR a a + 1
INR w/o op. a a + 1
DCR a a − 1
DCR w/o op. a a − 1

Operands

usint
sint

uint
int

udint
dint

INR X Y S R C C C
INR w/o operand C
DCR X Y S R C C C
DCR w/o operand C

Function

INR - incrementation of the content by 1
DCR - decrementation of the content by 1

Description

The instruction INR with operand increments the content of the operand by 1. The
content of the stack remains unchanged. The instruction does not set any flags.

The instruction INR w/o operand adds the value of 1 to the content of the stack top. The
content of the other stack levels remains unchanged.

The instruction DCR with operand decrements the content of the operand by 1. The
content of the stack remains unchanged. If the content of the operand after subtraction of
1 equals to 0, the S0.0 (ZR) flag is set. In connection with instructions JZ and JNZ
program cycles can be realized very easy.

The instruction DCR w/o operand subtracts 1 from the content of the stack top. If the
content of the stack top after subtraction of 1 equals to 0, the S0.0 (ZR) flag is set. The
content of the other stack levels remains unchanged.

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S0 - - - - - - - ZR

S0.0 (ZR) - zero value of result (they set instruction DCR)
1 - the result is 0

Instruction set of PLC TECOMAT - 32 bit model

69 TXV 004 01.02

Example

Let us do 5x the same program sequence

#reg usint Meter
;
P 0

LD 5
WR Meter

Loop: ;cycle start
: ;repeated program
:
DCR Meter ;test of number of repetitions
JNZ Loop

;cycle end, Meter = 0
E 0

4. Arithmetic instructions

TXV 004 01.02 70

EQ Comparison (equality)
LT Comparison (less than)

LTS Comparison with sign (less than)
GT Comparison (greater than)
GTS Comparison with sign (greater than)

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0
ope-
rand A7 A6 A5 A4 A3 A2 A1 A0

op.

EQ a b a= b ? b
EQ w/o op. a b b A7 A6 A5 A4 A3 A2 a= b ?
LT, LTS a b a< b ? b
LT, LTS w/o op. a b b A7 A6 A5 A4 A3 A2 a< b ?
GT, GTS a b a> b ? b
GT, GTS w/o op. a b b A7 A6 A5 A4 A3 A2 a> b ?

Operands

usint sint uint int udint dint
EQ X Y S D R C C C
EQ # C
EQ w/o operand C
LT X Y S D R C C C
LT # C
LT w/o operand C
LTS X Y S D R C C C
LTS # C
LTS w/o operand C
GT X Y S D R C C C
GT # C
GT w/o operand C
GTS X Y S D R C C C
GTS # C
GTS w/o operand C

Function

EQ - value comparison with equality test
LT - value comparison with test less than ...
LTS - value comparison with sign with test less than ...
GT - value comparison with test greater than ...
GTS - value comparison with sign with test greater than ...

Description

The instructions EQ, LT, LTS, GT, GTS with operand are internally equal to each other.
They compare the content of the stack top with operand, set the flags at S0 and they then
write the truth result of the test - log.1 - on the stack top (all ones), if the test condition is
fulfilled, or log.0, if the condition is not fulfilled.

The instructions EQ, LT, LTS, GT, GTS w/o operand are internally equal to each other.
They compare the content of the A1 layer with the content of the A0 stack top, set the flags
at S0, they move the stack one level back and then they write the truth result of the test -

Instruction set of PLC TECOMAT - 32 bit model

71 TXV 004 01.02

log.1 (all ones) - on the new stack top, if the test condition is fulfilled, or log.0, if the
condition is not fulfilled.

The instructions EQ, LT, GT consider the values being processed as positive numbers,
while the instructions LTS, GTS accept the state of the highest bit of the value as a sign.

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S0 - - - - - ≤ CO ZR

S0.0 (ZR) - comparison to match
0 - it is valid that a ≠ b
1 - it is valid that a = b

S0.1 (CO) - carry out
0 - it is valid that a ≥ b
1 - it is valid that a < b

S0.2 (≤) - logical OR S0.0 OR S0.1
0 - it is valid that a > b
1 - it is valid that a ≤ b

4. Arithmetic instructions

TXV 004 01.02 72

CMP Comparison
CMPS Comparison with sign

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0
ope-
rand A7 A6 A5 A4 A3 A2 A1 A0

ope-
rand

CMP a b a b
CMPS w/o op. a b a b

Operands

usint sint uint int udint dint
CMP X Y S D R C C C
CMP # C
CMP w/o operand C
CMPS X Y S D R C C C
CMPS # C
CMPS w/o operand C

Function

CMP - comparison of values
CMPS - comparison of values with sign

Description

The instructions CMP, CMPS with operand compare the content of the stack top with
operand and set the flags at S0.

The instructions CMP, CMPS w/o operand compare the content of the A1 layer with the
content of the A0 stack top and set the flags at S0.

All these instructions do not change the content of the stack. For evaluation of the flags
set at the S0 register, jump instructions JZ, JNZ, JC, JNC, JB and JNB can be
advantageously used.

The instruction CMP considers the processed values as positive numbers, while the
instruction CMPS accepts the state of the highest bit of the value as a sign.

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S0 - - - - - ≤ CO ZR

S0.0 (ZR) - comparison to match
0 - it is valid that a ≠ b
1 - it is valid that a = b

S0.1 (CO) - carry out
0 - it is valid that a ≥ b
1 - it is valid that a < b

S0.2 (≤) - logical OR S0.0 OR S0.1
0 - it is valid that a > b
1 - it is valid that a ≤ b

Instruction set of PLC TECOMAT - 32 bit model

73 TXV 004 01.02

MAX Maximum
MAXS Maximum with sign

MIN Minimum
MINS Minimum with sign

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
MAX a b b A7 A6 A5 A4 A3 A2 MAX(a,b)
MAXS a b b A7 A6 A5 A4 A3 A2 MAX(a,b)
MIN a b b A7 A6 A5 A4 A3 A2 MIN(a,b)
MINS a b b A7 A6 A5 A4 A3 A2 MIN(a,b)

Operands

udint dint
MAX w/o operand C
MAXS w/o operand C
MIN w/o operand C
MINS w/o operand C

Function

MAX - maximum from two values
MAXS- maximum from two values with sign
MIN - minimum from two values
MINS - minimum from two values with sign

Description

The instructions MAX and MAXS compare the content of the A1 layer with the content
of the A0 layer. Then they move the stack one level back and write the value, which is
greater, on the new A0 stack top.

The instructions MIN and MINS compare the content of the A1 layer with the content of
the A0 layer. Then they move the stack one level back and write the value, which is less,
on the new A0 stack top. The instructions MAX and MIN consider the values being
processed as positive numbers, while instruction MAXS and MINS accept the state of the
highest bit of the value as a sign.

Example

Value limitation within the range of –220 to +315

#def MINIMUM -220
#def MAXIMUM 315
#reg udint input,output
;
P0

LD MAXIMUM
LD input
MIN ;top constraints
LD MINIMUM
MAX ;bottom constraints
WR output

E0

4. Arithmetic instructions

TXV 004 01.02 74

ABSL Absolute value
CSGL Sign change

EXTB, EXTW Change of format with sign

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0

ABSL a a

CSGL a a−
EXTB a a
EXTW a a

Operands

dint
ABSL w/o operand C
CSGL w/o operand C
EXTB w/o operand C
EXTW w/o operand C

Function

ABSL - number absolute value
CSGL - sign change of a number
EXTB - change of number format from 8 bits to 32 bits with sign transfer
EXTW - change of number format from 16 bits to 32 bits with sign transfer

Description

The instruction ABSL performs the computation of the value of the stack top.
The instruction CSGL changes the sign of the value of the stack top.
The instruction EXTB performs the change of number format at the stack top from byte

to long by copying the sign on the bit A0.7 to the bits A0.8 to A0.31.
The instruction EXTW performs the change of number format at the stack top from word

to long by copying the sign on the bit A0.15 to the bits A0.16 to A0.31.

Example:

Absolute value of a number of byte width

#reg sint number ;value with sign
;
P0

LD number ;load number: bytes A0 ... 0, 0, 0, number
EXTB ;conversion to long: A0 = number
ABSL ;absolute value
WR number ;write number

E0

Instruction set of PLC TECOMAT - 32 bit model

75 TXV 004 01.02

BIN , BIL Conversion from BCD format to binary
BCD, BCL Conversion from binary format to BCD

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
BIN NBCD NBIN
BIL NBCD - A7 A6 A5 A4 A3 A2 NBIN
BCD NBIN NBCD
BCL NBIN A6 A5 A4 A3 A2 A1 NBCD
NBCD - decimal number in BCD format

(BIN, BCD - range 0 to 99 999 999; BIL , BCL - range 0 to 4 294 967 295)
NBIN - number in binary format (type udint)

Operands

udint
BIN w/o operand C
BIL w/o operand C
BCD w/o operand C
BCL w/o operand C

Function

BIN - conversion of decimal number in BCD code to binary format (8 BCD digits)
BIL - conversion of decimal number in BCD code to binary format (full range of udint)
BCD - conversion of number in binary format to decimal in BCD code (8 BCD digits)
BCL - conversion of number in binary format to decimal in BCD code (full range of udint)

Description

The instruction BIN processes the A0 stack top as an eight-digit decimal number in the
BCD format (each digit is encoded in binary on four bits), it converts it to the binary system
and saves back to A0. The values of the other stack layers remain unchanged. The
numerical range of the converted numbers is 0 to 99 999 999.

The instruction BIL processes the A1 and A0 layers as a ten-digit decimal number in the
BCD format, converts it to the binary system, moves the stack one level back and the
result is saved on the A0 stack top. The numerical range of the converted numbers is 0 to
4 294 967 295.

The instruction BCD processes the A0 stack top as a binary number of 32 bit width,
converts it to a decimal number in the BCD code and its 8 lower digits are saved on the A0
stack top. The value of the fifth digit is saved to the S0 register on the bits S0.6 to S0.4.
The values of other stack levels remain unchanged. The range of converted numbers is 0
to 99 999 999.

The instruction BCL processes the A0 stack top as a binary number of 32 bit width,
converts it to a decimal number in the BCD code, moves the stack one level ahead and
the result is saved to the A1 and A0 layers. The range of converted numbers is 0 to
4 294 967 295.

4. Arithmetic instructions

TXV 004 01.02 76

Flags of BCD instruction

.7 .6 .5 .4 .3 .2 .1 .0
S0 - D5.2 D5.1 D5.0 - - - -

S0.6 to S0.4 (D5.2 to D5.0) - the highest digit of the converted number in the BCD code
(max. value of the number is 6)

Note

The instruction BCD set the flags at S0 due to compatibility of the user programs
transferred from a 16 bit model. We do not recommend using of these flags in new user
programs.

Examples

Conversion of a number in BCD to binary number

#reg udint Decim, Binar
;
P 0

LD Decim
BIN
WR Binar

E 0

#reg usint DecimH ;the highest digits (10. and 9.)
#reg udint DecimL ;another 8 digits (8. to 1.)
#reg udint Binar
;
P 0

LD DecimH
LD DecimL
BIL
WR Binar

E 0

Conversion of a binary number to BCD

#reg udint Decim, Binar
;
P 0

LD Binar
BCD
WR Decim

E 0

#reg usint DecimH ;the highest digits (10. and 9.)
#reg udint DecimL ;another 8 digits (8. to 1.)
#reg udint Binar
;
P 0

LD Binar
BCL
WR DecimL
POP 1
WR DecimH

E 0

Instruction set of PLC TECOMAT - 32 bit model

77 TXV 004 01.02

5. STACK OPERATIONS

POP Shift stack

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0
ope-
rand A7 A6 A5 A4 A3 A2 A1 A0

ope-
rand

POP n n x n

Operands

dword
udint
dint

POP n C

n - number of stack shifts (–7 to 7)

Function

POP - n-multiple reverse shift stack

Description

The instruction POP shifts the stack back by the specified number of levels. The
instruction performs the reverse rotation of the stack, so it is possible to return to the value
shifted out from the A0 stack top at any time. If we need to shift the stack ahead, we will
enter the number of rotations with sign –.

5. Stack operations

TXV 004 01.02 78

CHG, CHGS Change of active stack
NXT Activation of next stack

PRV Activation of previous stack

Operands

dword udint dint
CHG n C
CHGS n C
NXT w/o operand C
PRV w/o operand C

n - mark the chosen stack (0 to 7)

Function

CHG - activation of selected stack
CHGS - activation of selected stack with backing up S0 and S1
NXT - activation of next stack in the row with backing up S0 and S1
PRV - activation of previous stack in the row with backing up S0 and S1

Description

The instruction CHG activates the chosen stack specified by the parameter n, which
assumes values 0 to 7, which represents stacks A to H. The instruction CHGS additionally
performs also simultaneous saving and popping of the state of the system registers S0
and S1. The values of these registers are saved at the stack just left and the registers S0
and S1 in the scratchpad are overwritten by the values, which were saved at the activated
stack just left.

The instructions NXT and PRV activate the stack according to the following table:

Active stack
before instruction

Active stack
after instruction NXT

Active stack
after instruction PRV

A (0) B (1) H (7)
B (1) C (2) A (0)
C (2) D (3) B (1)
D (3) E (4) C (2)
E (4) F (5) D (3)
F (5) G (6) E (4)
G (6) H (7) F (5)
H (7) A (0) G (6)

The instruction NXT and PRV perform saving and popping of the state of the system
registers S0 and S1.

Flags

The instructions CHGS, NXT and PRV save the values of S0 and S1 to the stack being
just left and the registers S0 and S1 are overwritten by the values saved at the stack being
just activated.

Instruction set of PLC TECOMAT - 32 bit model

79 TXV 004 01.02

LAC Load value from the top of chosen stack
WAC Write value on the top of chosen stack

Instruction Input parameters Result
stack stack

LAC A7 A6 A5 A4 A3 A2 A1 A0
ope-
rand A7 A6 A5 A4 A3 A2 A1 A0

ope-
rand

n A6 A5 A4 A3 A2 A1 A0 a n

m7 m6 m5 m4 m3 m2 m1 m0 m7 m6 m5 m4 m3 m2 m1 m0
a a m7 m6 m5 m4 m3 m2 m1

WAC A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
a n a n

m7 m6 m5 m4 m3 m2 m1 m0 m7 m6 m5 m4 m3 m2 m1 m0
m6 m5 m4 m3 m2 m1 m0 a

n - stack number (0 to 7)
m - stack name (A to H)

Operands

dword udint dint
LAC n C
WAC n C

n - mark the chosen stack (0 to 7)

Function

LAC - load values from the top of chosen stack and shift
WAC - write value on the top of chosen stack and shift

Description

The instruction LAC loads the value of the stack top specified by the parameter n, which
assumes values 0 to 7, which represents stacks A to H, on the top of the active stack.
Against the active stack, the instruction behaves in the same manner as the instruction
LD, before writing the value on its top, it performs shift stack one level ahead. The chosen
stack shifts after the operation one level back and a new value on its stack is ready to be
loaded.

In connection with the WAC instruction, the chosen stack behaves as a swapping stack
of type LIFO (last in, first out), this means that the value, which is written by the WAC
instruction as the last, is loaded by the LAC instruction as the first.

The instruction WAC writes the value of the top of the active stack on the stack top
specified by the parameter n, which assumes values 0 to 7, which represents stacks A to
H. Against the active stack, the instruction behaves in the same manner as the instruction
WR, it does not change its content. Against the chosen stack, the instruction behaves in
the same manner as the instruction LD, before writing the value on its top, it performs shift
stack one level ahead.

In connection with the LAC instruction, the chosen stack behaves as a swapping stack
of type LIFO (last in, first out), this means that the value, which is written by the WAC
instruction as the last, is loaded by the LAC instruction as the first.

The instruction WAC can be used also for preparing the parameters for instructions,
which process more stack layers. If we acquire the values of these parameters within an
extensive program from its various locations, we can put them gradually on the chosen
stack and after that, the parameters are ready for processing by a simple switchover of the
stacks.

5. Stack operations

TXV 004 01.02 80

PSHB, PSHW, PSHL, PSHQ Save value on system stack
POPB, POPW, POPL, POPQ Pop value from system stack

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0
stack

A7 A6 A5 A4 A3 A2 A1 A0
stack

PSHB a a A7 A6 A5 A4 A3 A2 A1 a
PSHW a a A7 A6 A5 A4 A3 A2 A1 a
PSHL a a A7 A6 A5 A4 A3 A2 A1 a
PSHQ a a A7 A6 A5 A4 A3 A2 a
POPB a A6 A5 A4 A3 A2 A1 A0 a
POPW a A6 A5 A4 A3 A2 A1 A0 a
POPL a A6 A5 A4 A3 A2 A1 A0 a
POPQ a A5 A4 A3 A2 A1 A0 a

Operands

byte
usint
sint

word
uint
int

dword
udint
dint

real lreal

PSHB w/o operand C
PSHW w/o operand C
PSHL w/o operand C C
PSHQ w/o operand C
POPB w/o operand C
POPW w/o operand C
POPL w/o operand C C
POPQ w/o operand C

Function

PSHB - saving of data of byte, usint and sint type on the stack
PSHW- saving of data of word, uint and int type on the stack
PSHL - saving of data of dword, udint, dint and real type on the stack
PSHQ- saving of data of lreal type on the stack
POPB- popping of data of byte, usint and sint type from the stack
POPW- popping of data of word, uint and int type from the stack
POPL - popping of data of dword, udint, dint type from the stack
POPQ- popping of data of lreal type from the stack

Description

The instruction PSHB saves the content of the lowest byte of the A0 stack top on the
stack. It then moves the stack one level back.

The instruction PSHW saves the content of the lower word of the A0 stack top on the
stack. It then moves the stack one level back.

The instruction PSHL saves the content of the A0 stack top on the stack. It then moves
the stack one level back.

The instruction PSHQ saves the content of the A01 double-layer on the stack. It then
moves the stack two levels back.

The instruction POPB moves the stack one level ahead, pops the data of 8 bit width
from the stack and saves them to the lowest byte of the A0 stack top. The other bytes of
the top are set to zero.

Instruction set of PLC TECOMAT - 32 bit model

81 TXV 004 01.02

The instruction POPW moves the stack one level ahead, pops the data of 16 bit width
from the stack and saves them to the lower word of the A0 stack top. The upper word of
the top is set to zero.

The instruction POPL moves the stack one level ahead, pops the data of 32 bit width
from the stack and saves them on the A0 stack top.

The instruction POPQ moves the stack by two levels ahead, pops the data of 64 bit
width from the stack and saves them to the A01 double-layer.

The instruction use higher languages for parameter preparation of function blocks. They
can be used also for temporary deferring of the stack top content.

Attention! It is necessary, that the instructions are used in pairs, i.e. for one instruction
PSHB one instruction POPB, for one instruction PSHW one instruction
POPW, etc.

6. Jump and call instructions

TXV 004 01.02 82

6. JUMP AND CALL INSTRUCTIONS

JMP Jump

JMD Jump conditional to non-zero value of the stack top
JMC Jump conditional to zero value of the stack top
JMI Indirect jump

Operands

JMP Ln C
JMD Ln C
JMC Ln C
JMI Ln C
JMI w/o operand C

Function

JMP - unconditional jump to the label L n
JMD - jump to label L n conditional to non-zero value of the A0 stack top
JMC - jump to label L n conditional to zero value of the A0 stack top
JMI - unconditional jump to label L n, the number n specifies the A0 stack top

Description

The instruction JMP unconditionally directs the program to the instruction L n.
The instruction JMD behaves as the instruction JMP only in such a case, that the A0

stack top is not 0 (logical OR of all 32 bits A0 is log.1). If this condition is not fulfilled, the
instruction is ignored and the program continues performing the next immediately following
instruction.

The instruction JMC behaves as the instruction JMP only in such a case, that the A0
stack top is 0 (logical OR of all 32 bits A0 is log.0). If this condition is not fulfilled, the
instruction is ignored and the program continues performing the next immediately following
instruction.

The instruction JMI unconditionally directs the program to the instruction L n, number of
which (n) is contained at the A0 stack top. The instruction JMI with operand Ln performs
jump to the label specified by this operand in such a case, that the label specified by the
number at the stack top does not exist. In the user program, this can be treated as an error
state, which otherwise would result in stopping the PLC due to the jump to a non-existing
label.

Instruction set of PLC TECOMAT - 32 bit model

83 TXV 004 01.02

JZ Jump conditional to non-zero value of flag ZR
JNZ Jump conditional to zero value of flag ZR

JC Jump conditional to non-zero value of flag CO
JNC Jump conditional to zero value of flag CO
JB Jump conditional to non-zero value of flag S0.2

JNB Jump conditional to zero value of flag S0.2
JS Jump conditional to non-zero value of flag S1.0
JNS Jump conditional to zero value of flag S1.0

Operands

JZ Ln C
JNZ Ln C
JC Ln C
JNC Ln C
JB Ln C
JNB Ln C
JS Ln C
JNS Ln C

Function

JZ - jump to label L n conditional to non-zero value of flag of equality ZR (S0.0)
JNZ - jump to label L n conditional to zero value of flag of equality ZR (S0.0)
JC - jump to label L n conditional to non-zero value of flag of carry CO (S0.1)
JNC - jump to label L n conditional to zero value of flag of carry CO (S0.1)
JB - jump to label L n conditional to non-zero value of flag of carry S0.2
JNB - jump to label L n conditional to zero value of flag of carry S0.2
JS - jump to label L n conditional to non-zero value of flag S1.0
JNS - jump to label L n conditional to zero value of flag S1.0

Description

The instructions JZ, JNZ, JC, JNC, JB and JNB are primarily used for easy evaluation
of comparison results by the instructions CMP, CMPS, CMF, CMDF. The instructions JS,
JNS are primarily used for easy evaluation of table instructions results and all other
instructions, where the S1.0 flag is used by them as the flag of correctness of the
performed operation.

The instruction JZ behaves as the instruction JMP only in such a case, that the flag of
equality ZR (S0.0) is log.1.

The instruction JNZ behaves as the instruction JMP only in such a case, that the flag of
equality ZR (S0.0) is log.0.

The instruction JC behaves as the instruction JMP only in such a case, that the flag of
carry CO (S0.1) is log.1.

The instruction JNC behaves as the instruction JMP only in such a case, that the flag of
carry CO (S0.1) is log.0.

The instruction JB behaves as the instruction JMP only in such a case, that the flag
S0.2 is log.1.

The instruction JNB behaves as the instruction JMP only in such a case, that the flag
S0.2 is log.0.

6. Jump and call instructions

TXV 004 01.02 84

The instruction JS behaves as the instruction JMP only in such a case, that the S1.0
flag is log.1.

The instruction JNS behaves as the instruction JMP only in such a case, that the S1.0
flag is log.0.

If the corresponding condition is not fulfilled, the instruction is ignored and the program
continues performing the next immediately following instruction.

Examples

Let us compare the content of registers value1 and value2 and let us realize a jump in a
case, that the content of value1 equals to the content of value2

LD value1
CMP value2
JZ jump

: ;value1 ≠≠≠≠ value2
jump:

: ;value1 = value2

Let us do 6x the same part of program

LD 6
WR index ;index = 6

jump:
: ;cycle body

DCR index ;index = index - 1
JNZ jump ;index = 0 ?

: ;yes, cycle ended

Let us compare the content of registers value1 and value2 and let us realize a jump in a
case, that the content of value1 is not greater than the content of value2

LD value1
CMP value2
JC jump

: ;value1 > value2
jump:

: ;value1 ≤≤≤≤ value2

Let us look for an item with the content of 4 in the table Tab and let us realize a jump in a
case, that the item is found

LD 4
FTB Tab ;searching for item with content of 4
JS jump

: ;item with this content was not found
jump:

: ;item was found, index is at the stack top

Instruction set of PLC TECOMAT - 32 bit model

85 TXV 004 01.02

CAL Subroutine call
CAD Call conditional to non-zero value of the stack top

CAC Call conditional to zero value of the stack top
CAI Indirect subroutine call

Operands

CAL Ln C
CAD Ln C
CAC Ln C
CAI Ln C
CAI w/o operand C

Function

CAL - unconditional subroutine call, specified by label L n
CAD - subroutine call specified by label L n conditional to non-zero value of the A0 stack

top
CAC - subroutine call specified by label L n conditional to zero value of the A0 stack top
CAI - unconditional subroutine call specified by label L n, number of which (n) specifies

the A0 stack top

Description

The instruction CAL unconditionally calls a subroutine beginning with instruction L n.
The instruction CAD behaves as the instruction CAL only in such a case, that the A0

stack top is not 0 (logical OR of all 32 bits A0 is log.1). If this condition is not fulfilled, the
instruction is ignored and the program continues performing the next immediately following
instruction.

The instruction CAC behaves as the instruction CAL only in such a case, that the A0
stack top is 0 (logical OR of all 32 bits A0 is log.0). If this condition is not fulfilled, the
instruction is ignored and the program continues performing the next immediately following
instruction.

The instruction CAI unconditionally calls a subroutine beginning with instruction L n,
number of which (n) contains the A0 stack top. The instruction CAI with operand Ln
performs jump to the label specified by this operand in such a case, that the label specified
by the number at the stack top does not exists. In the user program, this can be treated as
an error state, which otherwise would result in stopping the PLC due to the jump to a non-
existing label.

Note

Each subroutine called must be ended with the instruction RET, which returns the
program to the instruction immediately following after the instruction for subroutine call. In
case this condition is not fulfilled, the PLC stops the program run and reports an error. The
number of subroutine nesting (subroutine call within another subroutine) is 8 as maximum.

6. Jump and call instructions

TXV 004 01.02 86

RET Return from subroutine
RED Return conditional to non-zero value of the stack top

REC Return conditional to zero value of the stack top

Operands

RET w/o operand C
RED w/o operand C
REC w/o operand C

Function

RET - unconditional return from subroutine
RED - return from subroutine conditional to non-zero value of the A0 stack top
REC - return from subroutine conditional to zero value of the A0 stack top

Description

The instruction RET unconditionally ends the subroutine and returns the control to the
instruction immediately following after the call instruction, by which the subroutine was
called.

The instruction RED behaves as the instruction RET only in such a case, that the A0
stack top is not 0 (logical OR of all 32 bits A0 is log.1). If this condition is not fulfilled, the
instruction is ignored and the program continues performing the next immediately following
instruction.

The instruction REC behaves as the instruction RET only in such a case, that the A0
stack top is 0 (logical OR of all 32 bits A0 is log.0). If this condition is not fulfilled, the
instruction is ignored and the program continues performing the next immediately following
instruction.

Instruction set of PLC TECOMAT - 32 bit model

87 TXV 004 01.02

L Label

Operands

L n C

Function

L - label number n

Description

The instruction L marks such a location in the program, which serves as a target to the
jump and call instructions. Any location in the program can be labelled, if this should be
necessary for a better lucidity when viewing, monitoring or debugging of the user program.
From the programming point of view, the instruction L behaves as a do-nothing operation,
no activities are performed.

Note

There cannot be more than one label of a specific parameter in the program. The
numerical order of the label instructions within the program is not important.

7. Operating instructions

TXV 004 01.02 88

7. OPERATING INSTRUCTIONS

P Process start

E Process end
ED Process end conditional to non-zero stack top value
EC Process end conditional to zero stack top value

Operands

P n C
E n C
ED w/o operand C
EC w/o operand C

n - process number (0 to 64)

Function

P - Pn process start
E - Pn process end
ED - end of active process conditional to non-zero value of the A0 stack top
EC - end of active process conditional to zero value of the A0 stack top

Description

The instruction P marks such a location in the program, where the corresponding
process starts. It serves for its searching by the system program as the initial process stop
latch.

The instruction E marks such a location in the program, where the appropriate process
Pn ends. It serves for passing the control onto the system program, which decides on the
activation of the next process, it also serves as the process stop latch.

The instruction ED behaves as the instruction E (but it does not serve as a stop latch)
only in such a case, that the A0 stack top is not 0 (logical OR of all 32 bits A0 is log.1). If
this condition is not fulfilled, the instruction is ignored and the program continues
performing the next immediately following instruction.

The instruction EC behaves as the instruction E (but it does not serve as a stop latch)
only in such a case, that the A0 stack top is 0 (logical OR of all 32 bits A0 is log.0). If this
condition is not fulfilled, the instruction is ignored and the program continues performing
the next immediately following instruction.

Note

The parameter n assumes values only within the range of numbers of permissible
processes. The process beginning with the instruction P n must be ended by the
instruction E n with the same parameter. This condition is formal and it is not an error, if
there is a jump in the program in another process without return, even if this procedure is
not "tidy" from the programmer's point of view.

Since the individual components of the MOSAIC development environment can
generate instructions controlling some defined functions (e.g. communication with operator
panels, PID controller, etc.) into a user program before its compilation, we recommend not

Instruction set of PLC TECOMAT - 32 bit model

89 TXV 004 01.02

to use the instructions ED, EC, since the function of these hidden functions could be
eliminated. It is better to replace them by a jump to a label inserted at the end of the
process.

Example

Permissible sequencing of processes

P 0
:
:

JMD jump
:
:

E 0
;
P 10

:
:

jump:
:
:

E 10 ;If JMD condition is fulfilled, this process end is valid
;also for process P0.

7. Operating instructions

TXV 004 01.02 90

NOP No-operation

Operands

NOP n C

Function

NOP - no-operation

Description

The instruction NOP does not perform any operation. From the user's point of view it
has no meaning. It is usually generated by a compiler of a higher language to differentiate
the start and end of the program modules or for saving the parameters of these modules.

Instruction set of PLC TECOMAT - 32 bit model

91 TXV 004 01.02

BP Breakpoint

Operands

BP n C

n - number of activated process P5n (0 to 7)

Function

BP - breakpoint

Description

The instruction BP is used primarily for the debugging phase of the user program. It
activates service processes based on the parameter value. The parameter n can assume
only a value 0 to 7 and specifies the number of an activated process P50 to P57, in which
it is possible to write the treatment of a situation corresponding to the location of the given
instruction BP in the user program (e.g. delivering the status of the stack to the
scratchpad, condition specification and definition of the status being searched, message
printout).

The instruction BP n saves the active stack and passes the control to the process P5n.
After this process is ended by the instruction E, ED or EC the active stack is refreshed and
the program continues performing of the instruction following the instruction BP n. Thus, it
is a special call instruction.

The instruction BP cannot be used within the processes P50 to P57.

Note

Unlike all other processes, the entire active stack is held after entering the processes P50
to P57. When these processes are ended, the state of the stack and the content of S0 and
S1 flag registers is refreshed to the values, which were here before entering the process. If
we use in the process P5n some of the instructions for stack switching (NXT, PRV, CHG,
CHGS), the state of the stack will be refreshed after the process end, but only the stack
will remain active, that was active at the P5n process end! By doing this, physical change
of the stack takes place without changing its content. This can be used to create a copy of
the stack. However, it is necessary to pay closer attention to these instructions.

7. Operating instructions

TXV 004 01.02 92

SEQ Conditional process interrupt

Operands

SEQ Ln C

Function

SEQ - process interrupt conditional to zero value of the stack top, the process starts in
the next cycle from label L n

Description

The instruction SEQ behaves as the instruction E (but it does not serve as a stop latch)
in such a case, that the A0 stack top is 0 (logical OR of all 32 bits A0 is log.0). Additionally,
it cases, that the process starts from label Ln next time. If the condition is not fulfilled, the
instruction is ignored and the program continues performing the next immediately following
instruction.

The instruction SEQ allows sequential programming within one process, when just a
certain part of the process is performed and the transitions among these parts by means of
conditions are carried out by the instruction SEQ.

Attention

The instruction SEQ is permissible only in processes P0 to P40.

Example

We require, that the activity 1 is performed, after setting the signal connected to X1.0 to
log.1 to perform 2, after setting the signal connected to X1.1 to log.0 to perform activity 3
and after setting the signal connected to X1.2 to log.1 to perform activity 1 again and still in
the circle.

P 10
: ;activity 1

label1
LD input1 ;condition 1
SEQ label1 ;as long as input1 = 0, process P10 ends here

;and starts next time on label1
: ;input1 = 1 - activity 2

label2
LDC input2 ;condition 2
SEQ label2 ;as long as input2 = 1, process P10 ends here

;and starts next time on label2
: ;input2 = 0 - activity 3

label3
LD input3 ;condition 3
SEQ label3 ;as long as input3 = 0, process P10 ends here

;and starts next time on label3
E 10 ;input3 = 1 - process end P10, process starts

;again from the start

Instruction set of PLC TECOMAT - 32 bit model

93 TXV 004 01.02

8. TABLE INSTRUCTIONS

LTB Load item

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
LTB XYSDR LIMIT INDEX A6 A5 A4 A3 A2 LIMIT INDEX VAL
LTB T INDEX A6 A5 A4 A3 A2 LIMIT INDEX VAL
LIMIT - table limit value (index of last item of table) (udint type)
INDEX - index of required value (udint type)
VAL - content value (type corresponding to the type of operand)

Operands

bool byte
usint
sint

word
uint
int

dword
udint
dint

real

LTB X Y S D R C C C C C
LTB T C C C C C

Function

LTB - load item from table

Description

The instruction LTB is an indexed analogy to the instruction LD. First, it moves the
stack ahead. If the specified index is within the table range (it is not greater than its limit),
the content of the required value is passed on the A0 stack top and the S1.0 flag is set. If
the required item is out of table range (the index is higher than its limit), the S1.0 flag is set
to zero.

The instruction of bool type takes the item value and sets all 32 bits of the A0 stack top
accordingly.

The instruction of byte , usint and sint types takes the item value and saves it without
any change to the lowest byte of the A0 stack top, the other bytes are set to zero.

The instruction of word , uint and int types takes the item value and saves it without any
change to the lower word of the A0 stack top. The upper word of the stack top is set to
zero. The byte with the lowest address in the table within the item is saved to the lowest
byte.

The instruction of dword , udint , dint and real types takes the item value and saves it
without any change on the A0 stack top. The byte with the lowest address in the table
within the item is saved to the lowest byte.

Note

If the bit field on the scratchpad is the operand, this field must begin on bit 0 (by
means of directive #reg aligned)!

8. Table instructions

TXV 004 01.02 94

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S1 - - - - - - - IS

S1.0 (IS) - 0 - request for an item outside the table
1 - request for an item within the table

Examples

Load an item of bool format

#table bool Tab = 0,1,0,1
#reg uint INDEX
#reg bool VAL
;
P 0

LD INDEX
LTB Tab ;T table
WR VAL

E 0

#def LIMIT 3
#reg aligned bool Tab[LIMIT+1]
#reg uint INDEX
#reg bool VAL
;
P 0

LD LIMIT
LD INDEX
LTB Tab ;table on the scratch pad
WR VAL

E 0

Load an item of usint type

#table usint Tab = 0,1,2,3
#reg uint INDEX
#reg usint VAL
;
P 0

LD INDEX
LTB Tab ;T table
WR VAL

E 0

#def LIMIT 3
#reg usint Tab[LIMIT+1]
#reg uint INDEX
#reg usint VAL
;
P 0

LD LIMIT
LD INDEX
LTB Tab ;table on the scratchpad
WR VAL

E 0

Instruction set of PLC TECOMAT - 32 bit model

95 TXV 004 01.02

Load an item of uint type

#table uint Tab = 0,1,2,3
#reg uint INDEX
#reg uint VAL
;
P 0

LD INDEX
LTB Tab ;T table
WR VAL

E 0

#def LIMIT 3
#reg uint Tab[LIMIT+1]
#reg uint INDEX
#reg uint VAL
;
P 0

LD LIMIT
LD INDEX
LTB Tab ;table on the scratchpad
WR VAL

E 0

Load an item of udint type

#table udint Tab = 0,1,2,3
#reg uint INDEX
#reg udint VAL
;
P 0

LD INDEX
LTB Tab ;T table
WR VAL

E 0

#def LIMIT 3
#reg udint Tab[LIMIT+1]
#reg uint INDEX
#reg udint VAL
;
P 0

LD LIMIT
LD INDEX
LTB Tab ;table on the scratchpad
WR VAL

E 0

8. Table instructions

TXV 004 01.02 96

WTB Write item

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
WTB XYSR LIMIT INDEX VAL LIMIT INDEX VAL
WTB T INDEX VAL LIMIT INDEX VAL
LIMIT - table limit value (index of last item of table) (udint type)
INDEX - index of required value (udint type)
VAL - written content (type corresponding to the type of operand)

Operands

bool byte
usint
sint

word
uint
int

dword
udint
dint

real

WTB X Y S R C C C C C
WTB T C C C C C

Function

WTB - write item to the table

Description

The instruction WTB is an indexed analogy of the instruction WR. The content of the
stack remains unchanged. If the specified index is within the table range (it is not greater
than its limit), the content of the A0 stack top is passed to the specified item and the S1.0
flag is set. If write to the item out of the table range is required (the index is higher than its
limit), the S1.0 flag is set to zero.

The instruction of bool type writes to the item the value of logical OR of all 32 bits of the
A0 stack top.

The instruction of byte , usint and sint types writes the lowest byte of the A0 stack top
to the item.

The instruction of word , uint and int types writes the lower word of the A0 stack top to
the item. The lowest byte of the stack top is saved to the byte with the lowest address in
the table within the item.

The instruction of dword , udint , dint and real types writes the A0 stack top to the item.
The lowest byte of the stack top is saved to the byte with the lowest address in the table
within the item.

Note

If the bit field on the scratchpad is the operand, this field must begin on bit 0 (by means
of directive #reg aligned)!

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S1 - - - - - - - IS

S1.0 (IS) - 0 - request for an item outside the table
1 - request for an item in the table

Instruction set of PLC TECOMAT - 32 bit model

97 TXV 004 01.02

Examples

Write an item of bool type

#table bool Tab = 0,1,0,1
#reg uint INDEX
#reg bool VAL
;
P 0

LD INDEX
LD VAL
WTB Tab ;T table

E 0

#def LIMIT 3
#reg aligned bool Tab[LIMIT+1]
#reg uint INDEX
#reg bool VAL
;
P 0

LD LIMIT
LD INDEX
LD VAL
WTB Tab ;table on the scratchpad

E 0

Write an item of usint type

#table usint Tab = 0,1,2,3
#reg uint INDEX
#reg usint VAL
;
P 0

LD INDEX
LD VAL
WTB Tab ;T table

E 0

#def LIMIT 3
#reg usint Tab[LIMIT+1]
#reg uint INDEX
#reg usint VAL
;
P 0

LD LIMIT
LD INDEX
LD VAL
WTB Tab ;table on the scratchpad

E 0

8. Table instructions

TXV 004 01.02 98

Write an item of uint type

#table uint Tab = 0,1,2,3
#reg uint INDEX
#reg uint VAL
;
P 0

LD INDEX
LD VAL
WTB Tab ;T table

E 0

#def LIMIT 3
#reg uint Tab[LIMIT+1]
#reg uint INDEX
#reg uint VAL
;
P 0

LD LIMIT
LD INDEX
LD VAL
WTB Tab ;table on the scratchpad

E 0

Write an item of udint type

#table udint Tab = 0,1,2,3
#reg uint INDEX
#reg udint VAL
;
P 0

LD INDEX
LD VAL
WTB Tab ;T table

E 0

#def LIMIT 3
#reg udint Tab[LIMIT+1]
#reg uint INDEX
#reg udint VAL
;
P 0

LD LIMIT
LD INDEX
LD VAL
WTB Tab ;table on the scratchpad

E 0

Instruction set of PLC TECOMAT - 32 bit model

99 TXV 004 01.02

FTB Find item

FTBN Find next item

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
FTB XYSDR LIMIT VAL LIMIT INDEX
FTB T VAL LIMIT INDEX
FTBN XYSDR INDX0 LIMIT VAL INDX0 LIMIT INDEX
FTBN T INDX0 VAL LIMIT INDEX
LIMIT - table limit value (index of last item of table) (udint type)
VAL - content to be found in the table (type corresponding to the type of operand)
INDX0 - item index, from which searching starts (udint type)
INDEX - index of item found (if the corresponding item is not found, the index has value LIMIT+1) (udint

type)

Operands

bool byte
usint
sint

word
uint
int

dword
udint
dint

real

FTB X Y S D R C C C C C
FTB T C C C C C
FTBN X Y S D R C C C C C
FTBN T C C C C C

Function

FTB - find item in the table
FTBN - find next item in the table

Description

The instruction FTB progressively compares the data at the stack top with the content of
table items, until it finds an identical item or until the entire table is read. If the item being
searched is found, it writes its index on the A0 stack top and sets the S1.0 flag. If the item
is not found, the S1.0 flag is set to zero and the limit at the A0 stack top is increased by 1.
If the table contains more identical items, the function will find only the first one (with the
lowest index).

The instruction FTBN behaves in the same manner, but additionally it contains the
parameter INDX0, which contains the item index, from which searching starts. If there are
more items of the same value in one table, the instruction FTB finds only the item with the
lowest index, while by means of the instruction FTBN we will find progressively all these
items in such a way, that after finding the first item with required content we will call the
instruction FTBN again and to the parameter INDX0 we will write the value higher by 1,
than the index of the found item was. The process is repeated, until the entire table is
read.

The instruction of bool type compares the value of logical OR of all 32 bits of the A0
stack top with the table items. The bit instruction FTB can be used for example for testing
of the bit field, where just one bit has a different value (keyboard).

The instruction of byte , usint and sint types compares the content of the lowest byte of
the A0 stack top with the table items.

8. Table instructions

TXV 004 01.02 100

The instruction of word , uint and int types compares the content of the lower word of
the A0 stack top with the table items. The lowest byte of the stack top is compared with the
byte with the lowest address in the table within the item.

The instruction of dword , udint and dint types compares the content of the A0 stack
top with the table items. The lowest byte of the stack top is compared with the byte with
the lowest address in the table within the item.

Note

If the bit field on the scratchpad is the operand, this field must begin on bit 0 (by means
of directive #reg aligned)!

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S1 - - - - - - - IS

S1.0 (IS) - 0 - request for an item outside the table
1 - request for an item in the table

Examples

Find an item of bool type

#table bool Tab = 1,1,0,1
#reg uint INDEX
#reg bool VAL
;
P 0

LD VAL
FTB Tab ;T table
WR INDEX

E 0

#def LIMIT 3
#reg aligned bool Tab[LIMIT+1]
#reg uint INDEX
#reg bool VAL
;
P 0

LD LIMIT
LD VAL
FTB Tab ;table on the scratchpad
WR INDEX

E 0

Instruction set of PLC TECOMAT - 32 bit model

101 TXV 004 01.02

Searching for all identical items of usint type

#table usint Tab = 0,1,2,1,2,2,0
#reg uint count ;number of findings of identical item
#reg usint VAL
;
P 0

LD 0 ;initial index INDX0
WR count ;count = 0

begin:
LD VAL
FTBN Tab ;T table
JNS end ;test of finding the item
INR count ;next item found
INR ;INDX0 = INDEX+1
JMP begin ;search for next item

;
end:
E 0

8. Table instructions

TXV 004 01.02 102

FTM Find part of item
FTMN Find part of next item

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
FTM XYSDR LIMIT VAL LIMIT INDEX
FTM T VAL LIMIT INDEX
FTMN XYSDR INDX0 LIMIT VAL INDX0 LIMIT INDEX
FTMN T INDX0 VAL LIMIT INDEX
LIMIT - table limit value (index of last item of table) (udint type)
VAL - content to be found in the table (type corresponding to the type of operand)
INDX0 - item index, from which searching starts (udint type)
INDEX - index of item found (if the corresponding item is not found, the index has value LIMIT+1) (udint

type)

Operands

byte
usint
sint

word
uint
int

dword
udint
dint

real

FTM X Y S D R C C C C
FTM T C C C C
FTMN X Y S D R C C C C
FTMN T C C C C

Function

FTM - find part of item in the table
FTMN- find of next item part in the table

Description

The instruction FTM is generalizing of the instruction FTB, when the evaluated table has
a double format. Each item contains two parts with a common index. The first part contains
a value, the second part contains a selection mask.

index n index n+1
... item n mask n item n+1 mask n+1 ...

The instruction FTM progressively compares the data at the stack top with the table
items and the comparison results are masked with corresponding masks, that only such
bits of comparison result are respected, to which the one in the bits at the selection mask
corresponds, until an identical item is found or reads the entire table. If an identical item is
found, its index is written on the A0 stack top and the S1.0 flag is set.

If an identical item is not found, the S1.0 flag is set to zero and the limit value at the A0
stack top is increased by 1.

The comparison function can be written by means of logic operators as follows

(VAL XOR item) AND mask = result

If this result is 0, the item is identical and its content is passed on the stack top. If the
table contains more identical items, the function finds only the first one (with the lowest
index).

Instruction set of PLC TECOMAT - 32 bit model

103 TXV 004 01.02

The instruction FTMN behaves in the same manner, but additionally it contains the
parameter INDX0, which contains the item index, from which searching starts. If there are
more items of the same value in one table, instruction FTM finds only the item with the
lowest index, while by means of the instruction FTMN we will find progressively all these
items in such a way, that after finding the first item with required content we will call the
instruction FTMN again and to the parameter INDX0 we will write the value higher by 1,
than the index of the found item was. The process is repeated, until the entire table is
read.

The instruction of byte , usint and sint types compares the content of the lowest byte of
the A0 stack top with the table items.

The instruction of word , uint and int types compares the content of the lower word of
the A0 stack top with the table items. The lowest byte of the stack top is compared with the
byte with the lowest address in the table within the item.

The instruction of dword , udint and dint types compares the content of the A0 stack
top with the table items. The lowest byte of the stack top is compared with the byte with
the lowest address in the table within the item.

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S1 - - - - - - - IS

S1.0 (IS) - 0 - request for an item outside the table
1 - request for an item in the table

Examples

Searching for an item of usint type

#table usint Tab = 1,7,0,1
#reg udint INDEX
#reg usint VAL
;
P 0

LD VAL
FTM Tab ;T table
WR INDEX

E 0

#def LIMIT 3
#reg aligned usint Tab[LIMIT+1]
#reg udint INDEX
#reg usint VAL
;
P 0

LD LIMIT
LD VAL
FTM Tab ;table on the scratchpad
WR INDEX

E 0

8. Table instructions

TXV 004 01.02 104

Searching for all identical items of uint type

#table uint Tab = 0,1,2,1,2,2,0,7
#reg uint count ;number of findings of identical item
#reg uint VAL
;
P 0

LD 0 ;initial index INDX0
WR count ;count = 0

begin:
LD VAL
FTMN Tab ;T table
JNS end ;test of finding the item
INR count ;next item found
INR ;INDX0 = INDEX+1
JMP begin ;search for next item

;
end:
E 0

Instruction set of PLC TECOMAT - 32 bit model

105 TXV 004 01.02

FTS, FTSF Find with sorting
FTSS Find with sorting with sign

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
FTS XYSDR LIMIT VAL LIMIT INDEX
FTS T VAL LIMIT INDEX
FTSF XYSDR LIMIT VAL LIMIT INDEX
FTSF T VAL LIMIT INDEX
FTSS XYSDR LIMIT VAL LIMIT INDEX
FTSS T VAL LIMIT INDEX
LIMIT - table limit value (index of last item of table) (udint type)
VAL - content to be found in the table (type corresponding to the type of operand)
INDEX - index of item found (if the corresponding item is not found, the index has value LIMIT+1) (udint

type)

Operands

FTS X Y S D R C C C
FTS T C C C
FTSF X Y S D R C
FTSF T C
FTSS X Y S D R C C C
FTSS T C C C

Function

FTS - find with sorting according to the table
FTSF - find with sorting according to the table (floating point
FTSS - find with sorting with sign according to the table

Description

The instruction FTS is generalizing of the instruction FTB and performs multi-level
comparison or sorting. To do this, it is necessary that the items in the table are ordered
ascendingly according to the values since they represent limits separating particular
classes to which the instruction puts the A0 content.

The instruction FTS does not shift the stack. It progressively compares the data at A0
with the content of table items, until it finds an item greater or equal to the compared value
or until the entire table is read. If an identical item is found, it writes its index on the A0
stack top and the S1.0 flag is set. If an identical item is not found the flag S1.0 is set to
zero and at the A0 stack top is the limit value increased by 1.

Categorizing into classes is as follows (k corresponds to the value LIMIT):

0 ≤ VAL ≤ item 0 class 0
item 0 < VAL ≤ item 1 class 1
item 1 < VAL ≤ item 2 class 2
item 2 < VAL ≤ item 3 class 3

: :
item k–1 < VAL ≤ item k class k

item k < VAL ≤ maximum class k+1

8. Table instructions

TXV 004 01.02 106

The instruction FTSS behaves in the same manner, but it accepts the state of the
highest bit as a sign at all values. The instruction FTSF processes all values in the floating
point format (float).

The instruction of usint, sint types compares the content of the lowest byte of the A0
stack top with the table items.

The instruction of uint , int types compares the content of the lower word of the A0 stack
top with the table items. The lowest byte of the stack top is compared with the byte with
the lowest address in the table within the item.

The instruction of udint , dint and real types compares the content of the A0 stack top
with the table items. The lowest byte of the stack top is compared with the byte with the
lowest address in the table within the item.

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S1 - - - - - - - IS

S1.0 (IS) - 0 - request for an item outside the table
1 - request for an item in the table

Examples

Find with sorting of usint type

#table usint Tab = 1,4,8,15
#reg udint INDEX
#reg usint VAL
;
P 0

LD VAL
FTS Tab ;T table
WR INDEX

E 0

#def LIMIT 3
#reg aligned usint Tab[LIMIT+1]
#reg udint INDEX
#reg usint VAL
;
P 0

LD LIMIT
LD VAL
FTS Tab ;table on the scratchpad
WR INDEX

E 0

Instruction set of PLC TECOMAT - 32 bit model

107 TXV 004 01.02

9. BLOCK OPERATIONS

SRC Source of data to be moved

MOV Move data block

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
SRC INDEX INDEX
MOV INDEX LEN INDEX LEN
INDEX - index of first item in specified source / destination zone (udint type)
LEN - number of transferred byte items (udint type)

Operands

byte usint sint
SRC X Y S D R C
SRC T C
MOV X Y S R C
MOV T C

Function

SRC - specification of source zone for move data block
MOV - move data block to the target zone

Description

The instruction SRC serves as a preparatory instruction before the instruction MOV. It
saves the data on the initial address of source zone in the internal system memory. The
address of the first zone is given by the instruction operand increased by the index saved
at the stack top. By means of the index, the beginning of the zone can be dynamically
changed.

The instruction MOV moves the content of the source zone specified by the instruction
SRC to the target zone. The number of transferred byte items is loaded from the A0 stack
top. The maximum number of items is limited only by the size of the scratchpad or the
table, as the case may be. The address of the first item is given by the instruction operand
increased by the index saved at the A1 layer.

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S1 - - - - - - - IS

S1.0 (IS) - 0 - address of source zone given by the instruction SRC or target zone
given by the instruction MOV is out of T table range or scratchpad,
carry is not performed

1 - the address of the source and target zone are within the T table range
or scratchpad, carry is performed

S34 = 20 ($14) source data block was defined out of range
S34 = 21 ($15) target data block was defined out of range

9. Block operations

TXV 004 01.02 108

Note

Specification of the source zone remains saved in the memory, until it is overwritten by
the new instruction SRC. Thus it can be used for more instructions MOV.

Example

Move data block

#def LEN 30
#reg uint INDEX_SRC, INDEX_MOV
#reg usint Source[LEN], Destination[LEN]
;
P 0

LD INDEX_SRC
SRC Source

:
:

LD INDEX_MOV
LD LEN
MOV Destination

E 0

Instruction set of PLC TECOMAT - 32 bit model

109 TXV 004 01.02

MTN Move table to scratchpad
MNT Fill table from the scratchpad

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
MTN TAB REG TAB LEN
MNT TAB REG TAB LEN
TAB - number of moved / filled table (udint type)
REG - index of first register R of specified zone in the scratchpad (udint type)
LEN - number of bytes being transferred (udint type)

Operands

byte usint sint
MTN w/o operand C
MNT w/o operand C

Function

MTN - move table to scratchpad
MNT - fill table from the scratchpad

Description

The instruction MTN moves to the target zone in the scratchpad the entire content of the
T table. The number of transferred byte items is given by the table size and the instruction
shows it at the stack top after the move.

The instruction MNT fills from the source zone in the scratchpad the entire content of
the T table. The number of transferred byte items is given by the table size and the
instruction shows it at the stack top after the move.

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S1 - - - - - - - IS

S1.0 (IS) - 0 - zone address in the scratchpad is out of range, carry is not performed
1 - the zone address in the scratchpad is within range, carry is performed

S34 = 20 ($14) source data block was defined out of range
S34 = 21 ($15) target data block was defined out of range

Examples

Move from the table

#def MaxLength 30
#table usint Tab = 0,1,2,3
#reg usint Destination[MaxLength]
;
P 0

LD __indx Tab ;TAB
LD __indx Destination ;REG
MTN

E 0

9. Block operations

TXV 004 01.02 110

Move to the table

#def MaxLength 30
#table byte Tab = 0,1,2,3
#reg byte Source[MaxLength]
;
P 0

LD __indx Tab ;TAB
LD __indx Source ;REG
MNT

E 0

Instruction set of PLC TECOMAT - 32 bit model

111 TXV 004 01.02

FIL Fill the block

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
FIL LEN VAL LEN VAL
LEN - length of filled zone (type udint)
VAL - written constant (type uint)

Operands

byte
usint
sint

FIL X Y S R C

Function

FIL - fill the block with constant

Description

The number of byte items is loaded from the A1 layer of the stack. The address of the
first item is given by the instruction operand, the items are filled alternately by the value
from the lowest and the second lowest byte of the A0 stack top.

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S1 - - - - - - - IS

S1.0 (IS) - 0 - address of filled zone is out of the scratchpad range
1 - address of filled zone is within the scratchpad range

S34 = 21 ($15) target data block was defined out of range

Example

Zone filling

#def LEN 30
#reg usint Destination[LEN]
#reg uint VAL
;
P 0

LD LEN
LD VAL
FIL Destination

E 0

9. Block operations

TXV 004 01.02 112

BCMP Block comparison

Instruction Input parameters Result
Stack Stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
BCMP AD1 AD2 LEN AD2 LEN A7 A6 A5 A4 A3 CMP
AD1 - address of register, where the first block begins (type udint)
AD2 - address of register, where the second block begins (type udint)
LEN - length of compared arrays (type udint)
CMP - result of comparison (type bool)

Operands

byte
usint
sint

BCMP X Y S R C

Function

BCMP - comparison of two data blocks

Description

The BCMP instruction performs comparison of two data blocks in the stack. The
instruction expects on the layer A2 and A1 addresses of the start of compared blocks and
the length of the compared blocks at the stack top. If the contents of the blocks are
identical, then log. 1 (TRUE) is written by the instruction at the stack top (logical ones). If
the contents of the blocks are not the same, log. 0 (FALSE) is written on the stack top.

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S1 - - - - - - - IS

S1.0 (IS) - 0 - defined blocks out of stack range - invalid comparison
1 - defined blocks within stack range - valid comparison

S34 = 21 ($15) data block was defined out of range

Example

Comparison of two data blocks

#def Length 30
#reg usint Zone1[Length], Zone2[Length]
#reg uint VAL
#reg bool Result
;
P 0

LEA Zone1
LEA Zone2
LD Length
BCMP
WR Result

E 0

Instruction set of PLC TECOMAT - 32 bit model

113 TXV 004 01.02

10. OPERATION WITH STRUCTURED TABLES

LDSR Load item from structured table in the scratchpad

LDS Load item from structured table

Instr. Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
LDSR INDEX SIZE REGT REG INDEX SIZE REGT REG
LDS INDEX SIZE TAB REG INDEX SIZE TAB REG
INDEX - item number of structured table (udint type)
SIZE - item size of structured table in bytes (usint type)
TAB - number of table read (udint type)
REGT - index of first register R of read table (udint type)
REG - index of first register R of designated target zone (udint type)

Operands

byte usint sint
LDSR w/o operand C
LDS w/o operand C

Function

LDSR - load item from structured table in the scratchpad
LDS - load item from structured T table

Description

The designated table is structured into individual items of the size given by the
parameter SIZE. The instruction LDSR moves to the scratchpad target zone one item of
the table in the scratchpad beginning on the register REGT given by the parameter
INDEX. The instruction LDS moves to the scratchpad target zone one item of the table
TAB given by the parameter INDEX.

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S1 - - - - - - - IS

S1.0 (IS) - 0 - required item is out of T table range, or target zone address is out of
the scratchpad range, carry is not performed

1 - parameters are OK, carry is performed

10. Operations with structured tables

TXV 004 01.02 114

Example

Load an item from structured table

#def MaxLength 30
#table usint Tab = 0,1,2,3,4,5,6,7,8,9
#reg usint Destination[MaxLength]
#reg usint SIZE
#reg uint INDEX
;
P 0

LD INDEX
LD SIZE
LD __indx Tab ;TAB
LD __indx Destination ;REG
LDS
JNS jump

: ;operation is OK
jump:

: ;invalid operation
E 0

Instruction set of PLC TECOMAT - 32 bit model

115 TXV 004 01.02

WRSR Write item to structured table in the scratchpad
WRS Write item to structured table

Instr. Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
WRSR INDEX SIZE REGT REG INDEX SIZE REGT REG
WRS INDEX SIZE TAB REG INDEX SIZE TAB REG
INDEX - item number of structured table (udint type)
SIZE - item size of structured table in bytes (usint type)
TAB - number of target table (udint type)
REGT - index of first register R of target table (udint type)
REG - index of first register R of designated source zone (udint type)

Operands

byte usint sint
WRSR w/o operand C
WRS w/o operand C

Function

WRSR - write an item to structured table in the scratchpad
WRS - write an item to structured table T

Description

The designated table is structured into individual items of the size given by the
parameter SIZE. The instruction WRSR fills from the source zone of the scratchpad one
item of the table in the scratchpad beginning on the register REGT given by the parameter
INDEX. The instruction WRS fills from the source zone of the scratchpad one item of the
table TAB given by the parameter INDEX.

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S1 - - - - - - - IS

S1.0 (IS) - 0 - required item is out of T table range, or the target zone address is out
of the scratchpad range, carry is not performed

1 - parameters are OK, carry is performed

10. Operations with structured tables

TXV 004 01.02 116

Example

Write an item to structured table

#def MaxLength 30
#table usint Tab = 0,1,2,3,4,5,6,7,8,9
#reg usint Source[MaxLength]
#reg usint SIZE
#reg uint INDEX
;
P 0

LD INDEX
LD SIZE
LD __indx Tab ;TAB
LD __indx Source ;REG
WRS
JNS jump

: ;operation is OK
jump:

: ;invalid operation
E 0

Instruction set of PLC TECOMAT - 32 bit model

117 TXV 004 01.02

FIS Fill item of structured table in the scratchpad
FIT Fill item of structured table

Instr. Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
FIS INDEX SIZE REGT VAL INDEX SIZE REGT VAL
FIT INDEX SIZE TAB VAL INDEX SIZE TAB VAL
INDEX - item number of structured table (udint type)
SIZE - item size of structured table in bytes (usint type)
TAB - number of table read (udint type)
REGT - index of first register R of read table (udint type)
VAL - filled value (usint type)

Operands

byte usint sint
FIS w/o operand C
FIT w/o operand C

Function

FIS - fill an item of structured table in the scratchpad
FIT - fill an item of structured T table

Description

The designated part of scratchpad is structured into individual items of the size given by
the parameter SIZE. The instruction FIS fills one item of the scratchpad by the specified
value VAL given by the parameter INDEX.

The designated table is structured into individual items of the size given by the
parameter SIZE. The instruction FIT fills one item of the T table by the specified value VAL
given by the parameter INDEX.

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S1 - - - - - - - IS

S1.0 (IS) - 0 - required item is out of the scratchpad range, or is out of T table range,
carry is not performed
1 - parameters are OK, carry is performed

Examples

Fill an item of structured table

#def MaxLength 30
#reg usint Array[MaxLength]
#reg usint SIZE
#reg usint VAL
#reg uint INDEX
;

10. Operations with structured tables

TXV 004 01.02 118

P 0
LD INDEX
LD SIZE
LD __indx Array ;REG
LD VAL
FIS
JNS jump

: ;operation is OK
jump:

: ;invalid operation
E 0

#table usint Tab = 0,1,2,3,4,5,6,7,8,9
#reg usint SIZE
#reg usint VAL
#reg uint INDEX
;
P 0

LD INDEX
LD SIZE
LD __indx Tab ;TAB
LD VAL
FIT
JNS skok

: ;operation is OK
skok:

: ;invalid operation
E 0

Instruction set of PLC TECOMAT - 32 bit model

119 TXV 004 01.02

FNS Find item of structured table in the scratchpad
FNT Find item of structured table

Instr. Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
FNS NUM BYTE SIZE REGT VAL NUM BYTE SIZE REGT INDEX
FNT BYTE SIZE TAB VAL BYTE SIZE TAB INDEX
NUM - number of scanned items (type udint)
BYTE - index of scanned byte in the item (type usint)
SIZE - item size of structured table in bytes (type usint)
REGT - index of first register R of the table in the scratchpad (type udint)
TAB - number of scanned table (type udint)
VAL - value being searched (type udint)
INDEX - index of item found (type udint)

Operands

byte usint sint
FNS w/o operand C
FNT w/o operand C

Function

FNS - find an item of structured table in the scratchpad
FNT - find an item of structured T table

Description

The designated part of scratchpad is structured into individual items of the size given by
the parameter SIZE. The instruction FNS compares the specified value VAL with one byte
of the item given by the parameter BYTE. The instruction scans the number of items
specified by the parameter NUM. The index of the found item is shown at the stack top
and the S1.0 flag is set. If more items have the same value of the byte being scanned, the
item with the lowest index is always shown. If the item is not found, the value of the shown
index is higher by 1 than the index of the last scanned item. Since indexing is performed
from 0, the value equals to the value of the parameter NUM.

The designated table is structured into individual items of the size given by the
parameter SIZE. The instruction FNT compares the specified value VAL with one byte of
the item given by the parameter BYTE. The instruction scans all items of the table. The
index of the found item is shown at the stack top and the S1.0 flag is set. If more items
have the same value of the byte being scanned, the item with the lowest index is always
shown. If the item is not found, the value of the shown index is higher by 1 than the index
of the last scanned item. Since indexing is performed from 0, the value equals to the
number of the items in the table.

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S1 - - - - - - - IS

S1.0 (IS) - 0 - required item was not found
1 - required item was found

10. Operations with structured tables

TXV 004 01.02 120

Examples

Find an item of structured table

#def NUM 30
#reg usint Array[NUM],SIZE,BYTE
#reg usint VAL
#reg uint INDEX
;
P 0

LD NUM
LD BYTE
LD SIZE
LD __indx Array ;REG
LD VAL
FNS
JNS jump
WR INDEX ;item was found

jump:
: ;item was not found

E 0

#table byte Tab = 0,1,2,3,4,5,6,7,8,9
#reg usint SIZE,BYTE
#reg usint VAL
#reg uint INDEX
;
P 0

LD BYTE
LD SIZE
LD __indx Tab ;TAB
LD VAL
FNT
JNS jump
WR INDEX ;item was found

jump:
: ;item was not found

E 0

Instruction set of PLC TECOMAT - 32 bit model

121 TXV 004 01.02

11. FLOATING POINT ARITHMETIC INSTRUCTIONS

ADF, ADDF Addition

SUF, SUDF Subtraction

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0
ope-
rand A7 A6 A5 A4 A3 A2 A1 A0

ope-
rand

ADF a b a b+ b
ADF w/o op. a b b A7 A6 A5 A4 A3 A2 a b+
ADDF w/o op. a b b A7 A6 A5 A4 a b+
SUF a b a b− b
SUF w/o op. a b b A7 A6 A5 A4 A3 A2 a b−
SUDF w/o op. a b b A7 A6 A5 A4 a b−

Operands

real lreal
ADF X Y S D R C
ADF # C
ADF w/o operand C
ADDF w/o operand C
SUF X Y S D R C
SUF # C
SUF w/o operand C
SUDF w/o operand C

Function

ADF - addition (real)
ADDF - addition (lreal)
SUF - subtraction (real)
SUDF - subtraction (lreal)

Description

The instruction ADF with operand adds the content of the given operand to the A0 stack
top. The instruction SUF with operand subtracts the content of the given operand from the
A0 stack top. The result is written on the stack top. The content of the other layers remains
unchanged. The instruction does not set any flags.

The instruction ADF w/o operand adds the content of the layers A1 and A0. The
instruction SUF w/o operand subtracts the content of the A0 layer from the content of the
A1 layer. After the operation is performed, the stack is moved one level back and the result
is written on the A0 stack top. The instruction does not set any flags.

The instruction ADDF w/o operand adds the content of double-layers A23 and A01. The
instruction SUDF w/o operand subtracts the content of the double-layer A01 from the
content of the double-layer A23. After the operation is performed, the stack is moved two
levels back and the result is written on the A0 stack top. The instruction does not set any
flags.

11. Floating point arithmetic instructions

TXV 004 01.02 122

Examples

Realization of the expression ()cbad −+=
#reg real va, vb, vc, vd
;
P 0

LD vb
SUF vc ;(b - c)
ADF va ;a + ()
WR vd

E 0

#reg lreal va, vb, vc, vd
;
P 0

LD vb
LD vc
SUDF ;(b - c)
LD va
ADDF ;a + ()
WR vd

E 0

Instruction set of PLC TECOMAT - 32 bit model

123 TXV 004 01.02

MUF, MUDF Multiplication
DIF, DIDF Division

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0
ope-
rand A7 A6 A5 A4 A3 A2 A1 A0

ope-
rand

MUF a b a b⋅ b
MUF w/o op. a b b A7 A6 A5 A4 A3 A2 a b⋅
MUDF w/o op. a b b A7 A6 A5 A4 a b⋅
DIF a b a b/ b
DIF w/o op. a b b A7 A6 A5 A4 A3 A2 a b/
DIDF w/o op. a b b A7 A6 A5 A4 a b/

Operands

real lreal
MUF X Y S D R C
MUF # C
MUF w/o operand C
MUDF w/o operand C
DIF X Y S D R C
DIF # C
DIF w/o operand C
DIDF w/o operand C

Function

MUF - subtraction (real)
MUDF- subtraction (lreal)
DIF - division (real)
DIDF - division (lreal)

Description

The instruction MUF with operand multiplies the content of the A0 stack top by the
content of the given operand. The result is written on the stack top. The content of the
other layers remains unchanged. The instruction does not set any flags.

The instruction MUF w/o operand multiplies the content of the A1 and A0 layers. It then
moves the stack one level back and writes the result on the A0 stack top. The instruction
does not set any flags.

The instruction MUDF w/o operand multiplies the content of double-layers A23 and A01.
It then moves the stack two levels back and writes the result on the new A0 stack top. The
instruction does not set any flags.

The instruction DIF with operand divides the content of the A0 stack top by the content
of the given operand. The result is written on the stack top. The content of the other layers
remains unchanged.

The instruction DIF w/o operand divides the content of the A1 layer by the content of the
A0 layer. It then moves the stack one level back and writes the result on the A0 stack top.

The instruction DIDF w/o operand divides the content of the A23 double-layer by the
content of the double-layer A01. It then moves the stack two levels back and writes the
result on the new A0 stack top.

11. Floating point arithmetic instructions

TXV 004 01.02 124

If division by zero is performed, the S0.0 bit is set to log.1 and error 16 is written to the
S34 register. The stack top contains all ones (invalid number according to the convention
of float and double formats).

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S0 - - - - - - - ZR

S0.0 (ZR) - division by zero
1 - division by zero performed, the result is not valid

S34 = 16 ($10) error of division by zero

Examples

Realization of the expression ()cbad ⋅+=
#reg real va, vb, vc, vd
;
P 0

LD vb
MUF vc ;(b . c)
ADF va ;a + ()
WR vd

E 0

Realization of the expression
c

b
ad +=

#reg real va, vb, vc, vd
;
P 0

LD vb
DIF vc ;(b / c)
ADF va ;a + ()
WR vd

E 0

Instruction set of PLC TECOMAT - 32 bit model

125 TXV 004 01.02

EQF, EQDF Comparison (equality)
LTF, LTDF Comparison (less than)

GTF, GTDF Comparison (greater than)
CMF, CMDF Comparison

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0
ope-
rand A7 A6 A5 A4 A3 A2 A1 A0

op.

EQF a b a= b ? b
EQF w/o op. a b b A7 A6 A5 A4 A3 A2 a= b ?
EQDF w/o op. a b - b A7 A6 A5 A4 a= b ?
LTF a b a< b ? b
LTF w/o op. a b b A7 A6 A5 A4 A3 A2 a< b ?
LTDF w/o op. a b - b A7 A6 A5 A4 a< b ?
GTF a b a> b ? b
GTF w/o op. a b b A7 A6 A5 A4 A3 A2 a> b ?
GTDF w/o op. a b - b A7 A6 A5 A4 a> b ?
CMF a b a b
CMF w/o op. a b a b
CMDF w/o op. a b a b

Operands

real lreal
EQF X Y S D R C
EQF # C
EQF w/o operand C
EQDF w/o operand C
LTF X Y S D R C
LTF # C
LTF w/o operand C
LTDF w/o operand C
GTF X Y S D R C
GTF # C
GTF w/o operand C
GTDF w/o operand C
CMF X Y S D R C
CMF # C
CMF w/o operand C
CMDF w/o operand C

Function

EQF - comparison of values with equality test (real)
EQDF- comparison of values with equality test (lreal)
LTF - comparison of values with test less than ... (real)
LTDF - comparison of values with test less than ... (lreal)
GTF - comparison of values with test greater than ... (real)
GTDF- comparison of values with test greater than ... (lreal)
CMF - comparison of values and setting of result flags (real)
CMDF- comparison of values and setting of result flags (lreal)

11. Floating point arithmetic instructions

TXV 004 01.02 126

Description

The instructions EQF, LTF, GTF with operand are internally equal to each other. They
compare the content of the stack top with operand, set the flags at S0 and then they write
the truth result on the stack top - log.1 (all ones), if the test condition is fulfilled, or log.0, if
the condition is not fulfilled.

The instructions EQF, LTF, GTF w/o operand are internally equal to each other. They
compare the content of the A1 layer with the content of the A0 stack top, set the flags at
S0, they move the stack one level back and then they write the truth result on the new A0
stack top - log.1 (all ones), if the test condition is fulfilled, or log.0, if the condition is not
fulfilled.

The instructions EQDF, LTDF, GTDF w/o operand are internally equal to each other.
They compare the content of the double layer A23 with the content of the A01 stack top,
set the flags at S0, they move the stack three levels back and then they write the truth
result on the new A0 stack top - log.1 (all ones), if the test condition is fulfilled, or log.0, if
the condition is not fulfilled.

The instruction CMF with operand compares the content of the stack top with operand
and sets the flags at S0. The content of the stack remains unchanged. The instruction
CMF w/o operand compares the content of the A1 layer with the content of the A0 stack
top and sets the flags at S0. The content of the stack remains unchanged.

The instruction CMDF w/o operand compares the content of double layer A23 with the
content of the A01 stack top and sets the flags at S0. The content of the stack remains
unchanged.

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S0 - - - - - ≤ CO ZR

S0.0 (ZR) - comparison to match
0 - it is valid that a ≠ b
1 - it is valid that a = b

S0.1 (CO) - carry out
0 - it is valid that a ≥ b
1 - it is valid that a < b

S0.2 (≤) - logic OR S0.0 OR S0.1
0 - it is valid that a > b
1 - it is valid that a ≤ b

Instruction set of PLC TECOMAT - 32 bit model

127 TXV 004 01.02

MAXF, MAXD Maximum
MINF, MIND Minimum

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
MAXF a b b A7 A6 A5 A4 A3 A2 MAX(a,b)
MAXD a b b A7 A6 A5 A4 MAX(a,b)
MINF a b b A7 A6 A5 A4 A3 A2 MIN(a,b)
MIND a b b A7 A6 A5 A4 MIN(a,b)

Operands

real lreal
MAXF w/o operand C
MAXD w/o operand C
MINF w/o operand C
MIND w/o operand C

Function

MAXF- maximum from two values (real)
MAXD- maximum from two values (lreal)
MINF - minimum from two values (real)
MIND - minimum from two values (lreal)

Description

The instruction MAXF compares the content of the A1 layer with the content of the A0
stack top. It then moves the stack one level back and writes the value, which is greater, on
the new A0 stack top. The instruction MAXD compares the content of double layer A23
with the content of the A01 stack top. It then moves the stack two levels back and writes
the value, which is greater, on the new A01 stack top.

The instruction MINF compares the content of the A1 layer with the content of the A0
stack top. It they moves the stack one level back and writes the, which is less, on the new
A0 stack top. The instruction MIND compares the content of double layer A23 with the
content of the A01 stack top. It then moves the stack two levels back and writes the value,
which is less, on the new A01 stack top.

Example

Value limitation within a range of –2,2 to +3,15

#def MINIMUM -2.2
#def MAXIMUM 3.15
#reg udint input,output
;
P0

LD MAXIMUM
LD input
MIN ;top constraints
LD MINIMUM
MAX ;bottom constraints
WR output

E0

11. Floating point arithmetic instructions

TXV 004 01.02 128

CEI, CEID Rounding up
FLO, FLOD Rounding down

RND, RNDD Arithmetic rounding

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
CEI a a�

CEID a a�

FLO a a�

FLOD a a�

RND a ≅ a
RNDD a ≅ a

Operands

real lreal
CEI w/o operand C
CEID w/o operand C
FLO w/o operand C
FLOD w/o operand C
RND w/o operand C
RNDD w/o operand C

Function

CEI - rounding of a number in floating point to the closest higher integral number (real)
CEID - rounding of a number in floating point to the closest higher integral number (lreal)
FLO - rounding of a number in floating point to the closest lower integral number (real)
FLOD - rounding of a number in floating point to the closest lower integral number (lreal)
RND - arithmetical rounding of a number in floating point (real)
RNDD- arithmetical rounding of a number in floating point (lreal)

Description

The instructions CEI and CEID perform rounding of a number at the stack top to the
closest higher integral number and save this number on the stack top. The content of the
other layers remains unchanged.

The instructions FLO and FLOD perform rounding of a number at the stack top to the
closest lower integral number and save this number on the stack top. The content of the
other layers remains unchanged.

The instructions RND and RNDD perform arithmetical rounding of a number at the stack
top to an integral number, i.e. the numbers with a value of their tenths 0 to 4 will be
rounded down and the numbers with a value of their tenths 5 to 9 will be rounded up. The
content of the other layers remains unchanged.

Instruction set of PLC TECOMAT - 32 bit model

129 TXV 004 01.02

ABS, ABSD Absolute value
CSG, CSGD Sign change

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0

ABS a a

ABSD a a

CSG a –a
CSGD a –a

Operands

real lreal
ABS w/o operand C
ABSD w/o operand C
CSG w/o operand C
CSGD w/o operand C

Function

ABS - computation of absolute value of a number (real)
ABSD - computation of absolute value of a number (lreal)
CSG - sign change (real)
CSGD- sign change (lreal)

Description

The instructions ABS and ABSD perform setting of the highest bit of the number to zero
at the stack top, which carries the sign. The content of the other layers remains
unchanged.

The instructions CSG and CSGD perform the change of the value of the highest bit of
the number at the stack top, which carries the sign. The content of the other layers
remains unchanged.

11. Floating point arithmetic instructions

TXV 004 01.02 130

LOG, LOGD Decimal logarithm
LN, LND Natural logarithm

EXP, EXPD Exponential function
POW, POWD Common power
SQR, SQRD Square root

HYP, HYPD Hypotenuse

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
LOG a log10 a

LOGD a log10 a

LN a lna
LND a lna
EXP a e a

EXPD a e a

POW a b b A7 A6 A5 A4 A3 A2 a b

POWD a b b A7 A6 A5 A4 a b

SQR a a
SQRD a a

HYP a b b A7 A6 A5 A4 A3 A2 a b2 2+
HYPD a b b A7 A6 A5 A4 a b2 2+

Operands

real lreal
LOG w/o operand C
LOGD w/o operand C
LN w/o operand C
LND w/o operand C
EXP w/o operand C
EXPD w/o operand C
POW w/o operand C
POWD w/o operand C
SQR w/o operand C
SQRD w/o operand C
HYP w/o operand C
HYPD w/o operand C

Function

LOG - computation of common logarithm (real)
LOGD- computation of common logarithm (lreal)
LN - computation of natural logarithm (real)
LND - computation of natural logarithm (lreal)
EXP - computation of exponential function (real)
EXPD- computation of exponential function (lreal)
POW - computation of square (real)
POWD-computation of square (lreal)
SQR - computation of square root (real)

Instruction set of PLC TECOMAT - 32 bit model

131 TXV 004 01.02

SQRD- computation of square root (double)
HYP - computation of hypotenuse (float)
HYPD- computation of hypotenuse (double)

Description

The instructions LOG and LOGD perform computation of common logarithm and the
instructions LN and LND computation of natural logarithm of the stack top content. The
content of the stack top must be greater than 0. The result is saved on the stack top. The
content of the other layers remains unchanged.

The instructions EXP and EXPD perform the computation of exponential function. The
power exponent of the Euler's number is expected at the stack top. The result is saved on
the stack top. The content of the other layers remains unchanged. The instruction does not
set any flags.

The instructions POW and POWD perform computation of square.
The power exponent b is expected by the instruction POW at the A0 stack top, the base

number a at the A1 layer. The stack is shifted one level back and the result is saved at the
stack top.

The power exponent b is expected by the instruction POWD at the A01 stack top, the
base number a at the double layer A23. The stack is shifted two levels back and the result
is saved at the stack top.

The numbers passed to the instructions POW and POWD must not be zero at the same
time. If the number being raised is negative, then the power exponent can have only an
integral value.

The instructions SQR and SQRD perform computation of square root of the stack top
content. The number being extracted must not be negative. The result is saved on the
stack top. The content of the other layers remains unchanged.

The instructions HYP and HYPD perform computation of hypotenuse.
The parameters are expected by the instruction HYP at layers A0 and A1. The stack is

shifted one level back and the result is saved at the stack top.
The parameters are expected by the instruction HYPD at double layers A01 and A23.

The stack is shifted two levels back and the result is saved at the stack top.
The instruction does not set any flags.

Attention: The input parameters of the instructions HYP and HYPD must be such,

that the expression
22 ba + does not exceed the maximum range of the

real or lreal format, as the case may be.

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S1 - - - - - - - S

S1.0 (S) - 1 - the parameters are OK, the result is valid (they set instruction LOG,
LOGD, LN, LND, POW, POWD, SQR, SQRD)

0 - invalid parameters, the result is not valid

11. Floating point arithmetic instructions

TXV 004 01.02 132

SIN, SIND Sine
COS, COSD Cosine

TAN, TAND Tangent
ASN, ASND Arc sine
ACS, ACSD Arc cosine

ATN, ATND Arc tangent

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
SIN a sina
SIND a sina
COS a cosa
COSD a cosa
TAN a tana
TAND a tana
ASN a arcsina
ASND a arcsina
ACS a arccosa
ACSD a arccosa
ATN a arctana
ATND a arctana

Operands

real lreal
SIN w/o operand C
SIND w/o operand C
COS w/o operand C
COSD w/o operand C
TAN w/o operand C
TAND w/o operand C
ASN w/o operand C
ASND w/o operand C
ACS w/o operand C
ACSD w/o operand C
ATN w/o operand C
ATND w/o operand C

Function

SIN - sine (real)
SIND - sine (lreal)
COS - cosine (real)
COSD- cosine (lreal)
TAN - tangent (real)
TAND - tangent (lreal)
ASN - function reverse to sine (real)
ASND- function reverse to sine (lreal)
ACS - function reverse to cosine (real)
ACSD- function reverse to cosine (lreal)

Instruction set of PLC TECOMAT - 32 bit model

133 TXV 004 01.02

ATN - function reverse to tangent (real)
ATND - function reverse to tangent (lreal)

Description

The instructions SIN and SIND perform sine of the stack top content. The parameter is
expected in radians in the range of <–65 536; +65 536>. The result is saved on the stack
top. The content of the other layers remains unchanged.

The instruction COS and COSD perform cosine of the stack top content. The parameter
is expected in radians in the range of <–65 536; +65 536>. The result is saved on the
stack top. The content of the other layers remains unchanged.

The instructions TAN and TAND perform tangent of the stack top content. The

parameter is expected in radians in the range of < − π
2

; + π
2

>. The result is saved on the

stack top. The content of the other layers remains unchanged.

The instructions ASN and ASND perform arc sine of the stack top content. The

parameter is expected in the range of <–1; +1>. The result in the range of < − π
2

; + π
2

> is

saved on the stack top. The content of the other layers remains unchanged.
The instructions ACS and ACSD perform arc cosine of the stack top content. The

parameter is expected in the range of <–1; +1>. The result in the range of < − π
2

; + π
2

> is

saved on the stack top. The content of the other layers remains unchanged.
The instructions ATN and ATND perform arc tangent of the stack top content. The

result in the range of < − π
2

; + π
2

> is saved on the stack top. The content of the other

layers remains unchanged. The flag at the register S1 is not set, the result is always valid.

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S1 - - - - - - - S

S1.0 (S) - 1 - parameters are OK, the result is valid (they do not set instruction ATN,
ATND)

0 - invalid parameters, the result is not valid

11. Floating point arithmetic instructions

TXV 004 01.02 134

UWF Conversion of uint value to real
IWF Conversion of int value to real

ULF Conversion of udint value to real
ILF Conversion of dint value to real

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
UWF NUI NR
IWF NI NR
ULF NUD NR
ILF ND NR
NUI - value of uint type
NI - value of int type
NUD - value of udint type
ND - value of dint
NR - value converted to real type

Operands

uint int udint dint
UWF w/o operand C
IWF w/o operand C
ULF w/o operand C
ILF w/o operand C

Function

UWF - conversion of value of uint type to real type
IWF - conversion of value of int type to real type
ULF - conversion of value of udint type to real type
ILF - conversion of value of dint type to real type

Description

The instruction UWF processes the A0 stack top as a number of uint type in the range
of <0; 65 535> and converts it to the real type. The result is saved on the A0 stack top.
The content of the other layers remains unchanged.

The instruction IWF processes the A0 stack top as a number of int type in the range of
<–32 768; +32 767> and converts it to the real type. The result is saved on the A0 stack
top. The content of the other layers remains unchanged.

The instruction ULF processes the A0 stack top as a number of udint type in the range
of <0; 4 294 967 295> and converts it to the real type. The result is saved on the A0 stack
top. The content of the other layers remains unchanged.

The instruction ILF processes the A0 stack top as a number of dint type in the range of
<–2 147 483 648; +2 147 483 647> and converts it to the real type. The result is saved on
the A0 stack top. The content of the other layers remains unchanged.

Instruction set of PLC TECOMAT - 32 bit model

135 TXV 004 01.02

ULDF Conversion of udint value to lreal
ILDF Conversion of dint value to lreal

FDF Conversion of real value to lreal

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
ULDF NUD A6 A5 A4 A3 A2 A1 NLR
ILDF ND A6 A5 A4 A3 A2 A1 NLR
FDF NR A6 A5 A4 A3 A2 A1 NLR
NUL - value of udint type
ND - value of dint type
NR - value of real type
NLR - value converted to lreal type

Operands

udint dint real
ULDF w/o operand C
ILDF w/o operand C
FDF w/o operand C

Function

ULDF - conversion of value of udint type to lreal type
ILDF - conversion of value of dint type to double type
FDF - conversion of value of float type to double type

Description

The instruction ULDF processes the A0 stack top as a number of udint type in the range
of <0; 4 294 967 295> and converts it to the lreal type. The stack is shifted one level ahead
and the result is saved at the A01 stack top.

The instruction ILDF processes the A0 stack top as a number of dint type in the range
of <–2 147 483 648; +2 147 483 647> and converts it to the lreal type. The stack is shifted
one level ahead and the result is saved at the A01 stack top.

The instruction FDF processes the A0 stack top as a number of real type and converts it
to the lreal type. The stack is shifted one level ahead and the result is saved at the A01
stack top.

11. Floating point arithmetic instructions

TXV 004 01.02 136

UFW Conversion of real value to uint
IFW Conversion of real value to int

UFL Conversion of real value to udint
IFL Conversion of real value to dint

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
UFW NR NUI
IFW NR NI
UFL NR NUD
IFL NR ND
NF - value of real type
NUW - value converted to uint type
NIW - value converted to int type
NUL - value converted to udint type
NIL - value converted to dint type

Operands

uint int udint dint
UFW w/o operand C
IFW w/o operand C
UFL w/o operand C
IFL w/o operand C

Function

UFW - conversion of value of real type to uint type
IFW - conversion of value of real type to int type
UFL - conversion of value of real type to udint type
IFL - conversion of value of real type to dint type

Description

The instruction UFW processes the A0 stack top as a number of real type and converts
it to the uint type in the range of <0; 65 535>. The result is saved on the A0 stack top. The
content of the other layers remains unchanged.

The instruction IFW processes the A0 stack top as a number of real type and converts it
to the int type in the range of <–32 768; +32 767>. The result is saved on the A0 stack top.
The content of the other layers remains unchanged.

The instruction UFL processes the A0 stack top as a number of real type and converts it
to the udint type in the range of <0; 4 294 967 295>. The result is saved on the A0 stack
top. The content of the other layers remains unchanged.

The instruction IFL processes the A0 stack top as a number of real type and converts it
to the dint type in the range of <–2 147 483 648; +2 147 483 647>. The result is saved on
the A0 stack top. The content of the other layers remains unchanged.

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S1 - - - - - - - S

S1.0 (S) - 1 - the result is valid
0 - format range exceeded, invalid result

Instruction set of PLC TECOMAT - 32 bit model

137 TXV 004 01.02

UDFL Conversion of lreal value to udint
IDFL Conversion of lreal value to dint

DFF Conversion of lreal value to real

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
UDFL NLR - A7 A6 A5 A4 A3 A2 NUD
IDFL NLR - A7 A6 A5 A4 A3 A2 ND
DFF NLR - A7 A6 A5 A4 A3 A2 NF
ND - value of lreal type
NUL - value converted to udint type
NIL - value converted to dint type
NF - value converted to real type

Operands

udint dint real
UDFL w/o operand C
IDFL w/o operand C
DFF w/o operand C

Function

UDFL - conversion of value of lreal type to udint type
IDFL - conversion of value of lreal type to dint type
DFF - conversion of value of lreal type to real type

Description

The instruction UDFL processes the A01 stack top as a number of lreal type and
converts it to the udint type in the range of <0; 4 294 967 295>. The stack is shifted one
level back and the result is saved at the A0 stack top.

The instruction IDFL processes the A01 stack top as a number of lreal type and
converts it to the dint type in the range of <–2 147 483 648; +2 147 483 647>. The stack is
shifted one level back and the result is saved at the A0 stack top.

The instruction DFF processes the A01 stack top as a number of lreal type and converts
it to the real type. The stack is shifted one level back and the result is saved at the A0
stack top.

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S1 - - - - - - - S

S1.0 (S) - 1 - the result is valid
0 - format range exceeded, invalid result

13. Instructions of terminal operation and operations with ASCII characters

TXV 004 01.02 138

12. PID CONTROLLER INSTRUCTIONS

CNV Data processing from analog inputs

Instr. Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
CNV INDF TAU INDM FCE AVAL MODE INDF TAU INDM FCE AVAL VAL
INDF - register index of filter status variable - optional, see text bellow
TAU - filter time constant t - optional, see text bellow
INDM - register index of variable for scaling - optional, see text bellow
FCE - activated functions
AVAL - measured analog value (int/real type)
MODE - type of conversion
VAL - result of conversion (int/real type)

Operands

int real
CNV w/o operand C C

Function

CNV - function for conversion of measured analog values

Description

The instruction CNV was designed primarily for conversions of values from current
analog inputs at the older systems. The analog modules of TC700 PLC provide normalized
values in the registers directly and they do not require this conversion.

The CNV instruction processes the values of type int or real. The selection of the type
being processed is expected at the stack top in the MODE parameter. If MODE = 0, then
the instruction CNV works with the values of type int. If MODE = $10000, the CNV
instruction works with values of type real.

The instruction CNV further contains the following functions:

• scaling by linear interpolation
• first order filtering
• square root

The particular functions differ in their demands for the number of scratchpad registers
used and the number of the parameters written at the stack (see the following descriptions
of the particular functions). The functions are activated by means of the control bits of the
value FCE at the A2 stack layer. The functions can be combined.

.7 .6 .5 .4 .3 .2 .1 .0
FCE - - - - SQ FI F1 F0

FCE.1,.0 - 00 – linear interpolation is off
11 - linear interpolation between two points

FCE.2 (FI) - filtering of values by linear filter of the first order
0 - off
1 - on

Instruction set of PLC TECOMAT - 32 bit model

139 TXV 004 01.02

FCE.3 (SQ) - square root
0 - off
1 - on

Detailed information on the particular functions are given in the following text.
The instruction CNV does not shift the stack and writes the result of conversion on its top.

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S1 - - - - - - - S

S1.0 (S) - 1 - instruction is performed
0 - data structure is out of scratchpad, instruction is not performed

S34 = 20 ($14) scratchpad range exceeded

Scaling by linear interpolation

Scaling by linear interpolation is performed at setting of the bits FCE.0 and FCE.1 to
log.1 (layer A2 of the stack). The instruction CNV finds for input value its functional value
on the line given by two points. The co-ordinates of the two points are in the instruction
data structure, which is given by the index of the initial register INDM (the layer A3).

This function is useful for example for linear calibration of a measuring string, range
change of resistance transmitters, generating of the range of the resistance transmitter,
generating of required values, defined by means of linear sequences given by the table.

Data structure:
MinY - 1st co-ordinate of the 1st point of line (e.g. measured actual value) (int/real type)
MaxY - 1st co-ordinate of the 2nd point of line (e.g. measured actual value) (int/real type)
MinW - 2nd co-ordinate of the 1st point of line (e.g. set value) (int/real type)
MaxW- 2nd co-ordinate of the 2nd point of line (e.g. set value) (int/real type)

The layers A4 and A5 of the stack are not used. If the filtering function is not activated,
which requires them, it is not necessary to specify them.

The ranges of standardized values are dependant on the type of PLC.

Note

The instruction CNV requires that the data structure does not begin closer than 8 bytes
from the end of the scratchpad.

Example 1

We want to correct the measurement of a resistance transmitter with the range of 100 ÷
1000 Ω to the range of 0 ÷ 10 000. The resistance transmitter is connected to the channel
0 of the analog module IT-7604. We use an input value at FS format (Full Scale – variable
of integer type – 16 bit with sign).

;Input type for connection of resistance transmitter in the range of 0 ÷
1000 ΩΩΩΩ at Full Scale format (FS) selected
;
#reg int MinY, ;1st co-ordinate of 1st line point (actual value)

MaxY, ;1st co-ordinate of 2nd line point (actual value)
MinW, ;2nd co-ordinate of 1st line point (set value)
MaxW ;2nd co-ordinate of 2nd line point (set value)

#reg int resistance ;resulting value
;

13. Instructions of terminal operation and operations with ASCII characters

TXV 004 01.02 140

P 63
LD 3000 ;actual value
WR MinY
LD 30000
WR MaxY
LD 0 ;set point
WR MinW
LD 10000
WR MaxW ;the equation of this line is

;y = (10000(x-3000))/30000
E 63
;
P 0

LD __indx MinY ;INDM – reg. index where data structure begins
LD 3 ;FCE - linear interpolation
LD r0_p5_AI0.FS ;AVAL - load channel 0 at FS format

; of module in the rack 0 at position 5
LD 0 ;MODE – int type
CNV
WR resistance ;VAL - resulting value

E 0

Example 2

We want to calculate the tepmerature acquired by a sensor working within a range of 4 ÷
20 mA connected to channel 1 of the analog module IT-7604. As the input value, a value
in the ENG format shall be used (variable of type real - floating point).

;selected type of input for connection of current transmitter with range
;0 ÷ 20 mA in format ENG
;
#reg real MinY, ;1st coordinate of 1st line point (real value)

MaxY, ;1st coordinate of 2nd line point (real value)
MinW, ;2nd coordinate of 1st line point (required value)
MaxW ;2nd coordinate of 2nd line point (required value)

#reg real temperature ;resultant value
;
P 63

ld 4.0 ;real value
WR MinY ; 4 mA
ld 20.0
WR MaxY ; 20 mA
ld -30.0 ;required value
WR MinW ; -30 st.C
ld 70.0
WR MaxW ; 70 st.C

E 63
;
P 0

LD __indx (MinY) ;INDM - register index where data structured
;begins

LD 3 ;FCE - linear interpolation
LD r0_p5_AI1.ENG ;AVAL - read of channel 1 in format ENG

; of module in rack 0 position 5
LD $10000 ;MODE - type real
CNV
WR temperature ;VAL - resultant value

E 0

Instruction set of PLC TECOMAT - 32 bit model

141 TXV 004 01.02

First order filtering

This function can be combined with all previous functions. The resulting value after
previous function is filtered by the numerical filter of the first order (averaging is
performed). The sampling frequency is given by the cycle length of the controller.

The filter is defined by the following expression:

1
1

+
+⋅= −

τ
τ xy

y t
t

x - converted value of analog input
yt - CNV output (value VAL)
yt-1 - recent output CNV (value VAL)
t - 1st order filter time constant

The value of the constant τ is specified in ms in the parameter TAU (the layer A4). If
TAU = 0, the measured value is used in the filter status variable (filter initialization).

Multiplied use of the instruction CNV for filtering is conditional on the individual
declaration of the filter status variable for each instruction CNV (the index of the initial
register of the variable INDF is passed on the level A5). Two or more CNV instructions
must not work above one status variable (except own initialization).

The analog modules of TC700 have usually implemented this function.

Note

The instruction CNV requires that the declared status variable does not begin closer
than 4 bytes from the end of the scratchpad.

Example 1

The input signal must be filtered by a filter of approx. 0,2 s. The filtered value is the result
at the variable temperature.

#reg int adata,temperature
#reg usint AuxD[4] ;auxiliary status variable
;
P 63
;filter initialization

LD __indx AuxD ;INDF - index of filter status variable
LD 0 ;TAU - tau=0, load to the status variable
LD 0 ;INDM - not used
LD 4 ;FCE - filtering only
LD adata ;AVAL - load input
LD 1531 ;MODE – int type
CNV

E 63
;
P 0

LD __indx AuxD ;INDF - index of filter status variable
LD 200 ;TAU - tau = 200 ms
LD 0 ;INDM - not used
LD 4 ;FCE - filtering only
LD adata ;AVAL - load input
LD 0 ;MODE – int type
CNV
WR temperature ;VAL - resulting value

E 0

13. Instructions of terminal operation and operations with ASCII characters

TXV 004 01.02 142

Example 2

The input value of type real is necessary to filter by a filtr of approx. 0,2 s. The result is the
filtered value in variable teplota.

#reg real adata, temperature
#reg usint AuxD[4] ;auxiliary status variable
;
P 63
;inicializace filtru

LD __indx (AuxD) ;INDF - index of status variable of filter
LD 0 ;TAU - tau=0, transcription to status

;variables
LD 0 ;INDM - not used
LD 4 ;FCE - only filtering
LD adata ;AVAL - load input
LD $10000 ;MODE - typ real
CNV

E 63
;
P 0

LD __indx (AuxD) ;INDF - index of status variable of filter
LD 200 ;TAU - tau = 200 ms
LD 0 ;INDM - not used
LD 4 ;FCE - only filtering
LD adata ;AVAL - load input
LD $10000 ;MODE - type real
CNV
WR temperature ;VAL - resultant value

E 0

Square root

This function can be combined with all previous functions. The resulting value after
previous functions is extracted.

The layers A3, A4 and A5 of the stack are not used. If they are not required by some of
the previous functions, it is not necessary to specify them.

Example

Let us do square root of a value.

#reg uint adata,squart
;
P 0

LD 8 ;FCE - square root
LD adata ;AVAL - load input
LD 0 ;MODE – int type
CNV
WR squart ;VAL - resulting value

E 0

Instruction set of PLC TECOMAT - 32 bit model

143 TXV 004 01.02

PID PID controller

Instr. Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
PID INPUT3 INPUT2 INDEX INPUT3 INPUT2 DET
INPUT3- y3 - servo-valve position - optional, see text bellow
INPUT2- y2 - ratio control - optional, see text bellow
INDEX - register index where controller data structure begins
DET - error and action detection (usint type)

Operands

PID w/o operand C

Function

PID - PID controller

Description

By means of the instruction PID it is possible to control such systems at which the
transient period is at least one digit place longer then controller sampling (e.g. during 1 s
sampling, it is possible to control a system with a transient period taking tenths of
seconds). Controller sampling must be set with regard to the PLC cycle time in such a way
that a certain accuracy of sampling is ensured. It is useful when the controller sampling is
set one digit place higher than the PLC cycle time (e.g. the cycle time of 30 ms allows to
set the controller sampling to 300 ms).

The PIDMaker tool is designed for PID controller setting and debugging. The tool is an
integrated part of the MOSAIC development software.

The instruction PID allows integration into the P41 interrupt process, which is inserted
every 10 ms. This allows to set the controller sampling to 10 ms and so control the
systems with a short transient period. The time of interrupt process execution must not
exceed 5 ms!

The basic advantage of the controller realized by the instruction PID is the integration of
all of its variables to the PLC system. So, the user has a possibility to define any
conditions by means of PLC instructions for alarms, action devices control as well as for
controller settings dependent on the status of the entire technology. The measurement of
controlled values is ensured by PLC analog units.

Note: In the text, the word "controller" is often used as a synonym for a control
algorithm. Further, the name "PID controller" established in practice is
used instead of a more accurate abbreviation PSD for a digital version of
a classical continuous algorithm.

The instruction PID ensures in optional multiplies of 10 ms the calculation of the value of
the action according to the PID algorithm or PPID, to be more accurate. The algorithm
control is ensured by means of the variable structure, which is defined on the PLC
registers. In principle, the PID works according to the discrete version of the equation:

() () () ()








++= ∫

t

D
I dt

tde
Tde

T
teKtu

0

1 ττ

13. Instructions of terminal operation and operations with ASCII characters

TXV 004 01.02 144

The control algorithm ensures the following functions:

1. Smooth switching-over of the manual and automatic modes , which is based on the
estimation of the status of the system being controlled. The parameters of the
controller can be modified in the automatic mode, too.

2. Switching-over of the second proportional band according to the sign of deviation. (For
a faster suppression of the overshoot of the system being controlled.

3. Setting of action zone range of the I and D parts in % of the range of the measured
value.

4. Setting of the controller dead band, i.e. enabling of new changes of actions from the
given level of deviation in % of the range of the measured value.

5. Incremental control of positioning valves also without necessity of measuring of their
position. If the position of the valve is measured, the action correction is performed
according to the actual position of the valve.

6. Realization of ration control, filtering or linear interpolation of the required value (ramp).
7. Entry of action ranges. (This allows realizing for example an action range from 0 to

100%, or from –100% to +100%.) For the action, it is possible to enter the limitation of
its increment, too.

The parameters of the control algorithm are entered to the reserved data space in the
register zone. In the process P63 it is useful to enter all required controller parameters
(they are zero by default!). In the course of the control process, it is necessary to enter the
value of the controlled value or the auxiliary value of the position of the actuating
mechanism during incremental control to the variable in question. After computation, it is
enough to transcript the value form the variable ConOut to the analog output unit. At on /
off control, the bits from the variable Status are transferred to the outputs of the binary unit.

Note: In the course of the control process, it is possible to modify also the
parameters of the controller by assigning the values to the variables in
question. The control algorithm ensures the right function also for a non-
stationary controller (with time variant parameters).

The instruction PID uses a 72 byte data structure in which all of its variables are saved.
Each controller must have its exclusive structure reserved!

The list of variables, which acquire the corresponding position in the register zone is
carried out as follows:

#struct _PID
int MinY, ;minimum value measured
int MaxY, ;maximum value measured
int Input1, ;measured value (y, controlled)
int gW, ;set point (w), target
int ConW, ;actual set point
int tiW, ;filter time constant w or time interval

;ramps in multiples of the output cycle
int Dev, ;deviation [%]
int Output, ;direct action (u) required by algorithm or

;manually [%]
int LastOut, ;previous action, i.e. delayed by 1 step [%]
int CurOut, ;output really required [%]
int ConOut, ;output realized by the controller
int DefOut, ;default value of output at measurement error [%]
uint MinU, ;minimum permissible action [%]
uint MaxU, ;maximum permissible action [%]
uint dMaxU, ;maximum permissible action increment [%]
uint OutCycle, ;length of output cycle (sampling period)

Instruction set of PLC TECOMAT - 32 bit model

145 TXV 004 01.02

uint PBnd, ;proportional band [%]
uint RelCool, ;auxiliary proportional band [%]
uint Ti, ;integrating constant [s]
uint Td, ;derivative constant [s]
uint EGap, ;symmetrical dead band [%]
uint DGap, ;symmetrical band of deviation, where

;derivation part is active [%]
uint IGap, ;symmetrical band of deviation, where

;integrating part is active [%]
uint Control, ;control word
usint Status, ;status
usint[23] AuxD ;auxiliary variables - write prohibited!

The parameters of the data structure are described in more detail in the following text.

The instruction PID moves back at the stack top the result of error detection and edge
conditions.

.7 .6 .5 .4 .3 .2 .1 .0
DET EY3 EY2 EY1 UMX UMN ER2 ER1 ER0

DET.2,.1,.0 - parameter errors
000 - parameters are OK
001 - invalid time specification of the output cycle OutCycle (def. value 1)
010 - invalid value of action limitation (default value 0 ÷ 10000)
011 - invalid value of action increment (default value 10000)
100 - MinY ≥ MaxY (upper and bottom limit of the input value) (default

value 0 ÷ 10000)
101 - proportional band PBnd is zero (default value 1000)
110 - second proportional band RelCool is zero, (default value 1000)
If some of the parameters OutCycle, PBnd, RelCool is wrong, the
instruction PID sets the default value of the invalid parameter. A mistake
is indicated only in the cycle, when it happened and when it was corrected
by the instruction. In the next cycle, this is not indicated any more, i.e.
log.0 is on the lower 3 bits.

DET.3 (UMN)- detection of minimum action
1 - action is less than MinU

DET.4 (UMX)- detection of maximum action
1 - action is greater than MaxU

DET.5 (EY1) - detection of measuring error y1 (Input1)
1 - y1 out of interval <MinY, MaxY>

DET.6 (EY2) - detection of measuring error y2 (Input2)
1 - y2 out of interval <MinY, MaxY>

DET.7 (EY3) - detection of measuring error y3 (Input3)
1 - y3 out of interval <MinY, MaxY>

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S1 - - - - - - - S

S1.0 (S) - 1 - instruction is performed
0 - data structure is out of scratchpad, instruction is not performed

S34 = 20 ($14) scratchpad range exceeded

13. Instructions of terminal operation and operations with ASCII characters

TXV 004 01.02 146

Description of parameters of the data structure

MinY - Minimum value measured. Used for deviation standardization.
MaxY - Maximum value measured. Used for deviation standardization.
Input1 (y1) - Measured (controlled) value.
gW (w) - Set point, within the interval of measured value <MinY, MaxY>.
tiW - Time constant for the filter of the first order or linear interpolation of

required value in multiples of OutCycle.
ConW - Current set point.
Dev (e) - Deviation of actual value from set point [%].
Output - Output required by algorithm or manually. The action can be in the range

of –10000 to +10000 (i.e. –100,00% to +100,00%) at the most.
It is thus standardized in such a way that for amplification 1 (proportional
band 100%) and deviation 100,00% the action is 100,00%. The range is
always limited to the range of <MinU, MaxU>.

LastOut - Previous action, i.e. delayed by 1 step [%] or valve position (see cascade
control).

CurOut - Output really required in the given step [%] or action increment.
ConOut - Output realized by the controller [%] or actual value realized by the output

unit or by time-proportional on / off control in the absolute value.
DefOut - Default value of output at measurement error.
MinU - Minimum permissible action [%]. Direct action cannot be less than this

value.
MaxU - Maximum permissible action [%]. Direct action cannot be greater than this

value.
dMaxU - Maximum permissible action increment [%]. A new action cannot differ in

the absolute value by more than dMaxU from the previous value.
OutCycle - Length of output cycle, sampling period [hundredths of s]. It specifies a

period, within which the action does not change or the period of repetition
frequency for time-proportional control. The minimum value is 1, i.e. 10
ms, and it can be set up to 65535, i.e. more than 10 minutes.

PBnd - Proportional band. It is set in the range of 1 to 30000 (0,1 to 3000,0%).
The amplification is given as follows:

PBnd
K

1000=

RelCool - Auxiliary proportional band for negative deviation. It is set in the range of
1 to 30000 (0,1 to 3000,0%). The amplification is given as follows:

RelCoolPBnd
K

10001000 ⋅=

This results in the fact that for RelCool = 1000 (100,0%) this part is
without any influence.

Ti - Integrating constant [tenths of s]. It is set in the range of 0 to 30000 (0 to
3000,0 s). For zero value, the integrating part is off.

Td - Derivation constant [tenths of s]. It is set in the range of 0 to 30000 (0 to
3000,0 s).

Egap - Symmetrical dead band. The range is from 0 to 10000 (0 to 100,00%). If
the deviation is less than EGap, i.e. it is in the dead band, the action
remains unchanged.

Dgap - Symmetrical band of deviation, where the derivation part is active. The
range is from 0 to 10000 (0 to 100,00%). It means that the derivation part
is still active for DGAP = 10000.

Instruction set of PLC TECOMAT - 32 bit model

147 TXV 004 01.02

Igap - Symmetrical band of deviation, where integrating part is active. The range
is from 0 to 10000 (0 to 100,00%). It means that the integrating part is still
active for IGAP = 10000.

Control - Control word is used for setting of the controller function. The controller
can be operated in automatic, manual or emergency mode. It can be used
as a controller with direct or incremental algorithm. If a servo-valve is
used as an actuator, it is possible to use for the correction of the action
increment the measured value of its position, in this case we talk about
cascade control. If the output cycle is longer, it is possible to realize the
time-proportional control of the output on / off. The resolution is based on
the controller cycle time. For example, if the controller cycle time is 100
ms and the output cycle 10 s, the resolution 1%.

.15 .14 .13 .12 .11 .10 .9 .8 .7 .6 .5 .4 .3 .2 .1 .0
FU2 FU1 FU0 - - P41 RIO RF HR AM IP BU KC A12 AO RC

RC - 1 - request for cold start of controller (instruction itself sets the bit
to zero)

AO - 1 - shift of zero of controller output for range 4 ÷ 20 mA
A12 - 1 - output to 12 bit D/A converter
KC - 1 - cascade control
BU - 0 - unified output

1 - binary output (time-proportional, on / off control)
IP - 0 - direct control

1 - incremental control
AM - 0 - manual mode

1 - automatic mode
HR - 1 - more reliable measurement mode, two measured values are

used
RF - 0 - modification of required value by the first order filter

1 - modification of required value by linear interpolation
RIO - 1 - ratio control
P41 - 1 - instruction PID is called in the process P41, i.e. in the raster of

10 ms (only for CPUs of series B and C)
Note:
Also in this case it is possible to use the setting of the period at the
variable OutCycle. This has a practical meaning only for on / off
control. For example, if OutCycle = 100, the period is 1 s and the
resolution of the width of the output pulse is 10 ms, i.e. 1%. When
220 V output unit is used as an example, it is possible to realize
the output of the cyclic control type, i.e. with resolution of one
period of phase voltage.

FU2-FU0 - filtering of short actions
Generally it is valid that if CurOut < 32 ∗ FU, the action is not
performed and the content of CurOut is set to zero.
0 - all actions permitted
1 - suppressed actions less than 32 (i.e. 0,32%)
2 - suppressed actions less than 64 (i.e. 0,64%)
3 - suppressed actions less than 96 (i.e. 0,96%)
4 - suppressed actions less than 128 (i.e. 1,28%)
5 - suppressed actions less than 160 (i.e. 1,6%)
6 - suppressed actions less than 192 (i.e. 1,92%)
7 - suppressed actions less than 224 (i.e. 2,24%)

13. Instructions of terminal operation and operations with ASCII characters

TXV 004 01.02 148

Status - Used especially for bit value transfer for on / off control, this is to say if the
action is designed as time-proportional control (pulse width). Further, it
contains error bits of measurement.

.7 .6 .5 .4 .3 .2 .1 .0
- EY3 EY2 EY1 DR U– UC UH

UH - output for positive action, i.e. heating
UC - output for negative action, i.e. cooling
U– - action signalization

0 - positive action
1 - negative action

DR - detection of the course of linear interpolation of required value
1 - interpolation active

EY1 - detection of measuring error y1 (Input1)
1 - y1 out of interval <MinY, MaxY>

EY2 - detection of measuring error y2 (Input2)
1 - y2 out of interval <MinY, MaxY>

EY3 - detection of measuring error y3 (Input3)
1 - y3 out of interval <MinY, MaxY>

AuxD - Auxiliary variables of the controller. It is forbidden to write into this zone!!

Ranges and formats of measured values

Into the register Input1 (y1) the measured (controlled) value from the analog input is
entered. The ranges of the measured value Input1 are entered into the registers MinY and
MaxY.

At the A1 layer of the stack, the value Input2 (y2) is used for ratio control or for more
reliable measuring. In the first case, the bit RIO in the register Control must be set to log.1,
in the second case, the bit HR to must be set to log.1 (see Control of required value). If
these two modes are not used, the variable does not have to be specified.

At the layer A2 of the stack is the value Input3 (y3) used for measuring of the valve
position. In this case we talk about cascade control and in the register Control the bit KC
must be set to log.1 (see Cascade control). If this mode is not used, the variable does not
have to be specified.

Control of required value and deviation computation

Control bits: Control - RF, RIO, RC
Diagnostic bits: Status - DR
Registers: gW, ConW, tiW

The set point is specified into the register gW. But the controller takes for deviation
computation the required value from the register ConW!

Filtering (RF = log.0)

If the bit RF has the value of log.0, the filter of the 1st order of the required value is
activated. The register tiW specifies the time constant for this filter.

If tiW = 0, after entering a new value into the register gW, the value is also received into
the register ConW, this is to say ConW = gW.

If tiW > 1, then after changing of gW the value filtered with the time constant tiW in
ConW. For example, for tiW = 5, OutCyclus = 10 the time constant w = 5 s.

Instruction set of PLC TECOMAT - 32 bit model

149 TXV 004 01.02

If the value of the bit RC = log.1 after restarting the PLC, then in the first cycle ConW =
Input1. The same value is received into the filter status variable. It this way, reaching of the
required value can be realized with a minimum overshoot.

Ramp (RF = log.1)

If the bit RF has the value of log. 1, linear interpolation of the required value is activated.
The register tiW specifies the time of interpolation of the required value.

If tiW = 0, it is possible to change the values of ConW and gW registers without any
mutual influence.

After specification of the required time into tiW linear interpolation is performed from the
value at ConW to gW. From the table of required values realized by the PLC instructions it
is possible to realize for example any temperature cycles. The selection of a new value
can be synchronized by means of the bit DR.

If the value of the bit RC = log.1 after restarting the PLC, the value of the register ConW
is received into the status variable, but ConW is not changed.

Deviation computation

Deviation computation is performed according to the value of the bit RIO. Internally, the
deviation is standardized within the range of –10000 ÷ +10000 (–100,00% ÷ +100,00%) as
follows:

Tow control (RIO = log.0):

MinYMaxY

yConW
e

−
−⋅= 110000

Ratio control (RIO = log.1):

MinYMaxY

yy
ConW

e
−

−⋅
⋅=

1210010000

In this case, ConW is specified in the range of 0 to 10000. For the same ration y1 and y2

ConW = 100. When the control is finished, i.e. e = 0, y1/y2 equals to the required ration
ConW/100.

Mode of more reliable measurement

If the value of the bit HR = log.1, the controller uses two measurement input Input1 (y1)
and Input2 (y2) depending on the occurrence of a measuring error:

both measurements are in order - for deviation computation, average from y1, y2 is used.
only one measurement is in order - for deviation computation is used that measurement,

which is in order. The controller is not switched to the emergency mode!
Error indication of the particular measurement is in the register Status and
at the A0 stack top after the execution of the instruction PID.

error of both measurements - emergency state (see Emergency mode)

The diagnostic bits for the measurement are permanently active.

Attention! At the variable Input1 of this mode, the controlled value used for control is
saved after the execution of the instruction, i.e. either averages y1, y2, or
the valid value from y1, y2, or the failure code ($±7FFF).

13. Instructions of terminal operation and operations with ASCII characters

TXV 004 01.02 150

Controller modes

Control bits: Control - AM
Diagnostic bits: Status - EY1, EY2, EY3

A0 - EY1, EY2, EY3

The controller can be operated in automatic, manual or emergency mode.

Manual mode (AM = log.0)

Switching into the manual mode (AM = log.0) from the automatic mode is based on the
suspension of the calculation of the controller action. The controller permanently displays
the changes of the deviation and diagnoses measurement errors. After specification of a
new action into the register Output the action starts immediately with the effect of the
limitation of action increment (speed)! Into the Output a direct output value is entered.

Automatic mode (AM = log.1)

Switching into the automatic mode (AM = log.1) from the manual mode is smooth
varies according to whether the integrating part is in the controller.

• In case of a PD controller, the last manually entered value of the action is the offset
value, which is added to the parts of the PD controller. This feature can be used for
example for the control of the systems with shifted zero, where the failures have a
character of a "noise" with the zero mean value and the I-part is not appropriate to be
specified. For astatic systems, the last entered value in the manual mode must be 0 (for
direct algorithm).

• In case of a controller with the I-part, the initial condition of the controller is given by the
estimate of the steady state of the system being controlled.

In the close range of the steady state and after switching, the action is practically
unchanged. Out of steady state, the integrating part is cleared. After switching AM = log.1
the first step of the control is performed immediately.

Emergency mode

If a measuring error occurs (first occurrence of error), the value of the parameter DefOut
is put into to the variable Output and the controller is switched to the manual mode. In
case of a permanent error condition this value remains unchanged, the controller is
operated in the manual mode.

If the value DefOut is greater than 10000, then at the error condition, the last value of
the action remains at Output. After switching into the manual mode the action is controlled
by the value Output. The measuring error is indicated after completing the instruction at
the A0 stack top in bits of the detection of measuring error EY1 and EY2. At the variable
Status, the flag of the occurrence of the measuring error is saved in the bits EY1 or EY2.
The bits are set at the measuring error and reset only after cold start of the controller (by
setting the bit RC to log.1). The operation of the bits EY2 is active only in case of using of
the auxiliary input Input2.

Cascade control (KC = log.1)

Input3 (y3 - transmitted at the layer A2 of the stack) is used as the third measured value
for measurement of the valve position. In this case, the action of the master loop is
corrected according to this value, if the control bit KC is set (cascade control) in the control
word Control. The measured value of the resistance transmitter being measured by the

Instruction set of PLC TECOMAT - 32 bit model

151 TXV 004 01.02

analog unit must directly express the opening of the valve in tenths of per mille, i.e. it must
have to range 0 to 10000.

This can be easily done by means of the instruction CNV. In this case, the position of
the valve is at the variable LastOut.

If the measured input y3 is faulty, the controller is not switched into the emergency
mode. It only cleats the bit KC in the control word and continues the control without
measuring of the valve position. At the same time, the error bit EY3 is set in the register
Status, or at the A0 stack top, as the case may be.

Controller algorithms

Control bit: Control - IP

The controller works as a direct (positional) or incremental.

Direct algorithm

Direct algorithm (IP = log.0) is a classical algorithm where simple non-linear bands were
added, which can prevent from undesirable reactions of the controller under non-standard
situations, such as after switching of a controlled circuit. It is suitable to set the dead band
according to the estimate of the value of the dispersion variance (steady states can be
significantly influenced).

At the variable CurOut the actually required output is given back.

Incremental algorithm

Incremental algorithms (IP = log.1) give back at the variable CurOut the increment of a
new action. At the variable Output the direct value of the action is still kept. The
incremental algorithm is designed for control of astatic systems (especially with a
positional valve). Even in case of manual control, the direct value of the action is entered,
which means that the controller monitors the action after the transmission with zero pole,
which is considered to be part of the controller.

For example, if a positional valve, an estimate of the valve output is still available even
without a resistance transmitter used for sensing of its position. In this case, it is really an
estimate and in case of manual control it is always necessary to perform calibration of the
output value according to actual valve position (see text bellow).

Switching between both control algorithms should be done the manual mode.

Controller outputs

Control bits: Control - BU, KC, A12, AO
Diagnostic bits: Status - U–, UH, UC

A0 - UMX, UMN

The output can be unified, continuous, realized by means of an analog output unit or
binary unit, time-proportional control on / off, realized by means of a binary output unit.

The continuous output of the controller (bit BU = log.0), without regard to the mode and
the algorithm, gives back the absolute value of the action at the variable ConOut.
According to the bit U–, indicating the minus sign of the action, it is possible to control two
analog outputs, etc.

The parameter OutCycle here has the meaning of repetition frequency. The output
value is always limited to the range of 0 ÷ 10000. In case of setting the bit A12 = log.1 at
the variable Control the output value is standardized to the range of 4095 i.e. 12 bits. If the
bit setting is AO = log.1, the range 0 ÷ 10000 is transformed to the range of 2000 ÷ 10000.

13. Instructions of terminal operation and operations with ASCII characters

TXV 004 01.02 152

The result is saved to the variable ConOut in both cases In this way, it is possible to
control the unified outputs of the analog units directly.
The binary output on / off (bit BU = log.1), time-proportional control, is used for direct
control of the actuator. Here is OutCycle the value of the output cycle, i.e. repetition
frequency period. In case of incremental control, the time of real switching at one output
cycle and after its elapsing the value of the action change is adjusted automatically.

For a better resolution, during incremental control, it is possible to use limitations of
action increment. This is to say it is possible that during the period of the output cycle the
value of this change is maximized.

If cascade control of the servo-valve is used, the travel speed of the positional servo-
valve is given by the variables dMaxU and OutCycle.

For example, dMaxU = 1000 i.e. 10% and OutCycle = 1000 i.e. 10,0 s.
In this case, the speed of the valve of 1% in a second is specified, i.e. the time of valve

overtravel is 100 s. If the mean PLC cycle time is 100 ms, the resolution is 0,1%.

Calibration of servo-valve without position resistance transmitter

The variable Control = $10
A self-actuated controller with the range of –10000 ÷ +10000, dMaxU = 10000. In the

manual mode we set the valve position by switching by means of manually specified
values –10000 or +10000.

The variable Control = 0
To the variable Output we will enter a value of the valve position with the accuracy of a

hundredth of per cent and we set MinU = 0. This step is necessary due to suppression of
undesirable control pulses to the valve.

The variable Control = $30
An incremental controller with the range of 0 ÷ +10000 is set. It is now possible to enter

manually the required valve positions to Output.

The changes are available after elapsing of OutCycle! From this reason it is necessary
to set a low value at OutCycle.

Example

Let us assume we control temperature measured with IT-7604 module of TC700. The
conversion and filtration is performed directly by the module. The actuating mechanism
used is a servo-valve with position measuring, resistance transmitter (RT) 0 to 200 Ω. The
RT data is filtered, too. The controller is set as a cascade one, incremental with binary
control (the valve is arranged in a cascade).

#program Cascade
;
#reg bool Output0, Output1
;
#struct _PID

int MinY, ;minimum measured value
int MaxY, ;maximum measured value
int Input1, ;measured value (y, controlled)
int gW, ;required value (w), target
int ConW, ;current required value
uint tiW, ;time constant of filter w or time interval

;ramps in multiples of output cycle
int Dev, ;deviation [%]
int Output, ;direct intervention (u) required by algorithm or

;manually [%]

Instruction set of PLC TECOMAT - 32 bit model

153 TXV 004 01.02

int LastOut, ;recent intervention, i.e. 1 step delayed [%]
int CurOut, ;output really required %]
int ConOut, ;output made by controller
int DefOut, ;default value of output at measurement error[%]
uint MinU, ;minimum permitted intervention[%]
uint MaxU, ;maximum permitted intervention[%]
uint dMaxU, ;maximum permitted increment of intervention[%]
uint OutCycle, ;output cycle length (sampling period)
uint PBnd, ;proportionality band[%]
uint RelCool, ;auxiliary proportionality band [%]
uint Ti, ;integration constant [s]
uint Td, ;derivation constant [s]
uint EGap, ;symmetrical dead band [%]
uint DGap, ;symmetrical deviation band where

;derivation part is active [%]
uint IGap, ;symmetrical deviation band, in which

;integration part is active [%]
uint Control, ;control word
usint Status, ;status
usint [23] AuxD ;auxiliary variables - write prohibited!

;
#reg _PID PID ;Data pro PID
;
;Initialization of temperature control:
P 63
;initialization of PID

LD 0
WR PID~MinY
LD 10000
WR PID~MaxY
LD 0 ;output values range
WR PID~MinU
LD 10000
WR PID~MaxU
;
LD 1000 ;Definition of valve overtravel speed
WR PID~dMaxU ;10,00% (maximum permissible
LD 1000 ;increment of valve position) in 10 s,
WR PID~OutCycle ;i.e. the time of valve overtravel is 100 s.
;
LD 11000 ;DefOut>10000, i.e. after emergency
WR PID~DefOut ;the output value remains unchanged.
; ;The controller is switched to manual mode.
;
LD 500 ;temperature set point 50,0°C (in tenths)
WR PID~gW
;

;Setting of controller parameters:
LD 1000 ;Proportional band 100,0%, i.e. amplification 1
WR PID~Pbnd
LD 1000 ;Second proportional band 100,0%
WR PID~RelCool
LD 0
WR PID~Ti ;Without integration.
LD 10
WR PID~Td ;Derivation part 1,0 s
LD 10
WR PID~EGap ;Dead band 0,1%

13. Instructions of terminal operation and operations with ASCII characters

TXV 004 01.02 154

LD 10000
WR PID~DGap ;Derivation permitted within the whole range
LD 0 ;Without integration
WR PID~IGap
;
LD %01111001 ;Control word: incremental control of valve in

;cascade
WR PID~Control

E 63
;
P 0
;temperature measurement

LD r0_p5_AI0.PCT ;percentual value
MUF 100
IFW ;conversion real -> int
WR PID~Input1 ;write to PID structure
;

;measurement of the resistance transmitter
LD r0_p5_AI1.PCT ;percentual value
MUF 100
IFW ;conversion real -> int

;gives back at A0 the measured value
;for PID Input3=[A2]

LD 0 ;value not used Input2=[A1]
LD __indx (PID~MinY);data index structure PID=[A0]
PID
LD PID~Status.0
WR output0 ;open valve more
LD PID~Status.1
WR output1 ;open valve less

E 0

Instruction set of PLC TECOMAT - 32 bit model

155 TXV 004 01.02

13. INSTRUCTIONS OF TERMINAL OPERATION AND
OPERATIONS WITH ASCII CHARACTERS

TER Terminal instruction

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
TER n TXT DISP TXT DISP
TXT - register number, where control variables for the instruction are located (udint type)
DISP - register number, where videoRAM memory begins (udint type)

Operands

TER n C

n - type of operator panel (7 - ID-07, 8 - ID-08)

Function

TER - terminal instruction

Description

The instruction TER reduces the necessity of programming the operation of the operator
panel to a minimum level. It processes text definition and according it creates the current
text to be displayed on the display of the operator panel. The text definition consists of the
text, which will be displayed on the operator pane, and of variables definition, which are in
the given text. The entire definition is performed in the T table of the user program. Even at
the easiest task it is necessary to work with more than one text, it is, of course, possible to
define a number of texts. The type of the text, which will be displayed at the given moment,
can de specified by means of one of the control variables, which are set before performing
of the instruction TER.

From this short introduction, the basic principle being used is apparent. For processing
of the task, which is connected with the operator panel, it is necessary to define the
appearance of all displays, which will be displayed on the panel and through the program
to set the control variable specifying, which text will be displayed. The instruction TER fills
the memory with the corresponding text, in which the values of the variables were added,
which are displayed within the given text. The content of such prepared memory is
necessary to be transmitted through the serial channel to the connected operator panel.
The operation of the serial channel is not part of the instruction TER. The serial channel is
necessary to be operated through a user program, according to which serial channel and
at which mode it is used for the connection of the operator panel. If the operator presses a
key on the operator panel, the code of the pressed key is transmitted by the panel to the
PLC and the programmer of the task must ensure saving of the code of the pressed key
into one of the control variables, which are passed onto the instruction TER. Then the
instruction processes the pressed key. In principle it is not necessary to process the codes
of the pressed keys by the user program, the instruction TER ensures the operation of the
keyboard, when entering or editing the displayed data.

13. Instructions of terminal operation and operations with ASCII characters

TXV 004 01.02 156

The operand of the instruction TER is a number specifying the type of the operator
panel, which is served by the instruction. The value 7 is valid for the panel ID-07 and the
value 8 for the panel ID-08.

Note

The Mosaic development environment contains the PanelMaker tool, which easily
allows defining of the screen of the panels ID-07 and ID-08. This tool automatically
generates the program for the PLC, in which the instruction TER is used, and it is done in
the way, which corresponds to the following description. At the same time, operation of the
serial channel for communication with the panel is generated. This significantly facilitates
the use of the operator panels ID-07 and ID-08.

If you use the PanelMaker tool for the operation of the operator panel, proceed
according to the manual called The PanelMaker tool TXV 003 25.

If you want to use the instruction TER in the program design itself, proceed as follows.

Use of the instruction TER in the user program

The input of the instruction TER is a piece of information specifying, from which register
starts the zone of the control variables for the instruction TER (passed at the A1 layer of
the stack) and further from which register the instruction TER should save the generated
text (passed at the A0 layer).

The output of the instruction TER is filling of the registers R with the text, which is ready
to be sent to the operator panel on the display. This memory is called in the next text as
videoRAM.

For correct functioning of the instruction TER it is necessary to initialize control
variables in the program before calling the instruction TER. Either of the processes P63 or
P62 treating the PLC restart can be advantageously used.

#reg uint NumText, ;control variables for TER
minText,
maxText

#reg usint enableBits,
sizeDisp,
keyb,
inter[24] ;end of control variables

#def lenDisp 32 ;size of display used
#reg byte videoRam[lenDisp] ;TER saves the text here
;
#table byte openingText = ' First text for ',

' ID-07 '
;
P 0

LD __indx NumText ;register number, where
;control variables for TER are located

LD __indx videoRam ;register number, where videoRam starts
TER 7 ;preparation of text for panel ID-07

E 0
;
P 63 ;initialization of control variables

LD __indx (openingText)
WR NumText ;what text to be displayed
LD lenDisp
WR sizeDisp ;size of display used

E 63

Instruction set of PLC TECOMAT - 32 bit model

157 TXV 004 01.02

Control variables of the instruction TER

The activity of the instruction TER is controlled by means of several variables, which
must be present in the registers R in a continuous zone (they must be placed behind each
other). By writing into these variables and consequential calling of the instruction TER it is
then possible to change for example the text displayed, etc. The register number, in which
the first control variable is located, is passed onto the instruction TER on the stack at the
A1 layer when the instruction is called. The control variables must be defined in the
sequence according to the following table:

Variable Type Description
NumText uint table number, where the text is defined, which will be filled to the

register zone by the instruction TER, designated for sending on the
panel display

minText uint bottom limit for listing in the texts
If listing is enabled at control variables enableBits, pressing the key
UP ARROW causes displaying of the previous text (the control
variable NumText is reduced by 1), listing ends at
NumText = minText

maxText uint top limit for listing in the texts
If listing is enabled at control variables enableBits, pressing the key
DOWN ARROW causes displaying of the next text (the control
variable NumText is increased by 1), listing ends at
NumText = maxText

enableBits usint bits enabling / disabling listing in the texts and editing of variables
located in the texts and rolling of menu items, list a message
enableBits.0
enableBits.1
enableBits.2

enableBits.3

0 - editing disabled, 1 - editing enabled
0 - listing disabled, 1 - listing enabled
0 - cyclic rolling when editing in the items displayed in

the format dispMenu, dispList and dispMes is
disabled

1 - rolling enabled
0 - the keys UP ARROW and DOWN ARROW are

enabled when editing items in the format dispMenu
and dispList

1 - the keys UP ARROW and DOWN ARROW are
disabled in the above mentioned case, item
selection can be done only the key ENTER,
selection cancellation can be done only by the key
C

sizeDisp usint display size (number of characters)
keyb usint code of the key pressed on the terminal, which should be processed

by the instruction TER
inter[24] usint 24 bytes for internal use of the instruction TER, write to these bytes

is forbidden

Number of text displayed

Number of text displayed corresponds to number of the T table, in which the text is
defined (see the following section Definition of the text displayed). The instruction TER
generates the text for the display according to the table, the number of which is saved at
the control variable NumText. This variable can be arbitrarily set from the user program.

13. Instructions of terminal operation and operations with ASCII characters

TXV 004 01.02 158

Listing of the texts

For listing in the texts by means of the keys UP ARROW and DOWN ARROW the way
of definition of the particular texts in the T tables is of importance. To have a possibility of
listing in the texts, the texts in which listing will be performed, must be defined in the T
tables, numbers of which follow each other and the control variable enableBits.1 must
have the value of log.1. The variable minText and maxText then specify from which text to
which text listing can be performed. During listing the value of the variable NumText is
automatically changed, this specifies the current number of the text being displayed.

Disabling and enabling of variables editing

By means of the control variable enableBits.0 it is possible to enable or disable globally
the editing of displayed variables from the keyboard of the operator panel. This can be
useful for example in such cases, when it is necessary to disable the change of variables
that are set from the panel, for some states of the technology being controlled (e.g. in the
automatic mode). If the control variable enableBits.0 is set to log.0, it is possible only to
view the variables, but their value cannot be changed.

Disabling and enabling of listing in the texts

Similarly, it is possible to disable or enable listing in the texts globally for all the texts. If
the control variable enableBits.1 has the value of log.0, it is not possible to list in the texts
independently on how the control variables minText and maxText are set. This makes
sense in such cases, when the text being displayed on the panel is given by the state of
the technology (for example error messages) and it is not desirable that it is possible to
initiate displaying of another text from the panel through listing.

Display size

The display size of the operator panel used must be written to the control variable
sizeDisp before the first call of the instruction TER. The written value must not be less than
8 characters.

Processing of pressed keys

The instruction TER ensures processing of the keys pressed on the operator panel only
in such a case that the codes of the pressed keys are continuously written to the control
variable keyb. This variable is set to zero by the instruction TER. If the keys are to be
processed also by the user program not only by the instruction TER, it is recommended to
create another variable, into which the code of the pressed key is written in the same way
as into keyb or to process the code of the pressed key before execution of the instruction
TER. This situation can for example occur when operating function keys F1, ..., F6 by the
user program.

Internal variables of the instruction TER

The field of control variables inter[24] serves for internal needs of the instruction and the
write into these variables is forbidden. The field has the obligatory length of 24 bytes. Only
the first variable of this field inter[0] can be used by the user program when necessary,
since its non-zero value signalizes that editing of a variable on the operator panel is just
being performed. This can be useful for example in a situation when one or more operator
panels are connected to one PLC TECOMAT, from which the same variables can be
changed and the programmer PLC must treat collisions when accessing one variable from
more panels at the same time.

Instruction set of PLC TECOMAT - 32 bit model

159 TXV 004 01.02

Definition of control variables in the program

The control variables can be defined in the program symbolically:

#reg uint NumText, minText, maxText
#reg usint enableBits, sizeDisp, keyb, inter[24]

For a practically the same result of the next definition, the advantage of it is primarily a
simple possibility to create control variables for more operator panels.

#struct controlTer ;structure name
uint Num_Text, ;number of text displayed
uint min_Text, ;bottom limit for listing in the texts
uint max_Text, ;top limit for listing in the texts
usint enable_Bits, ;enabling/disabling listing and editing
usint size_Disp, ;display size
usint keyb_, ;code of the key pressed on the terminal
usint [24] inter_ ;place for TER internal variables

;
#reg controlTer panel1, panel2, panel3

Definition of the structure controlTer is part of the file defter.mos. In the program we
then write the numbers of the displayed texts for the particular panels as follows:

LD 1
WR panel1~Num_Text
LD 2
WR panel2~Num_Text
LD 3
WR panel3~Num_Text

Definition of text displayed

The particular texts are defined in the T tables. The definition contains text specification,
which will be displayed on the terminal display and further optionally a specification or
more specifications of the variables, which will be displayed within the text.

Specification of text displayed:

Text specification must have the same number of characters as the display used on the
operator panel. For example for a 32-character display the text can be specified as follows:

#table byte text1 = 'This is text displayed at ID-08.'

The above mentioned definition uses the possibility to specify the content of the tables
in the Mosaic development environment by means of so called apostrophe conversion,
converting the text specified in apostrophes to ASCII codes, which are saved to the table.
Text specification can be written in a better way to respect division of the text on the lines
of the display used. The specification for a 32-character 2-line display will be as follows

#table byte text2 =
'1st line of text',
'2nd.line of text'

By analogy for an 80-character 4-line display the text will be specified as follows:

#table byte text3 =
' 1st line of text ',

13. Instructions of terminal operation and operations with ASCII characters

TXV 004 01.02 160

' 2nd line of text ',
' 3rd line of text ',
' 4th line of text ',

Specification of displayed variables:

Specification of the variable has a fixed number of items, which describe the displayed
variable and contain the information on the display mode. Specification of the variable in
the table T is written immediately after the text specification. It contains from the following
items:

Item Type Description
var uint register number, where the displayed variable is located
size usint size of the variable being displayed
pos usint position of the on the display (position number)
form usint display format of the variable
numDig usint number of displayed positions
tabLim uint table number with message definition, items of the menu or limits

var - register number, where the variable is located - in the texts it is possible to display
only the variables located in the registers R, the variables from the areas X, Y, S
must be first moved into the registers R and from here their content on the display
of the operator panel can be displayed.

size - constant specifying the size and type of the variable being displayed, when the
particular bits are displayed, this constant also specifies the bit number, which will
be displayed

Variable size Variable type Value of constant
size

Symbolic name

bit .0 bool 0 Bit0
bit .1 bool 1 Bit1
bit .2 bool 2 Bit2
bit .3 bool 3 Bit3
bit .4 bool 4 Bit4
bit .5 bool 5 Bit5
bit .6 bool 6 Bit6
bit .7 bool 7 Bit7
byte byte, usint, sint 8 sizeByte

2 bytes word, uint, int 9 sizeWord
4 bytes dword, udint, dint 10 sizeLong
4 bytes real 11 sizeFloat

pos - number of position on the display, from which the variable will be displayed, the
positions are numbered from the upper left corner of the display from 0 as follows:

display of 32 characters

0 1 2 3 4 5 6 7 8 9 15

T E X T A T 1 s t l i n e

* T E X T A T 2 n d l i n e

16 31

Instruction set of PLC TECOMAT - 32 bit model

161 TXV 004 01.02

display of 80 characters

0 1 2 3 4 5 6 7 8 9 19

2 0 c h a r a c t e r s t e x t !

20 2 n d l i n e o f t h e t e x t 39

40 59

l a s t l i n e o f t e x t !

60 79

form - constant specifying variable display format
- values 1 to 6 specify the format of variable display, the values in the next table

added to these values make the possibilities of display wider

Variable display format Value of
constant form

Symbolic
name

decadically without sign 1 dispDec
decadically with sign 2 dispSignDec
hexadecimally 3 dispHexa
to each value a message will be assigned,
which will be displayed on the display

4 dispMes

variable will be displayed as menu with all items 5 dispMenu
variable will be displayed as menu with one
item

6 dispList

Variable display format extension
(added to the values of the previous table)

Value of
constant form

Symbolic
name

It is possible to edit the displayed variable from
the keyboard of the operator panel, otherwise
the variable is displayed only

$10 + form readWrite

Justify the displayed variables left $20 + form leftJust
Display of leading zero of variable value $40 + form leadZero

- processing of keys when editing will be ensured by the instruction TER

numDig - constant specifying the number of positions on the display, on which the
variables is displayed

Variable display
format

Description of constant numDig

dispDec,
dispSignDec

lower 4 bits mean the total number of digits and upper 4 bits
the number of digits behind the decimal point

dispHexa number of digits displayed
dispMes length of one displayed message
dispMenu, dispList length of one item of the menu

tabLim - table number with definition of additional information for variable display
If this parameter has the value of 0, this means the corresponding table is not
declared. When editing variables from the panel keyboard the instruction TER will
assign default limits corresponding to the maximum range according to the
selected size of the variable. For definition of the limits a table of the udint type
(the table of type real is also for the display of the variable of type real) containing
two numbers is used independently of the size of the variable being displayed - the
two numbers are the minimum and maximum value that can be written to the
variable when editing from the keyboard of the operator panel.

13. Instructions of terminal operation and operations with ASCII characters

TXV 004 01.02 162

Variable display
format

Description of constant tabLim

dispDec,
dispSignDec,
dispHexa

table number with definition of minimum and maximum
value, which can be written when editing the variable from
the keyboard panel

dispMes table number with message definition
dispMenu, dispList table number with menu item definition

An example of text definition, in which the content of the register R200 will be displayed:

#table usint text1 = ;text specification
' Content of reg.', ;first line of text
' R200 = ', ;second line of text

;specification of variable
200, ;location of variable at R (lower byte)
0, ;location of variable at R (higher byte)
8, ;size of variable (byte)
24, ;position on display
1, ;display as a number of 0..255,readOnly
3, ;number of digits displayed
0, ;tabLim (lower byte)
0 ;tabLim (higher byte)

Constants for variable specification

For more well-arranged text definitions it is useful to introduce the following
declarations, which enable to use symbols in the specification of the variable. On a CD
supplied with each PLC these declarations can be found on the file defter.mos.

;------------------------- ;display size definition
#def lenDisp 32 ;32 characters
;
;------------------------- ;structure for variable specification
#struct typeSpecif

uint var, ;register number, where the variable is
usint size, ;size of variable
usint pos, ;cursor position of the display
usint form, ;display format
usint numDig, ;number of digits displayed
uint tabLim ;table number defining limits

;
;--------------------------;structure for texts without variables
#struct textTable0

uint[lenDisp] text0
;--------------------------;structure for texts with 1 variable
#struct textTable1

uint[lenDisp] text1,
typeSpecif Specif11

;--------------------------;structure for texts with 2 variables
#struct textTable2

uint[lenDisp] text2,
typeSpecif[2] Specif22

;
;..........................;constants for variable specification
; for Specif~size :
#def Bit0 0 ;display bit number 0

Instruction set of PLC TECOMAT - 32 bit model

163 TXV 004 01.02

#def Bit1 1 ;display bit number 1
#def Bit2 2 ;display bit number 2
#def Bit3 3 ;display bit number 3
#def Bit4 4 ;display bit number 4
#def Bit5 5 ;display bit number 5
#def Bit6 6 ;display bit number 6
#def Bit7 7 ;display bit number 7
#def sizeByte 8 ;display 1 byte (type byte / usint / sint)
#def sizeWord 9 ;display 2 bytes(type word / uint / int)
#def sizeLong 10 ;display 4 bytes(type dword / udint / dint)
#def sizeFloat 11 ;display 4 bytes (type real)

;
; for Specif~form :
#def dispDec 1 ;display variable as a decimal number
#def dispSignDec 2 ;display decadically with sign
#def dispHexa 3 ;display hexadecimally
#def dispMes 4 ;instead of value display message
#def dispMenu 5 ;variable will be displayed as menu
#def dispList 6 ;variable will be displayed as menu
;
#def readOnly 0 ;display variable only
#def readWrite $10 ;enable edition of variable from keyboard
#def leftJust $20 ;align left
#def leadZero $40 ;display leading zero
;
; for Specif~numDig
#def des +16* ;const. for declaration of number of displayed

;digits for numbers with decimal point
;
;writ e : 5 des 2 => total 5 digits, 2 decimal positions
;generated constant : 5+16*2 = 37 (=$25)
;this results in: lower 4 bits ... total number of digits
; upper 4 bits ... number of decimal positions
;!!! ATTENTION !!!
;for correct compilation space in symbolic write are necessary,
;i.e. 5 des 2 ... the only correct write
;5des2, 5 des2, 5des 2 ... incorrect

When using the above mentioned declarations, the text definition from the example in
the previous chapter will be as follows:

#table textTable1 text1 =
' Content of reg.', ;first line of text
' R200 = ', ;second line of text
__indx R200, ;display variable R200
sizeByte, ;size of variable (byte)
24, ;position on display
dispDec, ;display the content R200

;as a number of 0..255,
;readOnly

3, ;number of digits displayed
0 ;limits - default

13. Instructions of terminal operation and operations with ASCII characters

TXV 004 01.02 164

Display range of the variables

The following table specifies the possible formats for the display of the variables and
their range. The variables must be located in the register zone R. The variables from the
areas X, Y, S or T must be for the purpose of display by the instruction TER copied into
the registers R.

Size of variable Display format Display range
bit dispDec 0,1

dispSignDec 0,1
dispHexa 0,1
dispMes one message max. 20 characters

dispMenu item Menu max. 16 characters
dispList item Menu max. 16 characters

usint dispDec 0 to 255
sint dispSignDec –128 to 127
byte dispHexa 0 to $FF

dispMes one message max. 20 characters
dispMenu item Menu max. 16 characters
dispList item Menu max. 16 characters

uint dispDec 0 to 65 535
int dispSignDec –32768 to 32 767

word dispHexa 0 to $FF FF
udint dispDec 0 to 4 294 967 295
dint dispSignDec –2 147 483 648 to 2 147 483 647

dword dispHexa 0 to $FF FF FF FF
real dispSignDec ±1,175494x10–38 to ±3,402823x1038

Display of negative numbers

From the table the number of positions on the display is obvious which is necessary for
displaying the variables within the entire range. Displaying in the format dispSignDec
works with the numbers, the most significant bit of which represents a sign (0 = plus,
1 = minus). The plus sign is not displayed.

Display of decimal numbers

The display formats dispDec and dispSignDec allow displaying and editing of decimal
numbers in the fixed and floating point. When using this type of display it is necessary to
include not only the sign into the number of displayed positions, but the decimal point must
be displayed, too. It displays the decimal point on the LCD display, to which we are used
from common mathematics. The display with decimal point is useful especially for PLC
timer preset. The values of type real are displayed in a form without an exponent, this is to
say as an ordinary decimal number. Their size is limited to 11 positions including the
decimal point and a sign, if any.

Editing of displayed variables

The instruction TER allows not only to display the combinations of the texts and
variables of various sizes and various output formats, but it also ensures editing (change
of the displayed value) of the variable. The conditions for changing the variable from the
terminal keyboard are as follows:

Instruction set of PLC TECOMAT - 32 bit model

165 TXV 004 01.02

• in the specification of the variable being displayed the parameter readWrite must be
specified

• the control variable enableBits.0 (the zero bit at the variable enableBits) must have the
value of 1

If these conditions are fulfilled, the variables displayed can be changed as described in
the following chapters.

Editing on the panel ID-07

• Beginning of editing is performed by pressing the key ENTER, on the operator panel the
first variable starts flashing, which has the parameter readWrite in the specification

• The first pressing of any of the keys LEFT ARROW, RIGHT ARROW, PLUS or MINUS
sets the lowest order of the flashing number for editing, which is signalized by flashing
of the particular digit

• By the keys LEFT ARROW, RIGHT ARROW the edited order is changed
• By the key PLUS the unit of the corresponding order is added to the edited value
• By the key MINUS the unit of the corresponding order is subtracted from the edited

value
• The new value is written (confirmed) to the variable by the key ENTER, by the key C the

editing of the value is cancelled and the original value of the variable will be displayed
on the display.

Editing on the panel ID-08

• Beginning of editing is performed by pressing the key ENTER, on the operator panel the
first variable starts flashing, which the parameter readWrite in the specification.

• At this moment you can start editing (if the variable, the number of which we want to
change, is flashing) or you can select another displayed variable for editing (if more
variables are displayed on one display).

• Selection of another variable that is not flashing is carried out by pressing the key
ENTER again, then the next displayed variable with the defined parameter readWrite
starts flashing.

• Specification of a new value is performed by the numerical keys, after pressing the first
numerical key the original value of the variable disappears and only the last specified
digit is flashing.

• The newly specified value is written to the variable after pressing the key ENTER, the
edited digit stops flashing and if some other variable with the parameter readWrite is
displayed on the display, it starts flashing and it is possible to enter a new value to this
variable.

• If we want to cancel entering the values and return to the original value of the variable
the key C must be pressed, editing will be cancelled the variable being displayed or
some of its digits stops flashing and the original value will be displayed.

• When entering negative numbers the sign is entered after entering the numerical value
before pressing the key ENTER (as with the most of calculators).

Correction of the value displayed

• Under correction the change of the displayed value by the units in the lowest displayed
order is understood. The procedure of correction does not depend on the type of the
panel.

• The correction starts by pressing the key ENTER, on the operator panel the first
variable starts flashing, which has the parameter readWrite in the specification.

13. Instructions of terminal operation and operations with ASCII characters

TXV 004 01.02 166

• By the key PLUS the displayed value is increased by 1 in the lowest displayed order, by
the key MINUS the value is decreased by 1, only one digit that corresponds to the order
being corrected is flashing.

• The modified value is written (confirmed) by the key ENTER, by the key C the mode
value correction is cancelled and the original value is displayed on the display.

Variable editing in the format dispMes

• Beginning of editing is performed by pressing the key ENTER
• The message to be edited starts flashing.
• The change of value (i.e. displayed message) is performed by the keys LEFT ARROW,

RIGHT ARROW, at this moment only the first and the last character of the displayed
message flash alternately with the characters < and >

• During editing the state of the variable in the PLC scratchpad remains unchanged.
• The new value is written (confirmed) to the variable by the key ENTER, only at this

moment the state of the variable is changed in the PLC scratchpad, characters < > stop
flashing

• By the key C the editing mode of the message is cancelled and the original message is
displayed on the display.

Variable editing in the format dispMenu

• In this case, it is not necessary to start editing, since in the case of the format dispMenu
with the parameter readWrite it is started automatically.

• On the display all defined menu items are displayed.
• The item offered for selection from the menu is marked by characters < >, which are

flashing on the first and the last position of the offered item.
• Selection from the offered items is done by the keys LEFT ARROW, RIGHT ARROW.
• During the selection from the menu the state of the variable in the PLC scratchpad also

changes automatically depending on which item of the menu is active at this moment.
• Ending of the selection is performed by pressing the key ENTER or DOWN ARROW, in

this case the instruction TER writes a new text number to the control variable numText
according to the table defining the menu items - the text displayed is changed.

• If we do not want to select any of the offered items, the selection from the menu can be
cancelled by the key C or UP ARROW and in this case the text number specified at the
beginning of the table defining the menu items is written to the control variable numText
and the corresponding text will be displayed.

• The keys UP ARROW and DOWN ARROW can be disabled during selection from the
menu by setting enableBits.3 = 1.

Variable editing in the format dispList

• In this case, it is not necessary to start editing, since in the case of the format dispList
with the parameter readWrite it is started automatically.

• On the display only one item menu is displayed, which corresponds to the value of the
variable being displayed.

• For the item offered for selection from the menu, characters < > are flashing on the first
and the last position.

• Next steps are identical with the selection of an item from the menu, also the way of
definition of the menu items is identical with the format dispMenu.

Instruction set of PLC TECOMAT - 32 bit model

167 TXV 004 01.02

Examples of text definitions

The following examples are created for displaying of the size of 32 characters.

Display of the bit in the text

The text definition, in which the value of the bit R200.1 is displayed. The bit cannot be
changed from the keyboard of the operator panel.

#table textTable1 text1 =
' Content of reg.', ;first line of text
' R200.1 = ', ;second line of text
__indx R200, ;display variable R200.1
Bit1, ;size of variable (bit č.1)
26, ;position on display
dispDec + readOnly, ;display the content R200.1 as a number of
1, ;number of digits displayed
0 ;not used

The operator indx used in the specification of the variable in the item var sets the
variable address, i.e. the write indx R200 saves number 200 to the table.

Display on the operator panel (for R200.1=1):

0 1 2 3 4 5 6 7 8 9 15

C o n t e n t o f r e g .

R 2 0 0 . 1 = 1

16 31

Display of more bits in one text

Text definition, in which the values of the bit LEFT and RIGHT are displayed. The bits
cannot be changed from the keyboard of the operator panel.

#reg bool LEFT, RIGHT ;definition of bit variables
#table textTable2 text2 =

' Display of bit ', ;first line of text
' LEFT=x RIGHT=x ', ;second line of text

;
;specification of 1st variable

__indx (LEFT), ;display variable LEFT
__bitpart (LEFT), ;size of variable - bit number
22, ;position on display
dispDec, ;display LEFT as a number of 0/1
1, ;number of digits displayed
0, ;not used

;
;specification of the second variable

__indx (RIGHT), ;display variable RIGHT
__bitpart (RIGHT), ;size of variable - bit number
31, ;position on display
dispDec, ;display RIGHT as a number of 0/1
1, ;number of digits displayed
0 ;not used

Please note the type of the table used (textTable2), which allows specification of two
variables within one text. If we want to display 3 variables, the type of the table used will
be textTable3, for 4 variables textTable4, etc. For the constant size the operator bitpart

13. Instructions of terminal operation and operations with ASCII characters

TXV 004 01.02 168

was used in this case, this operator computes the bit number from the symbolical
declaration variables LEFT, RIGHT.

Compared to the previous example we can see that the attribute readOnly (for reading
only) is assigned automatically and it is not necessary to specify it. Instead of characters
"x" defined on the second line of the text, the values of the bits LEFT and RIGHT will be
displayed on the display.

Display on the operator panel (for LEFT = 1, RIGHT = 0):

D i s p l a y o f b i t

L E F T = 1 R I G H T = 0

The above mentioned exampled shows the display of two variables of the bit size.
Similarly, also the variables of other sizes can be specified in the text. In one text, so many
variables will be displayed, how many of them were specified in the text definition. The
variables of various sizes can be combined and each of them can be displayed in a
different output format.

Integral display of a variable of byte size

The text definition, in which the value of the variable of byte size is displayed, which has
the symbolic name START in the program. The variable can be set from the keyboard of
the operator panel.

#reg usint START ;definition of variable START
#table textTable1 text3 =

' OBSAH BYTU ', ;first line of text
' START = ', ;second line of text

;specification of variable
__indx (START), ;display variable START
sizeByte, ;size of variable is byte
26, ;position on display
dispDec+readWrite, ;display START as a number of,

;enable edition of variable START
3, ;number of digits displayed
0 ;default limits 0...255

The above mentioned definition displays the variable START as a number in the range
of 0 to 255, always 3 positions will be used on the display, leading zero will not be
disturbed. The displayed value can be changed from the keyboard terminal. The limits for
the specified value are default (for the variable of byte size 0...255), since a reference to
the table of limits is not specified (the item tabLim in the text definition has the value of 0).

Display on the operator panel (for START = 32):

C O N T E N T O F B Y T E

S T A R T = 3 2

Procedure for editing a number

The procedure for entering of a new value to the variable START is as follows:

The key ENTER (↵) starts editing of the variable START.
The entire variable on the display starts flashing.

C O N T E N T O F B Y T E

S T A R T = 3 2

Instruction set of PLC TECOMAT - 32 bit model

169 TXV 004 01.02

By means of the numerical keys a new value is entered. After pressing the key 1 only
that decade is flashing, which will be changed.

 C O N T E N T O F B Y T E

S T A R T = 1

After pressing the key 8 the next decade flashes, which will be changed. The digit 1 is
entered and shifted to the left.

C O N T E N T O F B Y T E

S T A R T = 1 8

After pressing the key 5 the next decade flashes, which will be changed. The digits 18
are entered and shifted to the left.

 C O N T E N T O F B Y T E

S T A R T = 1 8 5

The key ENTER (↵) ends editing of the variable START. The entire variable on the
display stops flashing.

C O N T E N T O F B Y T E

S T A R T = 1 8 5

Display of a variable as a number with decimal point

The text definition, in which the value of the variable LENGTH is displayed. This
variable should be displayed as a number with two decimal points with a possibility of
editing from the keyboard of the operator panel. The limits for entering the value from the
keyboard of the operator panel are <0.0, 99.99>.

#reg uint LENGTH ;definition of variable LENGTH
#table udint tabLimits = 0, 9999 ;limits for specific. of variable LENGTH
;
#table textTable1 text4 =

' Variable value ', ;first line of text
' LENGTH = ', ;second line of text

;specification of variable
__indx (LENGTH), ;display variable LENGTH
sizeWord, ;size of variable is word
26, ;position on display
dispDec+readWrite, ;display decadically, enable editing
5 des 2, ;5 positions in total, of which 2 are decimal
__indx tabLimits ;table number with limit definition

The above mentioned definition displays the variable LENGTH as a number in the
range of 0 to 655.35, for displaying always 5 positions on the display will be used, the
decimal point takes one position. A new value can be entered in the limits of 0 to 99.99. In
the definition of the number of the displayed digits, first the total number of digits is
displayed including the decimal point and then the number of digits behind the decimal
point (5 des 2). In the definition of limits the udint or dint type of the table is obligatorily
used.

13. Instructions of terminal operation and operations with ASCII characters

TXV 004 01.02 170

Display on the operator panel (for LENGTH = 172):

V a r i a b l e v a l u e

L E N G T H = 1 . 7 2

Display of a message

The text definition, in which the variable ERROR in the format dispMes is displayed, i.e.
instead of the variable value ERROR the text from the message table will be displayed.

#reg usint ERROR ;definition of variable ERROR
;
#table byte tabErr = ;definition of message table

'Machine is OK ', ;message displayed at ERROR=0
'Hydraulics error', ;message displayed at ERROR=1
'Motor 1 defect ', ;message displayed at ERROR=2
'Motor 2 defect ', ;message displayed at ERROR=3
'Lubricat. defect', ;message displayed at ERROR=4
'Cooling defect ' ;message displayed at ERROR=5

;
#table textTable1 text5 =

' Error message: ', ;first line of text
' ', ;second line of text

;specification of variable
__indx (ERROR), ;display variable ERROR
sizeByte, ;size of variable is byte
16, ;position on display
dispMes, ;display of ERROR as message
16, ;length of one message
__indx (tabErr) ;table number with messages

The above mentioned definition displays the variable ERROR in such a way that to
each value of the variable it assigns one line from the message table. The reference to this
table is specified at the end of variable specification (item tabLim). In the position of the
number of displayed digits, the number of characters of one message is displayed. As the
result of this is, that all the messages must be of the same length.

The variables displayed in the format dispMes can be of bool or byte size. Another sizes
are not permissible.

Display on the operator panel (for ERROR = 4):

E r r o r m e s s a g e :

L u b r i c a t . d e f e c t

In the given example, it is necessary to follow the sequence of declarations. First, the
variable must be declared, then the table of messages followed by the table with text
definition. The xPRO compiler requires that the object is declared first and after having
done this, a reference to this object can be programmed.

The instruction TER will work as described only in such a case, if the texts in the table
of messages are of the same length. To shorter texts it is necessary to add space
characters. The length must correspond to the data that is in the specification of the
variable being displayed.

Editing a message

The text definition, in which the variable COLOUR in the format dispMes is displayed.
The variable can be edited from the keyboard of the operator panel in such a way, that

Instruction set of PLC TECOMAT - 32 bit model

171 TXV 004 01.02

after pressing the key ENTER, by means of the keys LEFT ARROW and RIGHT ARROW
one of the defined colours is selected. After selection confirmation by the key ENTER the
code, which corresponds to the chosen variant, is saved to the variable COLOUR.

#reg usint COLOUR ;definition of variable COLOUR
;
#table byte tabColour = ;definition of message table

' red ', ;message for COLOUR=0
' green ', ;message for COLOUR=1
' light blue ', ;message for COLOUR=2
' dark blue ', ;message for COLOUR=3
' azure blue ', ;message for COLOUR=4
' mottled ' ;message for COLOUR=5

;
#table textTable1 text6 =

' Colour choice: ', ;first line of text
' ', ;second line of text

;specification of variable
__indx (COLOUR), ;display variable COLOUR
sizeByte, ;size of variable is byte
16, ;position on display
dispMes + readWrite, ;display COLOUR as a message, enable editing
16, ;length of one message
__indx (tabColour) ;table number with messages

Display on the operator panel (for COLOUR = 3):

C o l o u r c h o i c e :

d a r k b l u e

Procedure for editing a message

The key ENTER (↵) starts editing of the variable COLOUR. The entire variable on the
display starts flashing.

C o l o u r c h o i c e :

d a r k b l u e

The key LEFT ARROW (←) selects the previous item. On the position of the first and
the last character of the message characters < > are flashing.

C o l o u r c h o i c e :

< l i g h t b l u e >

The key LEFT ARROW (←) selects the previous item. On the position of the first and
the last character of the message characters < > are flashing.

C o l o u r c h o i c e :

< g r e e n >

The key ENTER (↵) ends editing of the variable COLOUR. Characters < > stop
flashing, the code 1 is saved to the variable COLOUR.

C o l o u r c h o i c e :

g r e e n

13. Instructions of terminal operation and operations with ASCII characters

TXV 004 01.02 172

Note: If the control variable enableBits.2 = 0, then after repeated pressing of the key
RIGHT ARROW the item „mottled“ is offered as the last item. For selection of the
previous items it will be necessary to use the key LEFT ARROW. If the control
variable enableBits.2 = 1, after the item „mottled“, the item "red" will follow after
pressing the key RIGHT ARROW, which means that the particular items when
editing the variable COLOUR will be rolling cyclically. The same is valid for the
variables displayed in the formats dispMenu and dispList.

Selection of an item in the format dispMenu

The text definition, in which the variable BATCH in the format dispMenu (menu) is
displayed. The variable can be edited from the keyboard of the operator panel by selection
one of the variants. Compared to the previous example, when just one message being
offered was displayed on the display, all defined menu items are displayed at the same
time. The item offered to be selected is marked by characters <>, which are flashing on
the first and the last position of the item. During selection, a code is continuously saved in
the variable BATCH, which corresponds to the currently selected variant. When selecting
an item by the key ENTER a text will b e automatically displayed, the number of which is
specified in the table defining the particular menu items. When defining text numbers,
which will be displayed during selection of an item from the menu, it must not be forgotten
that the numbers of the texts are entered as word (this is to say 2 bytes, in the memory
first the lower byte by significance is saved and then higher byte is saved on the address
higher by one).

#reg usint BATCH ;definition of variable BATCH
;
#table textTable0 noChoice =

' No variant ',
' was chosen. '

;
#table textTable0 choiceMini =

' MINI variant ',
' was chosen. '

;
#table textTable0 choiceMidi =

' MIDI variant ',
' was chosen. '

;
#table textTable0 choiceMaxi =

' MAXI variant ',
' was chosen. '

;
#table usint tabBatch = ;definition of menu table

__indx (noChoice), ;text number (low, high) displayed at
__indx (noChoice/256), ;pressing the key C
' mini ', ;menu for BATCH=0
__indx (choiceMini), ;text number (low, high) displayed at
__indx (choiceMini/256), ;selection of the item mini
' midi ', ;menu for BATCH=1
__indx (choiceMidi), ;text number (low, high) displayed at
__indx (choiceMidi/256), ;selection of the item midi
' maxi ', ;menu for BATCH=2
__indx (choiceMaxi), ;text number (low, high) displayed at
__indx (choiceMaxi/256), ;selection of the item maxi

;
#table textTable1 text7 =

' Batch : ', ;first line of text

Instruction set of PLC TECOMAT - 32 bit model

173 TXV 004 01.02

' ', ;second line of text
;specification of variable

__indx (BATCH), ;display variable BATCH
sizeByte, ;size of variable is byte
10, ;position on display
dispMenu+readWrite, ;display BATCH as menu + editing
6, ;length of one item of menu
__indx (tabBatch) ;table number with menu items

The table format with definition of menu items is obligatory and the following scheme must
be followed:

• text number, which will be displayed when pressing the key C - 2 bytes !!!!
• text for the first item of the menu
• text number, which will be displayed when selecting the first item from the menu - 2

bytes
• text for second item of the menu
• text number, which will be displayed when selecting the second item from the menu - 2

bytes
• etc. for next items

The texts for the particular menu items must have the same length, which corresponds
to the data in the specification of the variable being displayed. Since all the menu items
are displayed on the display at the same time, they must fit on the display. Since they are
displayed immediately behind each other, it is better, when the texts of the particular items
begin and end with the space character. This recommendation takes in account the way of
signalizing of the item being offered for selection (in the positions of the first and the last
character characters <> are flashing).

Display on the operator panel (for BATCH= 1):

B a t c h : m i n i

< m i d i > m a x i

Procedure for selecting of an item

The key LEFT ARROW (←) selects the previous item. On the position of the first and
the last character of the selected menu item, characters < > are flashing.

B a t c h : > m i n i >

m i d i m a x i

The key RIGHT ARROW (→) selects the next item. On the position of the first and the
last character of the selected menu item, characters < > are flashing.

B a t c h : m i n i

< m i d i > m a x i

The key RIGHT ARROW (→) selects the next item. On the position of the first and the
last character of the selected menu item, characters < > are flashing.

B a t c h : m i n i

m i d i < m a x i <

The key ENTER (↵) ends selecting from the menu. In the next step, the text defined for
the item maxi is displayed.

13. Instructions of terminal operation and operations with ASCII characters

TXV 004 01.02 174

M A X I v a r i a n t

w a s c h o s e n .

Display of an item selected from the menu

If we need to display only, which of the items was selected in the previous menu, it is
possible to use reference to the table, which defined the menu. If we use the display
format dispMenu with the parameter readOnly, only the selected item from the menu will
be displayed on the display, not all the items as in the previous case. Editing of the item
from the keyboard of the operator panel is not possible.

#table textTable1 text8 =
' Chosen batch : ', ;first line of text
' ', ;second line of text

;specification of variable
__indx (BATCH), ;display variable BATCH
sizeByte, ;size of variable is byte
20, ;position on display
dispMenu + readOnly, ;display selected item from the menu
6, ;length of one item of menu
__indx (tabBatch) ;table number with menu items

Display on the operator panel (for DAVKA = 2):

C h o s e n b a t c h :

M A X I

Selection of an item in the format dispList :

The format dispList is used in such cases, when all the menu items do not fit together
on the display. When using this format of display only one menu item is displayed. The
way of editing of the variable as well as the definition of the menu items is identical with
the format dispMenu. With the definitions from the previous example, the text definition, in
which the variable BATCH is displayed by means of the format dispList is as follows:

#table textTable1 text9 =
' Choose batch : ', ;first line of text
' ', ;second line of text

;specification of variable
__indx (BATCH), ;display variable BATCH
sizeByte, ;size of variable is byte
23, ;position on display
dispList+readWrite, ;display BATCH as menu + editing
6, ;length of one item of menu
__indx (tabBatch) ;table number with menu items

Display on the operator panel (for BATCH = 1):

C h o o s e b a t c h :

< m i d i >

The key LEFT ARROW (←) selects the previous item. On the position of the first and
the last character of the selected menu item, characters < > are flashing.

C h o o s e b a t c h :

> m i n i >

Instruction set of PLC TECOMAT - 32 bit model

175 TXV 004 01.02

The key RIGHT ARROW (→) selects the next item. On the position of the first and the
last character of the selected menu item, characters < > are flashing.

C h o o s e b a t c h :

< m i d i >

The key RIGHT ARROW (→) selects the next item. On the position of the first and the
last character of the selected menu item, characters < > are flashing.

C h o o s e b a t c h :

< m a x i <

The key ENTER (↵) ends selecting from the menu. As next, the text defined for the item
maxi is displayed.

M A X I v a r i a n t

w a s c h o s e n .

Non-text definitions for the instruction TER

The instruction TER also allows processing of the tables with text definitions as well as
tables containing another information. Above all, the tables with declarations of the values
for presetting of control variables and further the table having information on subroutine
call as a reaction to the display of the text of a certain number. These tables can be put
among the definitions of the particular texts, so the particular actions are called simply by
listing the text of a certain number. Further to this, the use of tables with non-text
definitions reduces the need of programming in classical instructions of the PLC when
realizing a dialog on the operator panel.

Definition of tables for text flow control

The instruction TER allows processing of tables, which contain the data for a new setup
of the control variables numText, minText, maxText and enableBits. These table will be
called in further text as the tables for text flow control of the type textFlow. They provide
the PLC programmer a greater free play when defining text tables, since it is not
necessary to follow the request for continuous table numbering defining the texts so
strictly, if the possibility of listing in the texts is to be maintained. The tables for text flow
control allow switching among the texts, the numbers of which do not follow each other.
Further to this they allow setting of new values for the limits of listing and finally, the y
allow setting of the control bits for enabling or disabling of editing, for example according to
selection made from the menu.

The tables for text flow control must have a structure according to the following table:

Item Type Description
_numText uint constant, by which the control variable numText will be filled
_minText uint constant, by which the control variable minText will be filled (if 0 is

specified, the content of the control variables minText remains
unchanged)

_maxText uint constant, by which the control variable maxText will be filled (if 0 is
specified, the content of the control variables maxText remains
unchanged)

_enableBits usint constant, by which the control variable enableBits will be filled

13. Instructions of terminal operation and operations with ASCII characters

TXV 004 01.02 176

For an easy declaration of the tables for text flow control it is sensible to specify the
declaration of the structure textFlow.

#struct textFlow
uint _numText,
uint _minText,
uint _maxText,
usint _enableBits

The following example shows the use of the tables textFlow. Let us assume that on the
operator panel we want to select one of the activities offered - viewing of a group of
variables or entering of a new value to the group of other variables. The tables textFlow
allow filling the control variables for the instruction TER without any problem based o the
fact that the corresponding variant was selected on the panel. Each of the selected
variants has or can have a different setting of the control variables.

#reg uint numText, ;control variables for TER
minText,
maxText

#reg usint enableBits,
sizeDisp,
keyb,
inter[24] ;end of control variables

#def lenDisp 32 ;size of display used
#reg byte videoRam[lenDisp] ;TER saves the text here
;
#reg bool CHOICE ;variable for realization menu
#reg usint flow, temperature ;of variable being viewed
#reg uint heatingTime, numPieces ;edited variables
;
#table textTable0 noText = ;text for pressing C in the menu

' No variant was ',
' chosen !!! '

;
#table textTable1 browse1 =

' Observed flow ',
' xxx m3/sec ',

__indx (flow), sizeByte, 19, dispDec, 3, 0
;
#table textTable1 browse2 =

'Boiler temperat.',
' xxx °C ',

__indx (temperature), sizeByte, 19, dispDec, 3 , 0
;
#table textTable1 edition1 =

'Set heating time',
' xx min ',

__indx (heatingTime), sizeWord+readWrite, 20, dispDec, 2, 0
;
#table textTable1 edition2 =

'Set no.of pieces',
' xxxx pcs ',

__indx (numPieces), sizeWord+readWrite, 19, dispDec, 4, 0
;
#table textFlow nothingChosen=

__indx (noText), __indx (noText), __indx (noText), 0
;
#table textFlow chosenEdition =

Instruction set of PLC TECOMAT - 32 bit model

177 TXV 004 01.02

__indx (edition1), __indx (edition1), __indx (edition2), 3
;
#table textFlow chosenBrowse =

__indx (browse1), __indx (browse1), __indx (browse2), 1
;
#table byte choiceItems=

__indx (nothingChosen), __indx (nothingChosen /256),
' edit ', __indx (chosenEdition), __indx (chosenEdition/256),
' browse ', __indx (chosenBrowse), __indx (chosenBrowse/256)

;
#table textTable1 text11 =

'What will you do', ;first line of text
' ', ;second line of text

;specification of variable
__indx (CHOICE), ;display variable CHOICE
__bitpart (CHOICE), ;size of variable is bit
17, ;position on display
dispList+readWrite, ;display CHOICE as menu + editing
11, ;length of one item of menu
__indx (choiceItems) ;table number with menu items

;
P 63

LD __indx (text11)
WR numText ;set initial text number
WR minText ;limits for listing
WR maxText
LD lenDisp
WR sizeDisp ;set display length
LD 3
WR enableBits ;enable editing and listing

E 63
;
P 0

:
LD __indx (numText) ;register number, where

;control variables for TER are located
LD __indx (videoRam) ;register number, where videoRam starts
TER 7 ;preparation of text for panel ID-07

:
E 0

After starting the program the field videoRam will be filled with the text:

W h a t w i l l y o u d o

> e d i t >

By the keys LEFT ARROW and RIGHT ARROW any of the variants can be selected.
After selecting a variant and confirmation of selection by the key ENTER the table textFlow
is processed by the instruction TER, the reference of which is specified in the definition of
the menu items. By doing this, new values are set to the control variables numText,
minText, maxText and enableBits. Then the text is displayed according to the new content
of the control variables numText.

For example, if we select the item <edit> then it will be possible to list by the keys UP
ARROW and DOWN ARROW between the texts edition1 and edition2 and change the
variables displayed on them. If we select the item <browse>, it will be possible to list by the
keys UP ARROW and DOWN ARROW between texts browse1 and browse2. The
variables displayed in these texts cannot be changed. If we do not select any of the

13. Instructions of terminal operation and operations with ASCII characters

TXV 004 01.02 178

variants being offered, the text noText will appear on the display and even this text will not
be possible to be edited.

As it can be seen from the previous example, programming of this task is reduced to the
definition of the particular texts, initialization of control variables for the instruction TER and
calling the instruction.

In the end it is useful to note down that the texts with the variables in the formats
dispMenu and dispList can be tree-organized and so complex dialogs can be created. By
means of the tables textFlow it is then possible to re-change the values of the control
variables during the dialogs as needed.

Table definitions for subroutine calls

The next table, which can process the instructions TER, is the table containing the
information enabling to call a subroutine after executing the instruction TER and pass one
parameter onto it. These tables will be called as tables for subroutine calls of the type
makeSubr. The tables for subroutine calls must have a structure according to the following
table:

Item Type Description
_numLabel uint label number, which will be given back at the layer 0 of the active

stack after executing the instruction TER
_parCall uint the parameter passed onto the called subroutine at the layer 1 of

the active stack
_nextText uint constant, by which the control variable numText will be filled

For easy declaration of the tables for subroutine calls it is useful to specify the
declaration of the structure makeSubr.

#struct makeSubr
uint _numLabel,
uint _parCall,
uint _nextText

During processing of the table for subroutine calls, the instruction TER first fills the layer
0 of the active stack by the item _numLabel, and then it saves the item _parCall to the
layer 1 of the active stack and finally it fills the control variable numText by the item
_nextText. Then the text is processed according to this item. If we insert the instruction
CAI behind calling the instruction TER in the program, this instruction will call a subroutine
beginning with the label specified in the table makeSubr after the execution of the
instruction TER. This mechanism allows calling subroutines based on the dialog running
on the panel. When processing the tables with texts or tables for text flow control, the
layers 0 and 1 of the active stack are set to zero.

The following example shows the use of the tables for subroutine calls when realizing a
dialog on the operator panel.

#reg uint numText, ;control variables for TER
minText,
maxText

#reg usint enableBits,
sizeDisp,
keyb,
[24] ;end of control variable

#def lenDisp 32 ;size of display used
#reg byte videoRam[lenDisp] ;TER saves the text here
;
#reg usint SELECTION ;variable for realization menu

Instruction set of PLC TECOMAT - 32 bit model

179 TXV 004 01.02

#reg uint VALUE
#reg bool auxText ;auxiliary variables
#reg usint delay
;
#table textTable0 textAction =

'Required action ',
' performed !! '

;
#label 0,Empty
#label Nothing
#table makeSubr tabNothing = __indx (Nothing), 0, __indx (textAction)
#label Add
#table makeSubr tabAdd = __indx (Add), 0, __indx (textAction)
#label Subtract
#table makeSubr tabSubtract = __indx (Subtract), 0, __indx (textAction)
#label Multiply
#table makeSubr tabMultiply = __indx (Multiply), 0, __indx (textAction)
;
#table byte selectionItems =

__indx (tabNothing), __indx (tabNothing/256),
' Add 5 ', __indx (tabAdd), __indx (tabAdd/256),
' Subtract 8', __indx (tabSubtract), __indx (tabSubtract/256),
' Multiply 7', __indx (tabMultiply), __indx (tabMultiply/256)

;
#table textTable2 text12 =

' value = ', ;first line of text
' ', ;second line of text

;specification of variable
__indx (VALUE), ;display variable VALUE
sizeWord, ;size of variable is word
9, ;position on display
dispDec, ;display VALUE
5, ;number of digits
0, ;default limits

;
__indx (SELECTION), ;display variable SELECTION
sizeByte, ;size of variable is byte
17, ;position on display
dispList+readWrite, ;display VYBER as menu + editing
11, ;length of one item of menu
__indx (selectionItems);table number with menu items

;
P 63

LD __indx (text12)
WR numText ;set initial text number
WR minText ;limits for listing
WR maxText
LD lenDisp
WR sizeDisp ;set display length
LD 3
WR enableBits ;enable editing and listing

E 63
;
P 0

LD __indx (numText) ;register number, where
;control variables for TER are located

LD __indx (videoRam) ;register number, where videoRam starts
TER 7 ;preparation of text for panel ID-07

13. Instructions of terminal operation and operations with ASCII characters

TXV 004 01.02 180

CAI ;call subroutine
;

LD auxText ;temporary text flag
LD 300 ;preset 3 sec
TON delay ;time
WR %S1.0
LD __indx (text12)
PUT numText ;after 3 seconds display menu

E 0
;
P 60
Empty:

RET
;
Nothing:

LD 1
WR auxText
RET

;
Add:

LD VALUE ;load VALUE
ADD 5 ;add
WR VALUE ;write result
LD 1
WR auxText ;set flag of the temporary text
RET

;
Subtract:

LD VALUE
SUB 8
WR VALUE
LD 1
WR auxText
RET

;
Multiply:

LD VALUE
MUL 7
WR VALUE
LD 1
WR auxText
RET

E 60

After starting the program the field videoRam will be filled with the following text:

v a l u e = 0

> a d d 5 >

By the keys LEFT ARROW and RIGHT ARROW one of the variants offered can be
selected. After selecting a variant and confirmation of selection by the key ENTER the
table makeSubr is processed by the instruction TER, the reference of which is in the
definition of the corresponding menu item. So the subroutine number and a new value of
the variable numText are set to the layer 0 of the stack. Then the text according to new
content of control variables numText is displayed. In the end the corresponding subroutine
is called by the instruction CAI.

Instruction set of PLC TECOMAT - 32 bit model

181 TXV 004 01.02

For example, if we select the item <add 5> then the subroutine Add will be called and
the text textAction will be displayed. The subroutine adds the value of 5 to the variable
VALUE being displayed and sets the flag auxText, which causes that after 3 seconds the
text number text12 will be written to the control variable numText. The text12 will be
displayed on the display and the procedure will be repeated in a circle.

Error messages of the instruction TER

The instruction TER sets the failure code to the system register S34 when incorrect
control variables for the instruction are specified or when error in the specification of the
variable occurs, which will be displayed. The following table specifies the failure codes
written to the system register S34. If an error is not detected during the execution of the
instruction TER, the register S34 is set to zero.

Table13.1 Table of errors reported by the instruction TER
S34 Error description
40 display range exceeded

(position for the display on the display is greater than the display size at the
control variables sizeDisp)

41 register range exceeded
(register number, in which the displayed variable is saved, the number is
specified out of range that can be used by the central unit)

42 display size is incorrect or not specified
43 total number of specified digits is too big

(10 digits can be displayed at the most)
44 a large number of digits behind the decimal point

(it is possible to display 9 digits behind the decimal point at the most)
45 greater variables than byte specified for format MESSAGE, LIST, MENU

(the variables displayed in the specified formats must be of bit or byte size)
46 too long message was entered

(the specified message length is inconsistent with message declaration in the
corresponding table)

13. Instructions of terminal operation and operations with ASCII characters

TXV 004 01.02 182

BAS Conversion from binary format to ASCII

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
BAS VAL ASCII
VAL - four-digit number in binary format or in BCD (type uint)
ASCII - four ASCII characters

Operands

uint
BAS w/o operand C

Function

BAS - conversion of a number of 16 bit width in the binary format to 4 ASCII characters

Description

The instruction BAS processes the lower word of the A0 stack top as a four-digit
number, which is converted to 4 ASCII characters. The instruction saves the ASCII
characters on the A0 stack top in such a way that the highest digit is saved in the lowest
byte of the stack and the lowest digit in the highest byte, which is conversely than in the
binary format. This saving allows writing of four ASCII characters at a time by the
instruction WR RLn to the scratchpad, from where this string will be for example displayed
on the display.

Note

The instruction BAS works with numbers in the hexadecimal format 0 to F. If we want to
display a number decadically, it must be first converted to the BCD format by the
instruction BCD or BCL .

Example

Conversion of a binary number to BCD and to ASCII

#reg udint Binar
#reg udint BCDvar
#reg byte ASCII[8]
;
P 0

LD Binar
BCD
WR BCDvar
BAS
WR dword ASCII+4 ;4th to 1st digit
LD uint BCDvar+2
BAS
WR dword ASCII ;8th to 5th digit

E 0

Instruction set of PLC TECOMAT - 32 bit model

183 TXV 004 01.02

ASB Conversion from ASCII to binary format

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
ASB ASCII VAL
ASCII - four ASCII characters
VAL - four-digit number in binary format or in BCD (type uint)

Operands

uint
ASB w/o operand C

Function

ASB - conversion of a number from ASCII characters to binary format

Description

The instruction ASB processes the stack top as four ASCII characters, the highest digit
is saved in the lowest byte of the stack top, the lowest digit in the highest byte. The
instruction converts characters to the binary number and saves them on the A0 stack top.

Note

The instruction ASB works with numbers in the hexadecimal format 0 to F (values $30 -
$39, $41 - $46). If we need to process less than four ASCII characters, we do nnot need to
fill the not used higher orders with $30, but the value of $00 is permissible, too. Another
values are not permissible. If illegal values occur in an ASCII string, the result is 0.

If a decimal number is saved in ASCII characters, we will get a number in BCD format,
converted by the instruction ASB . If we want to process this number further, it must be first
converted to the binary system by the instruction BIN or BIL .

Examples

Conversion of a decimal number in BCD code in ASCII characters to a binary number

#reg uint Binar
#reg byte ASCII[4] ;4 digits
;
P 0

LD dword ASCII
ASB
BIN
WR Binar

E 0

#reg usint Binar
#reg byte ASCII[2] ;2 digits
;
P 0

LD word ASCII
ASB
BIN
WR Binar

E 0

13. Instructions of terminal operation and operations with ASCII characters

TXV 004 01.02 184

#reg uint Binar
#reg byte ASCII[8] ;8 digits
;
P 0

LD dword ASCII ;1st to 4th digit
ASB
SWL ;upper word
LD dword ASCII+4 ;5th to 8th digit
ASB ;lower word
OR ;combination of two words to uint
BIN
WR Binar

E 0

Instruction set of PLC TECOMAT - 32 bit model

185 TXV 004 01.02

STF Conversion of ASCII string to real
STDF Conversion of ASCII string to lreal

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
STF REG LEN LEN A7 A6 A5 A4 A3 A2 VAL
STDF REG LEN VAL
REG - register index R, in which the first character of the string is saved (type udint)
LEN - length of string of characters (number of filled R registers) (type usint)
VAL - converted numerical value (type real/lreal)

Operands

real lreal
STF w/o operand C
STDF w/o operand C

Function

STF - conversion of a string of ASCII characters to a value of real type
STDF - conversion of a string of ASCII characters to a value of lreal type

Description

The instruction STF expects the R register number at the A1 layer of the stack , in which
the ASCII string of the length specified at the A0 stack top begins and converts it to the
real type. The stack is shifted one level back and the result is saved at the A0 stack top.

The instruction STDF expects the R register number at the A1 layer of the stack, in
which the ASCII string of the length specified at the A0 stack top begins, and converts it to
the lreal type. The result is saved on the A01 stack top. The other stack layers remain
unchanged.

The instruction permits the ASCII string in the formats according to C language
convention, for example:

1.15 - number 1.15
–45 - number –45
1.5e3 - number 1.5 x 103, or 1500
2.48e–4 - number 2.48 x 10–4, or 0,000248

In the C language, each ASCII string obligatorily ends with 0 (value $00, not the ASCII
code of the digit 0). If the ASCII string being processed has the length, which exactly
corresponds to the parameter LEN, it is not necessary to specify this end zero. But when
ASCII strings of various lengths are processed and the parameter LEN specifies only the
maximum length, then adding the zero to the end of the string is desirable.

The instructions STF and STDF accept as the end of the string the value of 0 and the
ASCII space character (value $20). Permissible ASCII characters in the string are ‘0’, ‘1’,
‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’, ‘+’, ‘–’, ‘.’, ‘e’, ‘E’.

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S1 - - - - - - - S

S1.0 (S) - 1 - the result is valid
0 - string error, the result is not valid

13. Instructions of terminal operation and operations with ASCII characters

TXV 004 01.02 186

Example

Conversion of a string to a number of real type

#def LEN 10
#reg byte Zone[LEN]
#reg real VAL
;
P 0

LD __indx (Zone) ;REG
LD LEN
STF
WR VAL

E 0

Instruction set of PLC TECOMAT - 32 bit model

187 TXV 004 01.02

FST Conversion of real to ASCII string
DFST Conversion of lreal to ASCII string

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
FST VAL REG LEN REG LEN A7 A6 A5 A4 A3 VAL
DFST VAL REG LEN REG LEN A7 A6 A5 A4 VAL
VAL - converted numerical value (type real/lreal)
REG - R register index, in which the first character of the string is saved (type udint)
LEN - length of string of characters (number of filled R registers) (type usint)

Operands

real lreal
FST w/o operand C
DFST w/o operand C

Function

FST - conversion of a value in the real format to the string of ASCII characters
DFST - conversion of a value in the lreal format to the string of ASCII characters

Description

The instructions FST and DFST expect the R register number at the A1 layer of the
stack, in which the field of the length specified at the A0 stack top begins. The instruction
FST expects the value of real type at the A2 layer, the instruction DFST expects at the
double-layer A23 the value of lreal type. This value is converted to the string of ASCII
characters, which is saved to the R register field, parameters of which specify the A1 and
A0 layers. The stack shifts two levels back, which results in returning of the converted
value on the stack top and it thus can be used for further processing. So, the instructions
allow displaying of various intermediate results, too.

The instruction permits the ASCII string in the formats according to C language
convention, for example:

1.15 - number 1.15
–45 - number –45
1.5e+03 - number 1.5 x 103, or 1500
2.48e–04 - number 2.48 x 10–4, or 0.000248

If the resulting string is shorter than specified by the parameter LEN, the ASCII codes of
the space character ($20) are added. If such a small string length is specified by the
parameter LEN that the resulting number cannot be displayed (the exponent does not fit),
the field of registers designated for the write of the string is filled with the ASCII codes of
the letter X ($58).

13. Instructions of terminal operation and operations with ASCII characters

TXV 004 01.02 188

Example

Display of intermediate results

#def LEN 16 ;display line length
#reg byte Row1[LEN], Row2[LEN]
#reg real va, vb, vc
;
P 0

LD va
MUF vb ;VAL = a.b
LD __indx (Row1) ;REG
LD LEN
FST
DIF vc ;VAL = (a.b)/c
LD __indx (Row2) ;REG
LD LEN
FST

E 0

Instruction set of PLC TECOMAT - 32 bit model

189 TXV 004 01.02

14. SYSTEM INSTRUCTIONS

RDT Read time from RTC

WRT Write time into RTC

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
RDT REG REG
WRT REG REG
REG - index of the first register R of the time zone, in which time data is saved (see text bellow) (type

udint)

Operands

RDT w/o operand C
WRT w/o operand C

Function

RDT - read current time directly from the real time circuit (RTC) of the central unit
WRT - write time into the real time circuit (RTC) of the central unit

Description

The instruction RDT serves for creating of accurate time markers to a certain event
(usually processed in an interrupt process. While in the registers S5 to S12 the time is
updated always at the I/O scan and it does not change during the processing of the user
program, the instruction RDT reads the current time directly from the real time circuit of the
central unit and performs synchronization correction (see warning).

The time zone in the scratchpad has the following structure:

Register index Time data Range
REG year 0 - 99
REG+1 month 1 - 12
REG+2 day 1 - 28 / 29 / 30 / 31 (according to month and year)
REG+3 hour 0 - 23
REG+4 minute 0 - 59
REG+5 second 0 - 59
REG+6 day of the

week
1 - 7

REG+7, +8 millisecond 0 - 999 (in the sequence of lower byte, upper byte)

All the time values are saved in the binary code.

Warning: The time value read by the instruction RDT is synchronized, which means
that the time of time write into the RTC either by the instruction WRT or
communication service through the serial line, the value of milliseconds is
reset. In contrast to this, the time in the registers S5 to S12 is continuous,
which means that the milliseconds are not reset. This time data is shifted
against the time stamp read by the instruction RDT by 0 to 999 ms.
Therefore, it is not useful to use both time values at the same time.

14. System instructions

TXV 004 01.02 190

The instruction WRT serves for re-adjustment of the real time circuit of the central unit.
This is important especially for changing the daylight saving time to winter time and vice
versa, or for time synchronization by an external signal.

The time zone in the scratchpad has the following structure:

Register index Time data Range
REG year 0 - 99
REG+1 month 1 - 12
REG+2 day 1 - 28 / 29 / 30 / 31 (according to month and year)
REG+3 hour 0 - 23
REG+4 minute 0 - 59
REG+5 second 0 - 59
REG+6 day of the week 1 - 7

All the time values are saved in the binary code.

Example
#struct time

usint year, usint month, usint day, usint hours, usint min,
usint sec, usint dayofweek, uint milisec

#reg cas mark
;
P 0

:
E 0
;
P 42

: ;interrupt from periphery
LD __indx (mark)
RDT ;write accurate time marker to the variable mark
:

E 42

Instruction set of PLC TECOMAT - 32 bit model

191 TXV 004 01.02

RDB Read from DataBox
WDB Write to DataBox

IDB Identification from DataBox

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
RDB REG LEN
WDB REG LEN
IDB A6 A5 A4 A3 A2 A1 A0 SIZE
REG - index of first register R of the parametric zone (see text bellow) (type udint)
LEN - number of bytes being transferred (type udint)
SIZE - size of DataBox in kB (type udint)

Operands

RDB w/o operand C
WDB w/o operand C
IDB w/o operand C

Function

RDB - read data block from DataBox secondary memory
WDB - write data block into the DataBox secondary memory
IDB - identification of DataBox size

Description

The instruction IDB is used for identification of the size of DataBox being occupied. This
instruction does not require any input parameters. After execution of this instruction, the
user stack will be increased by 1 level and the size of DataBox, which is identified in kB
will be written on the stack top, for example the value of 256. If the DataBox is not found,
the instruction gives back the value of 0.

Before calling the instructions RDB and WDB it is necessary set several parameters,
which are located in the registers R, they must be stored closely behind each other and
their sequence must be necessarily observed. The register number, in which the first
parameter is located, is passed onto the stack when calling the instructions RDB and
WDB (see text bellow). The parameters have the following sequence:

Parameter name Type Description
adrDB udint address at DataBox memory
indR uint index of the initial register in the scratchpad
len usint number of bytes being transferred

The instructions RDB and WDB do not change the level of the user stack. At the stack
top they give back the quantity of really transmitted data. At the same time, they set the
content of the of the system register S1.0 to log.1, if the result is valid.

If S1.0 = log.0, no data transmission is performed and simultaneously with this error 14
or 15 is written into the register S34 (source or target data block was defined out of range).

14. System instructions

TXV 004 01.02 192

According to the size of the DataBox memory used, the following address spaces are
available:

DataBox memory size Available address space
128 kB (standard CP-7001, CP-7002) 0 - $1FFFF

3 MB (optional CP-7002) 0 - $2FFFFF

When trying to read or write outside the available space, setting of S1.0 = log.0 takes
place and at the same time, the relevant failure code is set at S34.

Flags

.7 .6 .5 .4 .3 .2 .1 .0
S1 - - - - - - - IS

S1.0 (IS) - 0 - address of source zone in DataBox (RDB), or in the scratchpad (WDB)
or target zone in the scratchpad (RDB), or in DataBox (WDB), is out of
range, carry is not performed

1 - address of source and target zone is within the range of DataBox
or scratchpad, carry is performed

S34 = 20 ($14) source data block was defined out of range
S34 = 21 ($15) target data block was defined out of range

Example
#struct parDB ;structure name

udint adrDB, ;address at DataBox
uint indR, ;index of the initial register in the

;scratchpad
usint len ;number of bytes being transferred

;
#reg parDB parusi
#def lenDat 56
#reg usint blockDat[lenDat]
#reg bool DataBoxOK ;DataBox flag is in order
;
P 63

:
LD 32 ;required size of DataBox for application
IDB ;identification of DataBox size
GT
NEG ;DataBox of at least of required size?
WR DataBoxOK ;set flag
:

E 63
;
P 0

:
LD DataBoxOK ;DataBox OK ?
JMC endDBX ;no
LD $FC00 ;address at DataBox
WR parusi~adrDB
LD __indx (blockDat);to which reg. data from DataBox are

;transferred
WR parusi~indR
LD lenDat ;number of bytes being transferred
WR parusi~len
LD __indx (parusi) ;register number, where the parameters are

Instruction set of PLC TECOMAT - 32 bit model

193 TXV 004 01.02

RDB ;read data block from DataBox to scratchpad
;block of 56 bytes is read from address $FC00
;and saved into the field blokDat

endDBX:
:

E 0

14. System instructions

TXV 004 01.02 194

STATM Status of peripheral module

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
STATM NRM NPOS NPOS A7 A6 A5 A4 A3 A2 STAT
NRM - rack number (type usint)
NPOS - position in the rack (type usint)
STAT - status of peripheral module (type udint)

Operands

STATM w/o operand C

Function

STATM - status of peripheral module

Description

The instruction STATM reads the status of the peripheral module specified by the rack
number at the A1 layer and by the position in the rack at the A0 layer on the stack top. The
stack shifts one level ahead. The status has the following structure:

.15 .14 .13 .12 .11 .10 .9 .8 .7 .6 .5 .4 .3 .2 .1 .0
STAT - - - - IE IR BT BE MM SC INI - BO EH EO EF

EF - fatal error - active at 1
EO - other error - active at 1
EH - hardware error - active at 1
BO - input status

0 - released
1 - blocked

INI - module initialization
0 - initialization not performed, data cannot be exchanged
1 - valid initialization

SC - communication status
0 - module communicates
1 - module does not communicate

MM - module mode
0 - HALT
1 - RUN

BE - blocking of outputs when an error occurs
0 - block
1 - do not block

BT - bus control timer
0 - off
1 - on

IR - request for interrupt - active at 1
IE - interrupt enable

0 - disabled
1 - enabled

Instruction set of PLC TECOMAT - 32 bit model

195 TXV 004 01.02

CHPAR Parameters of serial channel

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
RESM REG CHN REG CHN
REG - address of initial register of the zone of parameters of the serial channel in the scratchpad (type

udint)
CHN - number of the serial channel (type usint)

Operands

CHPAR w/o operand C

Function

CHPAR - loading of parameters of the serial channel

Description

The instruction CHPAR loads the setting of the length of 8 bytes of the serial channel
specified by the parameter CHN at the stack top to the scratchpad beginning with the
register, the address of which contains the parameter REG at the A1 layer. The content of
the stack remains unchanged.

The parameter CHN can assume the following values:
1 to 10 - the serial channel CH1 to CH10
209 - line USB
225, 226 - sítě Ethernet ETH1, ETH2

The parameters of the serial channel (CHN = 1 to 10) have the following sequence:

Parameter name Type Description
chMod usint mode of the serial channel
adr usint address of the serial channel
speed usint communication speed of the serial channel
timeOut usint response timeout in ms
pause usint delay time in 100 ms
segm usint address segment - expansion of address space
rez7 usint spare
rez8 usint spare

The parameter chMod has the following structure:

CTS MT PAR CM4 CM3 CM2 CM1 CM0
.7 .6 .5 .4 .3 .2 .1 .0

CTS - detection of signal CTS
0 - do not detect signal CTS
1 - detect signal CTS

MT - token mode
0 - multimaster mode
1 - monomaster mode

PAR - parity mode
0 - even parity
1 - no parity

14. System instructions

TXV 004 01.02 196

CM4-CM0 - channel mode
0 - channel off
2 - mode PC
3 - mode PLC
5 - mode UNI
6 - mode MPC
7 - mode MDB
8 - mode PFB

16 - mode UPD
17 - mode DPS
18 - mode CAN
19 - mode CAS
25 - mode EIO

The parameter speed, specifying the communication speed of the serial channel, can
assume the following values:

speed speed [Bd] speed speed [Bd] speed speed [Bd]
1 50 8 4 800 18 76 800
2 100 10 9 600 19 93 750
3 200 11 14 400 20 115 200
4 300 12 19 200 23 172 800
5 600 13 28 800 24 187 500
6 1 200 14 38 400 26 230 400
7 2 400 16 57 600 29 345 600

The parameters of the USB line (CHN = 209) have the following sequence:

Parameter name Type Description
chMod usint mode of the serial channel
rez2 usint spare
rez3 usint spare
rez4 usint spare
rez5 usint spare
rez6 usint spare
rez7 usint spare
rez8 usint spare

The parameters of the Ethernet network (CHN = 225 or 226) have the following
sequence:

Parameter name Type Description
IPAddr udint IP address
IPMask udint sub-network mask

Detailed information on serial communications can be found in the manual Serial
communication of programmable logic controllers TECOMAT - 32 bit model TXV 004
03.01.

Instruction set of PLC TECOMAT - 32 bit model

197 TXV 004 01.02

RFRM Refresh data of peripheral module

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
RFRM PAR RM POS PAR RM POS
POS - position of the peripheral module in the rack (type usint)
RM - rack number, where the peripheral module is fitted (type usint)
PAR - parameter of data refresh (1 - only inputs, 2 - only outputs, 3 - inputs and outputs)

Operands

RFRM w/o operand C

Function

RFRM - refresh data of peripheral module

Description

The instruction RFRM initiates immediate data exchange with the peripheral module,
which is given by the rack number (RM) and by the position in the rack (POS). The value
of the A2 layer (PAR) then specifies, whether the inputs or outputs or both will be
refreshed.

The parameter PAR can assume the following values:
1 - input refresh
2 - output refresh
3 - input and output refresh

If we need to read the current state of the input data from the peripheral module on the
position 4 in the rack number 1, we proceed as follows:

LD 1 ;PAR - load inputs
LD 1 ;RM - rack number
LD 4 ;POS - module position in the rack
RFRM ;read current data

The instruction RFRM reads the current values of the input data from the peripheral
module (their structure is given by the initialization of the peripheral module) and saves
them to their images in the scratchpad. Then we can work with the data by means of
common instructions working with the scratchpad.

If we need to write the current state of the output data to the peripheral module on the
position 5 in the rack number 1, we proceed as follows. We will write required values into
the image of the output data in the scratchpad and call the instruction RFRM:

LD 2 ;PAR - load outputs
LD 1 ;RM - rack number
LD 5 ;POS - module position in the rack
RFRM ;write current data

The instruction RFRM writes the current values of the output data to the peripheral
module (their structure is given by the initialization of the peripheral module) from their
images in the scratchpad.

14. System instructions

TXV 004 01.02 198

If we need to write the current state of the output data and load the current state of the
input data from the peripheral module on the position 6 in the rack number 1 at the same
time, we proceed as follows. We will write the required values into the image of the output
data in the scratchpad and call the instruction RFRM:

LD 3 ;PAR - load outputs and load inputs
LD 1 ;RM - rack number
LD 6 ;POS - module position in the rack
RFRM ;current data exchange

The instruction RFRM loads the current values of the output data to the peripheral
module from their images in the scratchpad and reads the current values of the input data
from the peripheral module (the data structure is given by initialization of the peripheral
module) and saves them to their images in the scratchpad. Then we can work with the
data by means of common instructions working with the scratchpad.

Instruction set of PLC TECOMAT - 32 bit model

199 TXV 004 01.02

IDTM Load peripheral module identification

Instruction Input parameters Result
stack stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
IDTM REG RM POS REG RM POS A7 A6 A5 A4 A3

POS - peripheral module position in the rack (usint type)
RM - number of the rack, where peripheral module is placed (usint type)
REG - the first register of array (udint type)

Operands

IDTM w/o operand C

Funkce

IDTM - load peripheral module identification

Description

The instruction IDTM saves the string containing a peripheral module identification to
the array beginning at the register with the address REG. The peripheral module is defined
by the rack number (RM) and its position in the rack (POS).

If we need load identification from the peripheral module at the position 4 in the rack 1,
we proceed such way:

LD __offset(array) ;REG – array address
LD 1 ;RM - rack number
LD 4 ;POS – module position in the rack
IDTM ;identification loading

The length of identification string is always 32 bytes and the form is a string of ASCII
characters ended by $00 character (C language syntax). The identification contains the
module name, software and hardware version, serial number and name of producer. For
example:

CP-7002 15H0100 R9 0012 TECO

14. System instructions

TXV 004 01.02 200

TABM Peripheral module initialization table number

Instruction Input parameters Result
Stack Stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
TABM RM POS POS A7 A6 A5 A4 A3 A2 TAB
RM - rack number (typ usint)
POS - position in rack (typ usint)
TAB - initialization table number (typ udint)

Operands

TABM w/o operand C

Function

TABM - peripheral module initialization table number detection

Description

The instruction TABM detects a number of an initialization table of a peripheral module
given by the number of the rack at the layer A1 and by the position in the rack at the layer
A0 and writes them on the stack top. The stack shifts one level forward. If the module
being operated is not on the position specified, the value of $FFFFFFFF is written on the
stack top.

Instruction set of PLC TECOMAT - 32 bit model

201 TXV 004 01.02

CRCM CRC polynomial calculation

Instruction Input parameters Result
Stack Stack

A7 A6 A5 A4 A3 A2 A1 A0 A7 A6 A5 A4 A3 A2 A1 A0
CRCM MES LEN A6 A5 A6 A5 A4 A3 A2 CRC
MES - address of first register of array of protected data (type udint)
LEN - length of array of protected data (type udint)
CRC - calculated CRC character (type uint)

Operands

uint
CRCM w/o operand C

Function

CRCM - CRC polynomial calculation

Description

The instruction CRCM calculates a CRC polynomial, sometimes called as CRC16. This
polynomial uses for example IBM, DEC and protocol MODBUS RTU. The polynomial has
a form

x16 + x15 + x2 + 1

The property of the CRC value is that, if we calculate the value of the CRC again with
the same data including their CRC value placed behind the data block, the result will be 0.
Therefore, the CRC polynomial is used to protect transmitted data, when a station
transmitting data calculates the CRC through the data being transmitted and a receiving
station detect by a control, whether data protection fault does not occur.

The CRCM instruction shifts the stack forward and writes the CRC calculated value on
its top.

Example

CRC calculation

#def length 6
#reg usint message[length+2]
;
P 0

LD __offset (message) ;where message starts
LD length ;number of characters of message
CRCM ;calculate CRC
LD __offset (message) + length
WRIW ;write CRC at the end of message

E 0

14. System instructions

TXV 004 01.02 202

Control of CRC

#def length 6
#reg usint message[length+2]
;
P 0

LD __offset (message) ;where message starts
LD length+2 ;number of characters of message include

;CRC
CRCM ;calculate CRC
JMD error
: ;A0 = 0 -> CRC is O.K.
JMP end

;
error:

: ;A0 ≠≠≠≠ 0 -> CRC is wrong
end:
E 0

Instruction set of PLC TECOMAT - 32 bit model

203 TXV 004 01.02

15. TRANSFER OF THE USER PROGRAM AMONG
VARIOUS MODELS OF INSTRUCTION SETS

At present time, there are two models of the instruction set in the PLC TECOMAT,
which differ from each other by the width of the layer of the user stack. In the PLC
TECOMAT TC400, TC500, TC600, NS950 the model with the width of the stack layer of
16 bits is used (central units of series A, B, D, E, M, S). In the PLC TECOMAT TC700 the
model with the width of the stack layer of 32 bits is implemented (central units of series C).

The user program written for one model can be used into the second model without any
changes or with minimum requirements provided certain conditions will have to be met,
these conditions are specified in the following paragraphs.

15.1. Operations with variables

The main difference, from which the following principles are derived, is the width of the
stack layer. The differences in the behaviour are dependant on the type of the values
being processed.

Values of bool (bit) type

The bit values are expanded on all the layer bits on the stack. In both models, the bit
instruction behave identically and are thus fully portable. The only exception is the case of
the bit constant when we want to write "all ones" on the stack top, thus the value of log.1. If
we want to do this by means of constant write, we will use the following instruction in the
16 bit model:

LD $FFFF

while in the 32 bits model the instruction

LD $FFFFFFFF

But if we realize, what "only ones" mean in another types of variables, then we can write
in both models identically

LD -1

Values of byte, usint and sint types

Byte, usint and sint types values are saved on the stack on the lowest byte of the layer.
In both models instructions working with these types behave identically and thus they are
fully portable. The only difference is that they are converted to the type corresponding to
the layer width on the stack, i.e. uint (word) for the first case, udint (long) for the second
case, and they are processed this way. But when we save the resultant value to the
variable of byte, usint and sint types, the lowest byte of the stack layer will be saved in
both cases.

Values of word, uint and int types

The values of word, uint and int types are saved on the entire layer on the stack of the
width of 16 bits, and on the lower word of the layer on the stack of the width of 32 bits. In
both models instructions working with these types behave identically and thus they are
fully portable. The only difference is that they are converted to the type corresponding to

15. Transfer of the user program among various models of instruction sets

TXV 004 01.02 204

the layer width on the stack, i.e. they stay of the same type for the first case, or they are
converted to udint (long) type for the second case, and they are processed this way. When
we save the resultant value to the variable of word, uint and int types, the entire layer will
be saved in the first case and the lower word of the stack layer in the second case.

Values of dword, udint and dint (long) types

The values of long type are saved on the stack of the width of 16 bits in two layers, on
the stack of the width of 32 bits in one layer. In both models the instructions working with
these types behave identically - they keep the sequence of the values saved on the stack.
The difference is, in which layer is which value, or its part saved. The portability of the
instructions is thus limited in such cases, when we have to shift the stack by means of the
instruction POP, since with the layer width of 16 bits we shift the stack by two layers, but
with the layer width of 32 bits we shift the stack by one layer. We do not avoid conditional
compilation in this case.

#if _PLCTYPE_ == CP7002
POP 1

#else
POP 2

#endif

The constructions, which process the value of dword, udint and dint types in parts,
cannot be transferred, since while on the stack of the width of 16 bits we can consider the
value of these types as two values of uint type in two layers, on the stack of the width of 32
bits this is not possible. The use of such constructions should be avoided and conditional
compilation should be used again. A typical example is the use of the variable of uint type
in operations of udint type:

#reg uint numberw
#reg udint numberl, result

LD 0 ;conversion of cislow to udint type
LD numberw
ADD numberl
WR result

The best solution is to declare the variable numberw also as the udint type. But we can
also reconcile with the fact that in the 32 bits model one more layer set to zero will rise
(redundant instruction LD 0), or we can use conditional compilation.

A second typical example is a conditional jump according to the variable value of udint
type:

#reg udint number

LD number
ORL
JMC jump

This procedure can be used only for 16 bit models. The following algorithm can be
transferred between both models without any change:

#reg udint number

LD number
CML 0
JZ jump

Instruction set of PLC TECOMAT - 32 bit model

205 TXV 004 01.02

For operations of 32 bit width with constants and w/o operand special instructions in the
16 bit model can be found, which have been cancelled in the 32 bit model. But the
compiler for the 32 bit model accepts the names of these instructions and converts them to
the equivalent instructions (see list chapter 15.3.).

Values of real type (float)

For the values of real type the same principles are valid as for the values of dword, udint
and dint types.

15.2. Operations on the stack

The difference in processing of no-operand instructions is that both models work with
the values of the different width, e.g. the 16 bit or 32 bit. In case of arithmetic operations,
this is not usually a problem.

With the logic operations of the word, uint and int types we must not forget during
processing on the upper 16 bits in case of the 32 bits model. If we for example write the
following algorithm:

#reg uint number
#reg bool flag

LD number
NEG
WR flag ;flag is 0, when negation of number is 0

then we find out that while for the 16 bit model this procedure works, for 32 bit model the
variable flag will always be log.1, since the upper 16 bits after negation always contain the
ones.

Here it concerns an incorrect use the conversion between formats, since when saving to
the variable of bool type all layer bits are accepted. If we declare the variable number as
the uint type, then we find out that that procedure does not work in both models.
A corresponding mask must be used.

#reg uint number
#reg bool flag

LD number
NEG
AND $FFFF ;limitation to 16 bits
WR flag ;flag is 0, when negation of number is 0

15.3. Reduction of the instructions and their equivalents

Several instructions existing in the 16 bit model have been replaced with their
equivalents in the 32 bit model. The compiler for the 32 bit model accepts the names of the
cancelled instructions and converts them to the equivalent instructions according to the
table 15.1.

The instructions LMS, WMS and EOC have been cancelled without any replacement.
Also the instruction LDC # has been cancelled. The construction

LDC constant

can be replaced for both models by the construction

15. Transfer of the user program among various models of instruction sets

TXV 004 01.02 206

LD constant
NEG

or it is more effective to specify a new constant, which is the negation of the original one
and to use the instruction LD.

The third and most efficient possibility from both calculation and intensity of user
program modifications points of view is to change constant definition by means of #def to
constant declaration by means of #data. The construct

#def constant $27

can be replaced by the following construct for both models

#data byte constant = $27

The symbolic name constant will be assigned to a byte of the scratchpad D area, which
will be filled with the value of $27 at the restart of the user program. All instructions LD
constant and LDC constant shall be compiled as LD Dn and LDC Dn and it is not
necessary to change them. This construct assumes the use of symbolic names.

Table 15.1 List of cancelled instructions in the 16 bit model and their equivalents
in the 32 bit model

Original instruction
16 bit model

Equivalent instruction
32 bit model

Function

ADX Z ADD Z Addition
ADX ZW ADD ZW Addition
ADX ZL ADD ZL Addition
ADL # ADD # Addition
ADL ADD Addition
ANL # AND # AND with direct operand
ANL AND AND with direct operand
CML # CMP # Comparison
CML CMP Comparison
LDL # LD # Load direct data
MUD ZW MUL ZW Subtraction
MUD # MUL # Subtraction
MUD MUL Subtraction
NGL NEG Negation of the stack top
ORL # OR # OR with direct operand
ORL OR OR with direct operand
SUX Z SUB Z Subtraction
SUX ZW SUB ZW Subtraction
SUX ZL SUB ZL Subtraction
SUL # SUB # Subtraction
SUL SUB Subtraction
XOL # XOR # XOR with direct operand
XOL XOR XOR with direct operand

15.4. The instruction SWL does not swap A0 and A1

The instruction SWL executes swapping of the upper and lower word of the value of the
32 bit width at the stack top. An additional effect for the 16 bit model is a mutual swap of

Instruction set of PLC TECOMAT - 32 bit model

207 TXV 004 01.02

the content of the A0 and A1 stack layers. But this does not work for the 32 bit model,
since the instruction SWL works only with the A0 layer.

15.5. Cancelling of cascading of arithmetic operations

The 32 bit model does not support cascading of arithmetic operations, which contained
instructions ADD, SUB, INR, DCR, EQ, GT, LT working with 16 bit width values. It is
necessary to use standard types of variables.

15.6. Formats of subtraction and division

The instruction MUL is in the 32 bits model expanded to udint type and fully replaces
the instructions MUL and MUD in the 16 bit model (the compiler of the 32 bits model
accepts the name MUD and replaces it by the instruction MUL - see table 15.1).

In case of division, the situation is more complicated. The instruction DIV is in its original
form also in the 32 bit model just due to compatibility. Nevertheless we recommend using
rather the instruction DID for the new algorithms, which is in the 32 bits model expanded to
the udint type and the remainder after division is saved to a separate layer. In the
algorithms, which are designated only for the 32 bit model we then recommend using of
the instructions DIVL and MOD, which work faster, since we need very rarely the quotient
and the remainder at the same time.

15.7. Direct access to peripheral modules

In the 16 bit model the physical addresses marked with the letter U are used for direct
access to the peripheral modules. They differ based on the PLC type being used.

In contrast, in the 32 bit model the system instruction RFRM has been introduced, which
executes immediate data exchange between the scratchpad of the central unit and
selected peripheral module (only inputs, only outputs or inputs and outputs). The current
data is then accessed by means of the standard instructions LD, WR and another ones,
which work with the scratchpad.

15.8. Higher language support

Central units with the stack width of 32 bits have support of higher languages
incorporated (e.g. structured text according to IEC 61131-2 standard). Moreover, the
instruction set contains several special instructions, which are not described in this
manual, but a higher language is employed. These instructions are not dedicated for
normal use by the user. Higher language support required modifications of notation of
some constructs of user programs written in individual instructions. All the following
modifications can be used also for writing algorithms for central units with the stack width
of 16 bits.

15. Transfer of the user program among various models of instruction sets

TXV 004 01.02 208

Absolute operands

Absolute operands have to start with the character %.

Original notation Current notation

X1.2 %X1.2
RW20 %RW20
T15 %T15

Use of prefixes

The prefixes indx, bitpart, bitcnt, offset, sizeof have to be written with two underline
characters at the start and the operand has to be parenthesized.

Original notation Current notation

indx memory __indx (memory)
bitpart memory __bitpart (memory)
bitcnt memory __bitcnt (memory)
offset memory __offset (memory)
sizeof memory __sizeof (memory)

The compiler for central units with the stack width of 16 bits accepts both types of
notations, but for central units with the stack width of 32 bits, notations in the right column
have to be used. We recommend that you always use this type of notation due to code
portability.

Instruction set of PLC TECOMAT - 32 bit model

209 TXV 004 01.02

INSTRUCTION LIST

INSTRUCTION LIST WITH PERMISSIBLE OPERANDS

Operand symbols used:
Z - scratchpad X, Y, S, D, R n - numerical parameter
T - tables # - constant
A - w/o operand (works only on user stack) Ln - label with nr. n

Data load and write instructions
Operand type Instruction descriptionMnemo

code bool byte
usint
sint

word
uint
int

dword
udint
dint

real lreal
Page

LD Z Z Z Z # Z # Z Load direct data 8
LDQ # Load direct data 8
LDC Z Z Z Z Load complement data 8
LDIB A Indirect data load 11
LDI A Indirect data load 11
LDIW A Indirect data load 11
LDIL A A Indirect data load 11
LDIQ A Indirect data load 11
LEA Z Z Z Z Z Z Load address 13
WR Z Z Z Z Z Z Write direct data 14
WRC Z Z Z Z Write data complement 14
WRIB A Indirect data write 17
WRI A Indirect data write 17
WRIW A Indirect data write 17
WRIL A A Indirect data write 17
WRIQ A Indirect data write 17
WRA Z Z Z Write direct data with alternation 19
PUT Z Z Z Z Z Conditional data write 21

Logical instructions
Operand type Instruction descriptionMnemo

code bool byte
usint

word
uint

dword
udint

Page

AND Z Z Z Z # A AND with direct operand 23
ANC Z Z Z Z A AND with negated operand 23
OR Z Z Z Z # A OR with direct operand 26
ORC Z Z Z Z A OR with negated operand 26
XOR Z Z Z Z # A XOR with direct operand 30
XOC Z Z Z Z A XOR with negated operand 30
NEG A Negation of the top of the user stack 33
SET Z Z Z Z Conditional set 34
RES Z Z Z Z Conditional reset 34
LET Z Z Z Z Pulse from the leading edge 36
BET Z Z Z Z Pulse from any edge 36
FLG A Logical AND of all bits and transverse functions of A0

bytes in S1
38

STK A Transposing of logical values of stack levels to A0 40
ROL n A Value rotation to the left n-times 41
ROL A Value rotation to the left n-times 41
ROR n A Value rotation to the right n-times 41
ROR A Value rotation to the right n-times 41
SHL A Shift of value to the left n-times 43
SHR A Shift of value to the right n-times 43
SWP A Swap of first and second A0 byte 44
SWL A Swap of the lower and upper word of A0 44

Instruction list

TXV 004 01.02 210

Counters, timers, shift registers, step sequencer
Operand type Instruction descriptionMnemo

code word
uint

dword
udint

Page

CTU R R Upward counter 44
CTD R R Downward counter 44
CNT R R Bidirectional counter 44
SFL R R Shift register to the left 50
SFR R R Shift register to the right 50
TON R* Timer (on delay) 52
TOF R* Timer (off delay) 52
RTO R* Integrating timer, time meter 56
IMP R* Timer - generating of pulse of specified length 59
STE Z Z Step sequencer (stepper) 61

* Any timer can be programmed with an increment unit: .0 - 10 ms; .1 - 100 ms; .2 - 1s; .3 - 10s

Arithmetic instructions
Operand type Instruction descriptionMnemo

code usint sint uint int udint dint
Page

ADD Z Z Z Z Z # A Z # A Addition 63
SUB Z Z Z Z Z # A Z # A Subtraction 63
MUL Z Z Z # A Multiplication 64
MULS Z Z Z # A Multiplication with sign 64
DIV Z # A Division (usint / usint = usint) 65
DID Z Z Z # A Division with reminder 65
DIVL Z Z Z # A Division 65
DIVS Z Z Z # A Division with sign 65
MOD A Division reminder 65
MODS A Division reminder with sign 65
INR Z Z Z Z Z A Z A Incrementation (+ 1) 68
DCR Z Z Z Z Z A Z A Decrementation (– 1) 68
EQ Z Z Z # A Comparison (equality) 70
LT Z Z Z # A Comparison (less than) 70
LTS Z Z Z # A Comparison with sign (less than) 70
GT Z Z Z # A Comparison (greater than) 70
GTS Z Z Z # A Comparison with sign (greater than) 70
CMP Z Z Z # A Comparison 72
CMPS Z Z Z # A Comparison with sign 72
MAX A Maximum 73
MAXS A Maximum with sign 73
MIN A Minimum 73
MINS A Minimum with sign 73
ABSL A Absolute value 74
CSGL A Sign change 74
EXTB A Sign expansion from 8 to 32 bits 74
EXTW A Sign expansion from 16 to 32 bits 74
BIN A Conversion of number from BCD (8 BCD

digits)
75

BIL A Conversion of number from BCD (10
BCD digits)

75

BCD A Conversion of number to BCD (8 BCD
digits)

75

BCL A Conversion of number to BCD (10 BCD
digits)

75

Instruction set of PLC TECOMAT - 32 bit model

211 TXV 004 01.02

Operations with user stacks and system stack
Mnemo

code
Operand Instruction description Page

POP n Shift (rotation of the user stack back by n levels 77
NXT Activation of the next user stack in a row 78
PRV Activation of the previous user stack in a row 78
CHG n Activation of selected user stack (n is 0 to 7) 78
CHGS n Activation of selected user stack (n is 0 to 7) 78
LAC n Load value from the top of the selected user stack (n is 0 to 7) 79
WAC n Write value on the top of selected user stack(n is 0 to 7) 79
PSHB Saving of 8 bits of the top of the user stack to the stack according to SP 80
PSHW Saving of 16 bits of the top of the user stack to the stack according to SP 80
PSHL Saving of 32 bits of the top of the user stack to the stack according to SP 80
PSHQ Saving of 64 bits of the top of the user stack to the stack according to SP 80
POPB Filling of 8 bits of the top of the user stack from the stack according to SP 80
POPW Filling of 16 bits of the top of the user stack from the stack according to SP 80
POPL Filling of 32 bits of the top of the user stack from the stack according to SP 80
POPQ Filling of 64 bits of the top of the user stack from the stack according to SP 80

Jump and call instructions
Mnemo

code
Operand Instruction description Page

JMP Ln Unconditional jump 82
JMD Ln Jump conditional to non-zero value of result 82
JMC Ln Jump conditional to zero value of result 82
JMI A Ln Jump indirect 82
JZ Ln Jump conditional to non-zero value of equality flag ZR 83
JNZ Ln Jump conditional to zero value of equality flag ZR 83
JC Ln Jump conditional to non-zero value of carry flag CO 83
JNC Ln Jump conditional to zero value of carry flag CO 83
JB Ln Jump conditional to non-zero value of flag S0.2 83
JNB Ln Jump conditional to zero value of flag S0.2 83
JS Ln Jump conditional to non-zero value of flag S1.0 83
JNS Ln Jump conditional to zero value of flag S1.0 83
CAL Ln Unconditional subroutine call 85
CAD Ln Call conditional on non-zero stack top value 85
CAC Ln Call conditional on zero stack value 85
CAI A Ln Indirect subroutine call 85
RET Unconditional return from subroutine 86
RED Return from subroutine conditional to non-zero value of result 86
REC Return from subroutine conditional to zero value of result 86
L n Label n (jump and call target) 87

Operating instructions
Mnemo

code
Operand Instruction description Page

P n Process start 88
E n Unconditional process end 88
ED Process end at non-zero value of result 88
EC Process end at zero value of result 88
NOP n No-operation 90
BP n Breakpoint 91
SEQ Ln Conditional process interrupt 92

Instruction list

TXV 004 01.02 212

Table instructions
Operand type Instruction descriptionMnemo

code bool byte
usint
sint

word
uint
int

dword
udint
dint

real
Page

LTB Z T Z T Z T Z T Z T Load item from table 93
WTB Z T Z T Z T Z T Z T Write item to the table 96
FTB Z T Z T Z T Z T Z T Find item in the table 99
FTBN Z T Z T Z T Z T Z T Find next item in the table 99
FTM Z T Z T Z T Z T Find part of item in the table 102
FTMN Z T Z T Z T Z T Find next part of item in the table 102
FTS Z T Z T Z T Find with sorting according to the table 105
FTSF Z T Find with sorting according to the table 105
FTSS Z T Z T Z T Find with sorting with sign according to the table 105

Block operations
Mnemo

code
Operand Instruction description Page

SRC Z T Source specification for data move 107
MOV Z T Move data block 107
MTN A Move table to scratchpad 109
MNT A Fill table from the scratchpad 109
FIL Z Fill the block with constant 111
BCMP Z Block comparison 112

Operations with structured tables
Mnemo

code
Operand Instruction description Page

LDSR A Load item from structured table in the scratchpad 113
LDS A Load item from structured table T 113
WRSR A Write item to structured table in the scratchpad 115
WRS A Write item to structured table T 115
FIS A Fill item of structured table in the scratchpad 117
FIT A Fill item of structured table T 117
FNS A Find item of structured table in the scratchpad 119
FNT A Find item of structured table T 119

Floating point arithmetic instructions
Operand type Instruction descriptionMnemo

code real lreal
Page

ADF Z # A Addition 121
ADDF A Addition 121
SUF Z # A Subtraction 121
SUDF A Subtraction 121
MUF Z # A Multiplication 123
MUDF A Multiplication 123
DIF Z # A Division 123
DIDF A Division 123
EQF Z # A Comparison (equality) 125
EQDF A Comparison (equality) 125
LTF Z # A Comparison (less than) 125
LTDF A Comparison (less than) 125
GTF Z # A Comparison (greater than) 125
GTDF A Comparison (greater than) 125
CMF Z # A Comparison 125
CMDF A Comparison 125
MAXF A Maximum 127
MAXD A Maximum 127
MINF A Minimum 127
MIND A Minimum 127
CEI A Rounding up 128
CEID A Rounding up 128

Instruction set of PLC TECOMAT - 32 bit model

213 TXV 004 01.02

Floating point arithmetic instructions
Operand type Instruction descriptionMnemo

code real lreal
Page

FLO A Rounding down 128
FLOD A Rounding down 128
RND A Arithmetical rounding 128
RNDD A Arithmetical rounding 128
ABS A Absolute value 129
ABSD A Absolute value 129
CSG A Sign change 129
CSGD A Sign change 129
LOG A Decimal logarithm 130
LOGD A Decimal logarithm 130
LN A Natural logarithm 130
LND A Natural logarithm 130
EXP A Exponential function 130
EXPD A Exponential function 130
POW A Common power 130
POWD A Common power 130
SQR A Square root 130
SQRD A Square root 130
HYP A Hypotenuse 130
HYPD A Hypotenuse 130
SIN A Sine 132
SIND A Sine 132
ASN A Arc Sine 132
ASND A Arc sinus 132
COS A Cosine 132
COSD A Cosine 132
ACS A Arc cosine 132
ACSD A Arc cosine 132
TAN A Tangent 132
TAND A Tangent 132
ATN A Arc tangent 132
ATND A Arc tangent 132
UWF A Conversion of uint type to real type value 134
IWF A Conversion of int type to real type value 134
ULF A Conversion of udint type to real type value 134
ILF A Conversion of dint type to real type value 134
ULDF A Conversion of udint type to lreal type value 135
ILDF A Conversion of dint type to lreal type value 135
FDF A Conversion of real type to lreal type value 135
UFW A Conversion of real type to uint type value 136
IFW A Conversion of real type to int type value 136
UFL A Conversion of real type to udint type value 136
IFL A Conversion of real type to dint type value 136
UDFL A Conversion of lreal type to udint type value 137
IDFL A Conversion of lreal type to dint type value 137
DFF A Conversion of lreal type to real type value 137

PID controller instructions
Mnemo

code
Operand Instruction description Page

CNV A Data processing from analog units 138
PID A PID controller 145

Instruction list

TXV 004 01.02 214

Terminal operation instructions and operations with ASCII characters
Operand type Instruction descriptionMnemo

code uint real lreal
Page

TER Terminal instruction 155
BAS A Conversion from binary format to ASCII 182
ASB A Conversion from ASCII to binary format 183
STF A Conversion of ASCII string to real 185
STDF A Conversion of ASCII string to lreal 185
FST A Conversion of real to ASCII string 187
DFST A Conversion of lreal to ASCII string 187

System instructions
Mnemo

code
Equivalent Instruction description Page

RDT SYS 3 Read time from RTC 189
WRT SYS 4 Write time into RTC 189
RDB SYS 5 Read from DataBox 191
WDB SYS 6 Write to DataBox 191
IDB SYS 7 Identification from DataBox 191
STATM SYS 9 Status of peripheral module 193
CHPAR SYS 11 Parameters of serial channel 194
RFRM SYS 12 Refresh data of peripheral module 197
IDTM SYS 13 Load peripheral module identification 199
TABM SYS 14 Peripheral module initialization table number detection 200
CRCM SYS 16 CRC polynomial calculation 201

Instruction set of PLC TECOMAT - 32 bit model

215 TXV 004 01.02

ALPHABETICAL LIST OF THE INSTRUCTIONS

Mnemo
code

Instruction description Page

ABS Absolute value (real) 129
ABSD Absolute value (lreal) 129
ABSL Absolute value 74
ACS Arc cosine (real) 132
ACSD Arc cosine (lreal) 132
ADD Addition 63
ADDF Addition in floating point (lreal) 121
ADF Addition in floating point (real) 121
ANC AND with negated operand 23
AND AND with direct operand 23
ASB Conversion from ASCII to binary format 183
ASN Arc sine (real) 132
ASND Arc sine (lreal) 132
ATN Arc tangent (real) 132
ATND Arc tangent (lreal) 132
BAS Conversion from binary format to ASCII 182
BCD Conversion from binary format to BCD (8 BCD digits) 75
BCL Conversion from binary format to BCD (10 BCD digits) 75
BCMP Block comparison 112
BET Pulse from any edge 35
BIL Conversion from BCD to binary format (10 BCD digits) 75
BIN Conversion from BCD to binary format (8 BCD digits) 75
BP Breakpoint 91
CAC Call conditional on zero stack top value 85
CAD Call conditional on non-zero stack top value 85
CAI Indirect subroutine call 85
CAL Unconditional subroutine call 85
CEI Rounding up (float) 128
CEID Rounding up (double) 128
CHG Activation of selected user stack 78
CHGS Activation of selected user stack with backing up S0 and S1 78
CHPAR Parameters of serial channel 194
CMDF Comparison in floating point (lreal) 125
CMF Comparison in floating point (real) 125
CMP Comparison 72
CMPS Comparison with sign 72
CNT Bidirectional counter 44
CNV Data conversion from analog units 138
COS Cosine (real) 132
COSD Cosine (lreal) 132
CRCM CRCM polynomial calculation 201
CSG Sign change (real) 129
CSGD Sign change (lreal) 129
CSGL Sign change 74
CTD Downward counter 44
CTU Upward counter 44
DCR Decrementation (– 1) 68
DFF Conversion of lreal to real type value 137
DFST Conversion of lreal to ASCII string 187
DID Division with reminder 65
DIDF Division in floating point (lreal) 123
DIF Division in floating point (real) 123
DIV Division (usint / usint = usint) 65
DIVL Division 65
DIVS Division with sign 65

Instruction list

TXV 004 01.02 216

Mnemo
code

Instruction description Page

E Unconditional process end 89
EC Process end conditional on result zero value 89
ED Process end at non-zero value of result 89
EQ Comparison (equality) 71
EQDF Comparison (equality) (lreal) 125
EQF Comparison (equality) (real) 125
EXP Exponential function (real) 130
EXPD Exponential function (lreal) 130
EXTB Sign expansion from 8 to 32 bits 75
EXTW Sign expansion from 16 to 32 bits 75
FDF Conversion of real type to lreal type value 135
FIL Fill the block with constant 112
FIS Fill item of structured table in the scratchpad 117
FIT Fill item of structured table T 117
FLG Logical AND of all bits and transverse functions bytes A0 in S1 38
FLO Rounding down (real) 128
FLOD Rounding down (lreal) 128
FNS Find item of structured table in the scratchpad 119
FNT Find item of structured table T 119
FST Conversion of real to ASCII string 188
FTB Find item in the table 100
FTBN Find next item in the table 100
FTM Find part of item in the table 103
FTMN Find next part of item in the table 103
FTS Find with sorting according to the table 106
FTSF Find with sorting according to the table 106
FTSS Find with sorting with sign according to the table 106
GT Comparison (greater than) 71
GTDF Comparison (greater than) (lreal) 125
GTF Comparison (greater than) (real) 125
GTS Comparison with sign (greater than) 71
HYP Hypotenuse (real) 130
HYPD Hypotenuse (lreal) 130
IDB Identification from DataBox 195
IDFL Conversion double to long with sign 137
IDTM Load peripheral module identification 199
IFL Conversion of real type to dint type value 136
IFW Conversion of real type to int type value 136
ILDF Conversion of dint type to lreal type value 135
ILF Conversion of dint type to real type value 134
IMP Timer - generating of pulse of specified length 60
INR Incrementation (+ 1) 69
IWF Conversion of int type to real type value 134
JB Jump conditional to non-zero value of flag S0.2 84
JC Jump conditional to non-zero value of carry flag CO 84
JMC Jump conditional to zero value of result 83
JMD Jump conditional to non-zero value of result 83
JMI Jump indirect 83
JMP Unconditional jump 83
JNB Jump conditional to zero value of flag S0.2 84
JNC Jump conditional to zero value of carry flag CO 84
JNS Jump conditional to zero value of flag S1.0 84
JNZ Jump conditional to zero value of equality flag ZR 84
JS Jump conditional to non-zero value of flag S1.0 84
JZ Jump conditional to non-zero value of equality flag ZR 84

Instruction set of PLC TECOMAT - 32 bit model

217 TXV 004 01.02

Mnemo
code

Instruction description Page

L Label n (jump and call target) 88
LAC Load value from the top of the selected user stack 80
LD Load direct data 8
LDC Load complement data 8
LDI Indirect data load 11
LDIB Indirect data load 11
LDIL Indirect data load 11
LDIQ Indirect data load 11
LDIW Indirect data load 11
LDQ Load direct data 8
LDS Load item from structured table T 113
LDSR Load item from structured table in the scratchpad 113
LEA Load address 13
LET Pulse from the leading edge 36
LN Natural logarithm (real) 130
LND Natural logarithm (lreal) 130
LOG Decimal logarithm (real) 130
LOGD Decimal logarithm (lreal) 130
LT Comparison (less than) 71
LTB Load item from table 94
LTDF Comparison (less than) (lreal) 125
LTF Comparison (less than) (real) 125
LTS Comparison with sign (less than) 71
MAX Maximum 74
MAXD Maximum (lreal) 127
MAXF Maximum (real) 127
MAXS Maximum with sign 74
MIN Minimum 74
MIND Maximum (lreal) 127
MINF Maximum (real) 127
MINS Minimum with sign 74
MNT Fill table from the scratchpad 110
MOD Division reminder 66
MODS Division reminder with sign 66
MOV Move data block 108
MTN Move table to scratchpad 110
MUDF Multiplication in floating point (lreal) 123
MUF Multiplication in floating point (real) 123
MUL Multiplication 65
MULS Multiplication with sign 65
NEG Negation of the stack top 33
NOP No-operation 91
NXT Activation of the next user stack in a row 79
OR OR with direct operand 26
ORC OR with negated operand 26
P Process start 89
PID PID controller 145
POP Shift (rotation) of the user stack back by n levels 78
POPB Filling of 8 bits of the top of the user stack from the stack according to SP 81
POPL Filling of 32 bits of the top of the user stack from the stack according to SP 81
POPQ Filling of 64 bits of the top of the user stack from the stack according to SP 81
POPW Filling of 16 bits of the top of the user stack from the stack according to SP 81
POW Common power (real) 130
POWD Common power (lreal) 130
PRV Activation of the previous user stack in a row 79
PSHB Saving of 8 bits of the top of the user stack to the stack according to SP 81
PSHL Saving of 32 bits of the top of the user stack to the stack according to SP 81
PSHQ Saving of 64 bits of the top of the user stack to the stack according to SP 81
PSHW Saving of 16 bits of the top of the user stack to the stack according to SP 81
PUT Conditional data write 21

Instruction list

TXV 004 01.02 218

Mnemo
code

Instruction description Page

RDB Read from DataBox 191
RDT Read time from RTC 189
REC Return from subroutine conditional to zero value of result 86
RED Return from subroutine conditional to non-zero value of result 86
RES Conditional reset 33
RET Unconditional return from subroutine 87
RFRM Refresh data of peripheral module 197
RND Arithmetical rounding (real) 128
RNDD Arithmetical rounding (lreal) 128
ROL Value rotation to the left n-times 40
ROR Value rotation to the right n-times 40
RTO Integrating timer, time meter 56
SEQ Conditional process interrupt 92
SET Conditional set 33
SFL Shift register to the left 50
SFR Shift register to the right 50
SHL Shift of value to the left n-times 42
SHR Shift of value to the right n-times 42
SIN Sine (real) 132
SIND Sine (lreal) 132
SQR Square root (real) 130
SQRD Square root (lreal) 130
SRC Source specification for data move 107
STATM Status of peripheral module 193
STDF Conversion of ASCII string to lreal 185
STE Step sequencer (stepper) 61
STF Conversion of ASCII string to real 185
STK Transposing of logical values of 8 stack levels to A0 39
SUB Subtraction 63
SUDF Subtraction in floating point (lreal) 121
SUF Subtraction in floating point (real) 121
SWL Swap of the lower and upper word of A0 43
SWP Swap of first and second A0 byte 43
TABM Peripheral module initialization table number detection 200
TAN Tangent (real) 132
TAND Tangent (lreal) 132
TER Terminal instruction 155
TOF Timer (off delay) 52
TON Timer (on delay) 52
UDFL Conversion of lreal type to udint type value 137
UFL Conversion of real type to udint type value 136
UFW Conversion of real type to uint type value 136
ULDF Conversion of udint type to lreal type value 135
ULF Conversion of udint type to real type value 134
UWF Conversion of uint type to real type value 134
WAC Write value to the top of selected user stack 79
WDB Write to DataBox 191
WR Write direct data 14
WRA Write direct data with alternation 19
WRC Write data complement 15
WRI Indirect data write 17
WRIB Indirect data write 17
WRIL Indirect data write 17
WRIQ Indirect data write 17
WRIW Indirect data write 17
WRS Write item to structured table T 115
WRSR Write item to structured table in the scratchpad 115
WRT Write time into RTC 189
WTB Write item to the table 96
XOC XOR with negated operand 29
XOR XOR with direct operand 29

For more information please contact:
Teco a. s. Havlíčkova 260, 280 58 Kolín 4, Czech Republic
tel.: +420 321 737 611, fax: +420 321 737 633, teco@tecomat.cz, www.tecomat.com

TXV 004 01.02
The manufacturer reserves the right of changes to this documentation. The latest edition of this document is

available at www.tecomat.cz

	CONTENTS
	INTRODUCTION
	1. DATA LOAD AND WRITE INSTRUCTIONS
	2. LOGICAL INSTRUCTIONS
	3. COUNTERS, SHIFT REGISTERS, TIMERS, STEP SEQUENCER
	4. ARITHMETIC INSTRUCTIONS
	5. STACK OPERATIONS
	6. JUMP AND CALL INSTRUCTIONS
	7. OPERATING INSTRUCTIONS
	8. TABLE INSTRUCTIONS
	9. BLOCK OPERATIONS
	10. OPERATION WITH STRUCTURED TABLES
	11. FLOATING POINT ARITHMETIC INSTRUCTIONS
	12. PID CONTROLLER INSTRUCTIONS
	13. INSTRUCTIONS OF TERMINAL OPERATION AND OPERATIONS WITH ASCII CHARACTERS
	14. SYSTEM INSTRUCTIONS
	15. TRANSFER OF THE USER PROGRAM AMONG VARIOUS MODELS OF INSTRUCTIONS SETS
	15.1. Operations with variables
	15.2. Operations on the stack
	15.3. Reduction of the instructions and their equivalents
	15.4. The instruction SWL does not swap A0 and A1
	15.5. Cancelling of cascading of arithmetic operations
	15.6. Formats of subtractionanddivision
	15.7. Direct access to peripheral modules
	15.8. Higher language support

	INSTRUCTION LIST
	INSTRUCTION LIST WITH PERMISSIBLE OPERANDS
	ALPHABETICAL LIST OF THE INSTRUCTIONS

