
InternetLib Library

InternetLib library

TXV 003 54.02
first edition

October 2009
subject to alterations

1 TXV 003 54.02

InternetLib Library

Changes history

Datum Vydání Popis změn
 October 2009 1 First edition

CONTENT

1 INTRODUCTION...3
2 DATA TYPES..3
3 CONSTANTS..6
4 DOMAIN NAMES COMPILATION...6

4.1 Function block fbNsLookUp...6
4.2 Function block fbNsLookUpByTable..9

5 TIME SYNCHRONIZATION..12
5.1 Function block fbSntp..12

6 ELECTRONIC MAIL OPERATIONS...15
6.1 Function block fbSmtp...15

7 HTTP protocol communication..20
7.1 Function block fbHttpRequest...21

2 TXV 003 54.02

InternetLib Library

1 INTRODUCTION

InternetLib library contains set of functions for operations with services accessible within
the Internet network. The library can be used together with systems of the K line central unit with
the firmware version 4.9 and higher.

Function blocks included realize the translation of domain names to IP addresses, synchron-
ize the time with the time servers, send e-mails via SMTP protocol and basic queries of http pro-
tocol.

The library uses particular structures, functions and function blocks from libraries FileLib
(TXV 003 41) and ComLib (TXV 003 51). To ensure correct functioning, these libraries must be
filed in the project before the InternetLib library.

2 DATA TYPES
There are defined following data types in the InternetLib library:

Type Description Basic type
TDnsQuery Query on DNS server structure STRUCT

TDnsQueryHeader Query on DNS server header structure STRUCT
TDnsReply DNS server reply structure STRUCT

TDnsReplyHeader DNS server reply header structure STRUCT
THttpBuffer Field for data received by HTTP protocol ARRAY [0..511] OF USINT

T24xbit 24 bit words per bytes structure STRUCT
T32xbit 32 bit words per bytes structure STRUCT

THttpState HTTP protocol communication status ENUM
TSmtpState SMTP protocol communication status ENUM

TNsLookUpItem Pair IP address domain name with attrib-
utes

STRUCT

TNsLookUpTable Field of pairs IP address domain name
with attributes

ARRAY [0..31] OF
TNsLookUpItem

3 TXV 003 54.02

InternetLib Library

Enumeration values signification:

THttpState - HTTP protocol communication status
0 hs_HttpIdle Connection not set up, communication not active
1 hs_HttpSetIP IP address setup
2 hs_HttpConnect Waiting for connection set up
3 hs_HttpSend Sending the prompt on server
4 hs_HttpReceivingData Receiving data from server

TSmtpState - SMTP protocol communication status
0 ss_SmtpInit Initialization
1 ss_SmtpIdle Connection not set up, communication not active
2 ss_SmtpSetIP IP address setup
3 ss_SmtpTxConnect Server connection establishment
4 ss_SmtpRxConnect Waiting for server response number 220
5 ss_SmtpTxHelo Sending a HELO command
6 ss_SmtpRxHelo Waiting for server response number 250
7 ss_SmtpTxAuthlogin Sending an AUTH command (authorized login requirement)
8 ss_SmtpRxAuthlogin Waiting for server response number 334
9 ss_SmtpTxUserName Sending user name
10 ss_SmtpRxUserName Waiting for server response number 334
11 ss_SmtpTxPassword Sending user name
12 ss_SmtpRxPassword Waiting for server response number- 235
13 ss_SmtpTxMailFrom Sending the e-mail sender address (command MAIL FROM)
14 ss_SmtpRxMailFrom Waiting for server response number 250
15 ss_SmtpTxRcptTo Sending recipients addresses
16 ss_SmtpRxRcptTo Waiting for server response number 250 or 251
17 ss_SmtpTxData Sending the command DATA
18 ss_SmtpRxData Waiting for server response number 354
19 ss_SmtpTxDataFrom Sending the message body - sender
20 ss_SmtpTxDataTo Sending the message body - recipient
21 ss_SmtpTxDataSubject Sending the message body - subject
22 ss_SmtpTxMultipart Sending the message body – parts separator
23 ss_SmtpTxDataText Sending the message body - text
24 ss_SmtpTxAttachement Sending the message body – attachement separator
25 ss_SmtpTxAttachementBody Sending the message body - attachement
26 ss_SmtpTxEndOfMail Sending the message body – e-mail end

4 TXV 003 54.02

InternetLib Library

TSmtpState - SMTP protocol communication status
27 ss_SmtpRxAck Waiting for server response number 250
28 ss_SmtpTxQuit Sending the command QUIT to end the connection
29 ss_SmtpRxClose Waiting for server response number 221
30 ss_SmtpRxTimeout Communication Timeout elapsed
31 ss_SmtpRxError Error occurred during communication

5 TXV 003 54.02

InternetLib Library

3 CONSTANTS
There are no public constants defined in the InternetLib.

4 DOMAIN NAMES COMPILATION
Compilation of domain names uses hierarchical system of domain names DNS (Domain

name system) to get the IP address of servers with the domain name.
IP addresses of DNS servers are used to be similar, in local networks, to the address of the

home portal, router or proxy server. Apart form addresses of local servers also addresses assigned
by the connection provider or public DNS servers can be used. In following examples, the public
DNS server provided by OpenDNS company for free is used.

4.1 Function block fbNsLookUp
library: InternetLib

Function block fbNsLookUp is used to acquire the IP address according to the domain name.
The request for IP address is invoked by setting the input getIP to the TRUE value. The request is
done via the connection on the Ethernet channel in the UNI mode according to the constant on the
input chanCode. The connection must have following parameters: UDP mode, the length of recep-
tion zone 524 bytes, length of the sending zone 93 bytes. If the connection is not active or does not
have correct zone lengths, the block indicates error on outputs Err by TRUE value and ErrId by
value 255.

IP address of the DNS server is transferred on the input DnsIP, domain name that we want
to compile to the IP address is entered via the variable on the input Name.

During the request on the DNS server, the output Busy is set. In case the request is success-
ful, one cycle is set to output Done. If the request fail from any reason, outputs Err and ErrId are
set. The value ErrId determines error type that have occured. Particular values are described in the
variable descriptions. If more IP addresses is neccessary to be get form the DNS server, it is better
to use the block fbNsLookUpByTable.

6 TXV 003 54.02

http://www.opendns.org/

InternetLib Library

Connection setup on the Ethernet channel in the UNI mode for the function block fbNsLookUp

Variable description :

Variable Type Signification
VAR_INPUT

getIP BOOL
R_EDGE

Control variable. Rising edge (transfer from FALSE value to TRUE
value) initiate the request for IP address acquirement

chanCode UINT Connection code ETH1_uni0, ETH1_uni1,...
DnsIP TIPadr IP address of the DNS server

VAR_IN_OUT
Name STRING Domain name
IP TIPadr IP address gained from the DNS server

VAR_OUTPUT
Done BOOL Has the value TRUE at the moment when the IP address is retrieved

Otherwise, returns FALSE
Busy BOOL Address acquirement process flag
err BOOL Error flag

If operation was successful, it has value FALSE, otherwise, TRUE.
errID USINT Error code:

errID = 0 operation was successful
errID = 1 time for server response elapsed
errID = 2 server did not return valid address for the name entered
errID = 254 zero address of the DNS server
errID = 255 error connection setup to the Ethernet channel

7 TXV 003 54.02

InternetLib Library

The example of the program with the function block fbNsLookUp call:

Variable GetNtpIp invokes the request for IP address of the time server which domain name
is set by the variable DomName. In the case of successful address receipt, the bit NtpIpReady is set
to the TRUE value.

VAR_GLOBAL
 GetNtpIP : BOOL;
 NtpIpReady : BOOL;
END_VAR
PROGRAM prgExampleNsLookUp
 VAR
 NsLookUp : fbNsLookUp;
 DomName : STRING := 'cz.pool.ntp.org';
 ServerIP : TIPadr;
 RSReady : RS;
 END_VAR
 NsLookUp(getIP := GetNtpIP,
 chanCode := ETH1_uni0,
 DnsIP := STRING_TO_IPADR('208.67.222.222'),
 Name := DomName,
 IP := ServerIP);
 RSReady(S := NsLookUp.Done, R1 := NsLookUp.Err, Q1 => NtpIpReady);
END_PROGRAM

8 TXV 003 54.02

InternetLib Library

4.2 Function block fbNsLookUpByTable
library: InterneLib

Function block fbNsLookUpByTable is used to get more IP addresses according to domain
names via one connection. The block requires connection on the Ethernet channel in the UNI mode.
The connection must have following parameters: UDP mode, the length of receiving zone 524
bytes, length of sending zone 93 bytes. If the connection is not active or does not have correct zone
lengths, the block indicates error on outpus Err by the TRUE value and ErrId by the value 255.

The block has three inputs. The input chanCode determines via which connection will the
block operate, DnsIP address of the DNS server which information will be get from and NsLook-
UpTable refers to the structure with requirement flags, domain names and IP addresses.

The structure NsLookUpTable have a capacityof up to 32 pairs of domain name, IP address.
Each of these pairs is equipped with a set of bit flags. By setting a bit Request, the request for par-
ticular IP address acquirement is filed. This bit is reset immediately after reception. At the moment
when the IP address is obtained, the Done and Set bit is set. Bit Done is reset in the following cycle,
bit Set after next requirement is set. In case of an error, the variable Err is set. Together with the
Err variable the outpu blocks Err and ErrId with error specification code are set. During the com-
munication the output Busy is set.

Connection setup on the Ethernet channel in the UNI mode for the function block fbNsLookUpByTable

9 TXV 003 54.02

InternetLib Library

Variable description:

Variable Type Signification
VAR_INPUT

chanCode UINT Connection code ETH1_uni0, ETH1_uni1,...
DnsIP TIPadr IP address of the DNS server

VAR_IN_OUT
NsLookUpTable TNsLookUpTable Table of domain names, flags and IP address

Request BOOL Address request bit flag
Set BOOL Successful IP address acquirement bit flag
Done BOOL Rising edge of the flag Set
Err BOOL Error bit flag during IP address acquirement
IP TIPadr IP address obtained from the DNS server
Name STRING Domain name which IP address is searched to

VAR_OUTPUT
Busy BOOL Has the TRUE value during the communication with

the DNS server. Otherwise, FALSE is returned.
Err BOOL Error flag

If the last operation was successful, it has a FALSE
value, otherwise, TRUE.

ErrID USINT Error code:
errID = 0 operation was successful
errID = 1 time for the server response elapsed
errID = 2 server did not return the valid address for the
name entered

10 TXV 003 54.02

InternetLib Library

The example of the program with the function block fbNsLookUpByTable call:

In the following example, there are obtained three IP addresses of the bellow mentioned ad-
dresses after the system start (this is ensured by initialization of bites Request). The example does
not show the use of flag bites Done and Set. These flags can be used anywhere further within the
program. The flag Done can be used for the action initialization immediately after the IP address is
gained. The command Set can be used to control whether the IP address is gained successfully and
is possible to use it for further communication.

VAR_GLOBAL
 LookUpTable : TNsLookUpTable :=
 [(Request:= true, Name:= 'cz.pool.ntp.org'),
 (Request:= true, Name:= 'smtp.iol.cz'),
 (Request:= true, Name:= 'kamera.mukolin.cz')];
END_VAR
PROGRAM prgExampleNsLookUpByTable
 VAR
 NsLookUpByTable : fbNsLookUpByTable;
 END_VAR
 NsLookUpByTable(chanCode := ETH1_uni0,
 DnsIP := STRING_TO_IPADR('208.67.222.222'),
 NsLookUpTable := LookUpTable);
END_PROGRAM

11 TXV 003 54.02

InternetLib Library

5 TIME SYNCHRONIZATION
Time synchronization uses SNTP (Simple Network Time Protocol) protocol to acquire time

difference of the internal clock compared to time of the time server. This difference can be used for
system time synchronization. The time server can be operated in the local network or public servers
can be used. The list of public servers can be found on the internet address support.ntp.org.

5.1 Function block fbSntp
library: InternetLib

Function block fbSntp is used to obtain the time difference between sever and system time
of the PLC. The requirement on time difference is invoked by setting the input Get to the value
TRUE. Request is undertaken via the connection on the Ethernet channel in the UNI mode accord-
ing to the constant on the input chanCode. The connection must have following parameters: UDP
mode, length of receiving and sending zone 60 bytes. If the connection is not active or does not
have the correct zone lengths, the block indicates an error on outputs Err by the value TRUE and
ErrId by the value 255.

The address of the time server is transferred on the input IPadr and port where server re-
ceive requirements is set by input port (default value for the SNTP protocol is 123). On the input
UtcOff the time zone shift is expected compared to GMT in minutes.

During the request for the time difference, the output Busy is set. When the operation is fin-
ished successfully, the obtained time difference appears on the output Offset, on the output Error
the maximum error of the difference gained and the output Done is set for the time of one cycle. In
case of failure the output Err and ErrId is set where the error specification code is.

After successful time difference acquirement, the system time of the PLC can be synchron-
ized by setting the input Accept to the value TRUE. If the input Accept is set to the value TRUE, the
system time is set immediately after a successful time difference acquirement. If the time difference
was obtained successfully, the system time correction is undertaken with the rising edge on the in-
put Accept. The successful setup of the PLC system time according to the time difference obtained
is indicated by setting the output TimeSet.

12 TXV 003 54.02

http://support.ntp.org/

InternetLib Library

Connection setup on the Ethernet channel in the UNI mode for the function block fbSntp

Variable description :

Variable Type Signification
VAR_INPUT

Get BOOL
R_EDGE

Control variable. Rising edge initiates the request on time difference

Accept BOOL
R_EDGE

Time setup according to offset gained.

chanCode UINT Connection code ETH1_uni0, ETH1_uni1,...

IPadr TIPadr IP address of the time server

port UINT Port of time server (default value for protocol SNTP is 123)

UtcOff UINT Time zone shift compared to GMT in minutes

VAR_OUTPUT
Done BOOL Has a value TRUE at the moment when time difference is obtained.

Otherwise, FALSE is returned

Busy BOOL Has a value TRUE during time difference acquirement

TimeSet BOOL Has a value TRUE if the last obtained time difference was used for
system time setup

Err BOOL Error flag
If the last operation was successful, it has a FALSE value, otherwise,
TRUE.

ErrId USINT Error code:
errID = 0 operation was successful
errID = 1 server response time elapsed
errID = 2 time difference was not determined form the server re-
sponse
errID = 254 zero address of the time server
errID = 255 error connection setup on the Ethernet channel

Offset LREAL Time difference obtained

Error LREAL Max error of the time difference obtained

13 TXV 003 54.02

InternetLib Library

Following example shows the use of the function block fbSntp for precise time acquirement.
Program requires, each day five minutes to midnight, the IP address of the time server according to
which the system time is set. The example uses the function GetTime from the SysLib library.

VAR_GLOBAL
 NtpName : STRING := 'cz.pool.ntp.org';
 NtpIP : TIPadr;
END_VAR
PROGRAM prgExampleSntp
 VAR_INPUT
 END_VAR
 VAR
 NsLookUp : fbNsLookUp;
 Sntp : fbSntp;
 now : TIME;
 END_VAR
 VAR_OUTPUT
 END_VAR
 VAR_TEMP
 END_VAR
 now := GetTime();

 NsLookUp(getIP := now > T#23:55:00.0, chanCode := ETH1_uni0,
 DnsIP := STRING_TO_IPADR('208.67.222.222'),
 Name := NtpName,
 IP := NtpIP);

 Sntp(Get := NsLookUp.Done, Accept := Sntp.Done, chanCode := ETH1_uni1,
 IPadr := NtpIP, UtcOff := 60);
END_PROGRAM

14 TXV 003 54.02

InternetLib Library

6 ELECTRONIC MAIL OPERATIONS
The library offers the block for sending an electronic mail via the SMTP protocol. Names of

SMTP servers are published by e-mail services providers.

6.1 Function block fbSmtp
library: InternetLib

Function block fbSmtp is used for sending e-mail messages via SMTP protocol. Message
sending is initiated by setting the input Send to the value TRUE. Sending is done via the connection
on the Ethernet channel in the UNI mode according to the constant on the input chanCode. The
connection must have following parameters: mode TCP master, length of receiving and sending
zone 255 bytes. If the connection is not active or does not have correct zone lengths, the block in-
dicates an error on outputs Err by the TRUE value and ErrId by the value 255.

Address of the SMTP server is transferred on the input IPadr and port where the sever re-
ceives requirements is set by the input port (default value for protocol SMTP is 25).

On the input Sender, the variable with the e-mail address of the sender is awaited, on the in-
put SendName, the variable with the sender name that should be displayed to the recipient is
awaited and on the input Rcpt, the variable with recipients addresses separated by semi-colons is
awaited.

The message itself is transferred via variables on the input Subject where the message sub-
ject is awaited and on the input Text. The message body must have a form of a text strings of a
standard length (ARRAY [1..n] OF STRING) where n is a number of message lines. On the input
Text, the first line of the message body is transferred. The number of lines that will be really sent is
stated on the input Lines. The value of the input Lines can be less or equal to n.

15 TXV 003 54.02

InternetLib Library

The file from the PLC memory card can be attached to the message sent. The file name is
transferred via the variable on the input Attach. To send an e-mail without the attachement, it is ne-
cessary to transmit the variable with an empty string to the input Attach.

If the server requires authorization using the user name and password, it is vital to set the in-
put Auth to the TRUE value and on inputs UserName and Password transfer variables with the user
name and password. If the server does not require the authorization, the variable with an empty
string can be transmitted.

During message sending, the output Busy is set to the value TRUE. On the output State, the
communication status with the server is updated (see enumeration TSmtpState). Server reply codes
are returned on the output ReplyCode. The meaning of particular codes is described and explained
in detail in the RFC 2821 . General principal is that the first number of the reply determines its type
in the following way:

1yz – Preliminary positive reply – the command was accepted but its execution is post-
poned. This reply is used only by extended SMTP commands which are not used by the
function block

2yz – Positive reply – the command was accepted and executed. (e.g. The connection with
the server ends with the code 221)

3yz – Positive immediate reply – the command was accepted, further informations are ex-
pected. (e.g. Replies when the user is verified 334 or during sending of the message
body 354)

4yz – Temporary negative reply – the command was not accepted, the reason is not perman-
ent, it is possible to try the command again. (Replies of this type usualy indicate that the
mail server is busy or does not have enough tools)

5yz – Permanent negative reply – the command was not accepted, the reason is permanent,
it is not recommended to repeat the request with the same parematers. (This code is
most often in replies when the server did not get the verification that was required or
when the user verification fails.)

In case of successful message sending, the output Done is set for the period of one cycle.

In case of an error, the output Err and ErrId is set where the error code specification is.

Connection setup on the Ethernet channel in the UNI mode for the function block fbSmtp

16 TXV 003 54.02

http://www.ietf.org/rfc/rfc2821.txt

InternetLib Library

Variable description :

Variable Type Signification
VAR_INPUT

Send BOOL
R_EDGE

Control variable. Rising edge starts e-mail sending.

Auth BOOL Switch on the function for verification by user name and password

Cancel BOOL
R_EDGE

Rising edge ceases the sending in progress precociously.

chanCode UINT Connection code ETH1_uni0, ETH1_uni1,...

IPadr TIPadr IP address of the SMTP server

port UINT Port of the time server (default value for the protocol SMTP is 25)

Lines USINT Number of lines of the text to be sent

VAR_IN_OUT
Sender STRING Sender e-mail address

SendName STRING Sender name displayed to the recipient (can contain only basic
characters, no diacritics)

Rcpt STRING Recipients e-mail addresses separated by semi-colons

Subject STRING Message subject

Text STRING First line of the message body

Attach STRING Name of the file to be attached to the e-mail message

Username STRING User name

Password STRING User password

VAR_OUTPUT
Done BOOL Has the value TRUE at the moment when the e-mail is sent suc-

cessfully. Otherwise, FALSE is returned.

Busy BOOL Has the value TRUE during the e-mail sending.

Err BOOL Error flag, if the last operation was successful, it has a FALSE
value, otherwise, TRUE.

ErrId USINT Error code:
errID = 0 operation was successful
errID = 1 server reply time elapsed
errID = 2 unexpected server reply (for more see ReplyCode)
errID = 3 the file can not be open, e-mail will be sent without the
attachement
errID = 254 zero address of the SMTP server
errID = 255 faulty setup of the connection on the Ethernet channel

ReplyCode LREAL Code of the SMTP server reply

State TSmtpState State of the communication with the server (see enumeration TS-
mtpState)

17 TXV 003 54.02

InternetLib Library

Following example shows the use of the function block fbSmtp for sending an e-mail mes-
sage. The variable HeatingIsOn represents the status of the heating (on/off) that is compared to the
last status saved into the local variable LastHeatingState. In case of the status change, the query on
the DNS server for the IP address of the SMTP server is send and a message is written. The base of
the message is defined by the constant BodyTemplate where the actual date and temperature of PLC
outpus is filled. Format functions from the ToStringLib library are used for the message body modi-
fication, actual date and time is obtained using the function GetDateTime from the library SysLib.

After the successful request on the DNS server is undertaken, the message is sent.
VAR_GLOBAL
 SmtpName : STRING := 'smtp.seznam.cz';
 SmtpIP : TIPadr;
 TempOutdoor AT r0_p3_AI0.ENG : REAL;
 TempIndoor AT r0_p3_AI1.ENG : REAL;
 TempHeating AT r0_p3_AI2.ENG : REAL;
 HeatingIsOn : BOOL;
END_VAR
VAR_GLOBAL CONSTANT
 NumberOfLines : USINT := 5;
END_VAR
TYPE
 TEmailBody : ARRAY [1..NumberOfLines] OF STRING;
END_TYPE
VAR_GLOBAL CONSTANT
 BodyTemplate : TEmailBody := ['Status report %TDD.MM.YYYY$A0hh:mm',
 'Heating is switched ',
 'Outdoor temperature is %5.1f°C',
 'Indoor temperature is %5.1f°C',
 'Heating temperature is %5.1f°C'];
END_VAR
PROGRAM prgExampleSmtp
 VAR
 NsLookUp : fbNsLookUp;
 Smtp : fbSmtp;
 LastHeatingState : BOOL;
 Sender : STRING := 'TestPLC@seznam.cz';
 SenderName : STRING := 'Do not reply';
 UserName : STRING := 'TestPLC@seznam.cz';
 Password : STRING := '******';

 Recipient : STRING := 'notavailable@seznam.cz';
 Subject : STRING := 'Heating status report';
 Attachement : STRING;
 Body : TEmailBody;

 END_VAR
 IF LastHeatingState <> HeatingIsOn THEN
 Body[1] := DT_TO_STRINGF(in := GetDateTime(),
 format := BodyTemplate[1]);
 IF HeatingIsOn THEN
 Body[2] := CONCAT(BodyTemplate[2], 'on');
 ELSE
 Body[2] := CONCAT(BodyTemplate[2], 'off');
 END_IF;
 Body[3] := REAL_TO_STRINGF(in := TempOutdoor,
 format := BodyTemplate[3]);

18 TXV 003 54.02

InternetLib Library

 Body[4] := REAL_TO_STRINGF(in := TempIndoor,
 format := BodyTemplate[4]);
 Body[5] := REAL_TO_STRINGF(in := TempHeating,
 format := BodyTemplate[5]);
 END_IF;
 NsLookUp(getIP := LastHeatingState <> HeatingIsOn,
 chanCode := ETH1_uni0,
 DnsIP := STRING_TO_IPADR('208.67.222.222'),
 Name := SmtpName,
 IP := SmtpIP);

 LastHeatingState := HeatingIsOn;
 Smtp(Send := NsLookUp.Done, Auth := true,
 chanCode := ETH1_uni2, IPadr := SmtpIP,
 Lines := NumberOfLines, Sender := Sender,
 SendName := SenderName, Rcpt := Recipient,
 Subject := Subject, Attach := Attachement,
 Username := UserName, Password := Password,
 Text := Body[1]);
END_PROGRAM

19 TXV 003 54.02

InternetLib Library

7 HTTP PROTOCOL COMMUNICATION
The library offers the function block for communication with the web server via the protocol

HTTP. The block implements methods GET and POST from the method file HTTP.
Method GET is used for data acquirement from the web server. Typically, it can be used for

IP camera picture acquirement, for downloads of recipes form control server or for data acquire-
ment from public servers (weather forecast etc.).

Method POST is used for data sending to the web server. Typical use is automatic data cap-
turing via the sending to the central sever.

20 TXV 003 54.02

InternetLib Library

7.1 Function block fbHttpRequest
library: InternetLib

Function block fbHttpRequest is used for communication with the web server via the pro-
tocol HTTP 1.0. The block implements methods GET and POST from the method file HTTP. Com-
munication runs via the connection on the Ethernet channel in the UNI mode according the the con-
stant on the input chanCode. The connection must have following parameters: mode TCP master,
length of receiving and sending zone 255 bytes. If the connection is not active or it does not have
correct zone lengths, the block indicates an error on outputs Err by the value TRUE and ErrId by
the value 255.

The address of data downloaded is transferred within four outputs. On the output Ipadr, the
server address is awaited (typically gained from the domain server name by the block fbNsLookUp
or fbNsLookUpByTable), on the output Port the port number is transmitted where server attends to
(default value for HTTP protocol is 80). On the input Host, the variable with the domain server
name is awaited and on the input Action , the variable with the path to the sever data is awaited (the
path always starts with a slash character). On the picture bellow it is indicated how data on the ad-
dress line of the web browser relates to values transmitted on individual inputs.

Data transfer from the address line of the web browsed onto inputs of the function block
(Port does not have to be stated, in such case the port has a default value 80)

21 TXV 003 54.02

InternetLib Library

Communication is according the the method selected initiated by setting the status Get or
Post. Method Post expects compared to the method Get extra data in the variable transferred onto
input Data. For easy elaboration on the server side, the variable on the input Data should have the
following format:

ValueName1 = Value1 & ValueName2 = Value_2 & ... & ValueName N = Value N

E.G.: temp1=20.4&state=1&error=0
Strings in variables on inputs Action and Data must be in the format URI (Uniform Re-

source Identifier) according to the RFC 2396. It applies generally that these strings can contain only
numbers and characters without diacritics, other symbols including spaces should be coded in the
form % followed by two hexadecimal numbers which represents the value of character in the ASCII
table (e.g. „%20” is an alternative code for a space).

During communication the output Busy is set to the value TRUE. In case of a successful
cessation is set for one cycle the output Done. In case of failure, the output Err and ErrId is set
which contains specific error number.

The output State indicates actual communication status. When the message head is uploaded
from the server, the output Result with the status code is set (see the table bellow) and when the
length of next data is accessible, the process of download in per cents (0 up to 100) is returned on
the output Progress. In all other statuses or when the length is not known the Progress returns the
value -1.

Signification of the most frequent status codes on the output Result

code signification
200 OK – data found

302 Found – data transferred

403 Forbidden – access denied

500 Internal Server Error – internal server error

For other codes see the RFC 2616

Data from the server comes in consecutive blocks. Each cycle can be returned for one block.
The presence of new data is indicated by the value TRUE on the output DataReady. The data block-
is returned to the variable on the input RecvData and its length is indicated on the output DataLen.

Connection setup on the Ethernet channel in the UNI mode for the function block fbHttpRequest

22 TXV 003 54.02

http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2396.txt

InternetLib Library

Variable description :

Variable Type Signification
VAR_INPUT

Post BOOL
R_EDGE

Rising edge initiates communication using the method POST

Get BOOL
R_EDGE

Rising edge initiates communication using the method GET

Cancel BOOL
R_EDGE

Rising edge interrupts running communication

chanCode UINT Connection code ETH1_uni0, ETH1_uni1,...

IPadr TIPadr IP address of the web server

port UINT Port of the web server
(default value for the protocol HTTP is 80)

VAR_IN_OUT
Action STRING Path the the server data (always starts with /)

Host STRING Domain server name

Data STRING Data for the method POST

RecvData THttpBuffer Block of data received

VAR_OUTPUT
Done BOOL Has the value TRUE at the moment when the communication with

the server is ceased successfully. Otherwise,FALSE is returned.

Busy BOOL Has the value TRUE during the communication with the server

Err BOOL Error flag
If the last operation was successful, it has the value FALSE, other-
wise, TRUE.

ErrId USINT Error code:
errID = 0 operation was successful
errID = 1 server reply time elapsed
errID = 2 all server data was not obtained
errID = 254 zero address of the web server
errID = 255 fault connection setup on the Ethernet channel

DataReady BOOL The value TRUE indicates a new block on the input RecvData
DataLen UINT Lenght of block data received

State THttpState Status of the communication with the server (see enumeration
THttpState)

Result INT Status code returned by the server

Progress SINT Indicates the progress 0 up to 100% during the data dawnload
from the server.
Otherwise, returns -1

23 TXV 003 54.02

InternetLib Library

Following example shows the use of the function block fbHttpRequest for download of the
web camera picture. The example uses the function block WriteToFileSeq from the libraty FileLib
for saving data received onto the memory card. The picture download is initiated by setting the vari-
able GetPicture and is conditioned by a successful creation of the path for file saving which is in-
dicated by the variable PathOk. The format funciton from the library ToStringLib is used for cre-
ation file names with incremental index.

VAR_GLOBAL CONSTANT
 PathTemplate : STRING := 'WWW/PICT/';
 FileNameTemplate : STRING := PathTemplate + 'PICT%04d.JPG';
END_VAR
VAR_GLOBAL
 HttpIP : TIPadr;
 HttpName : STRING := 'posta.mukolin.cz';
 Action : STRING := '/axis-cgi/jpg/image.cgi?resolution=CIF';
 Path : STRING := PathTemplate;
 FileName : STRING;
 GetPicture : BOOL;
 PathOk : BOOL;
 PictIndx : INT;
END_VAR
PROGRAM prgExampleHttpGet
 VAR
 NsLookUp : fbNsLookUp;
 HttpRequest : fbHttpRequest;
 WriteToFile : WriteToFileSeq;
 CPath : CreatePath;
 Empty : STRING[1];
 Data : THttpBuffer;
 END_VAR
 CPath(exec := NOT PathOk, fileName := Path, done => PathOk);
 NsLookUp(getIP := PathOk AND GetPicture, chanCode := ETH1_uni0,
 DnsIP := STRING_TO_IPADR('208.67.222.222'),
 Name := HttpName,
 IP := HttpIP);
 HttpRequest(Get := NsLookUp.Done, chanCode := ETH1_uni3,
 IPadr := HttpIP,
 Action := Action,
 Host := HttpName,
 Data := Empty, RecvData := Data);
 FileName := INT_TO_STRINGF(in := PictIndx,
 format := FileNameTemplate);

 WriteToFile(fileName := FileName,
 srcVar := void(Data),
 write := HttpRequest.Result = 200 & HttpRequest.DataReady,
 close := HttpRequest.Done OR HttpRequest.Err,
 size := UINT_TO_UDINT(HttpRequest.DataLen));
 IF HttpRequest.Done THEN
 PictIndx := PictIndx + 1;
 END_IF;
END_PROGRAM

24 TXV 003 54.02

InternetLib Library

The second example shows the use of the function block fbHttpRequest for sending data to
the database on the web server using the method POST. The variable HeatIsOn represents the heat-
ing status (on/off) that is compared with the last status saved into the local variable LastHeatState.
In case of the status change, the request on the DNS server for the IP address of the web server is
sent and the string with data is created. After data are sent, the string „OK“ is searched in the reply
which returns the script on the server, shown bellow, in case of successful data saving. The function
memcpy from the library SysLib is used for copying data received from the buffer into the string.

VAR_GLOBAL
 TempOut AT r0_p3_AI0.ENG : REAL;
 TempIn AT r0_p3_AI1.ENG : REAL;
 TempHeat AT r0_p3_AI2.ENG : REAL;
 HeatIsOn : BOOL;
 HttpPostIP : TIPadr;
 HttpPostName : STRING := 'foxtrot.howto.cz';
 HttpPostAction : STRING := '/index.php';
END_VAR
PROGRAM prgExampleHttpPost
 VAR
 NsLookUp : fbNsLookUp;
 HttpRequest : fbHttpRequest;
 DataIn : THttpBuffer;
 DataInString : STRING;
 DataOut : STRING;
 LastHeatState : BOOL;
 PostSuccesful : BOOL;
 END_VAR
 NsLookUp.getIP := LastHeatState <> HeatIsOn;
 LastHeatState := HeatIsOn;
 IF NsLookUp.getIP THEN
 PostSuccesful := false;
 END_IF;
 NsLookUp(chanCode := ETH1_uni0,
 DnsIP := STRING_TO_IPADR('208.67.222.222'),
 Name := HttpPostName,
 IP := HttpPostIP);
 DataOut := 'Heat=' + BOOL_TO_STRING(HeatIsOn) +
 '&TempOut=' + REAL_TO_STRING(TempOut) +
 '&TempIn=' + REAL_TO_STRING(TempIn) +
 '&TempHeat=' + REAL_TO_STRING(TempHeat);
 HttpRequest(Post := NsLookUp.Done, chanCode := ETH1_uni3,
 IPadr := HttpPostIP,
 Action := HttpPostAction,
 Host := HttpPostName,
 Data := DataOut, RecvData := DataIn);
 IF HttpRequest.DataReady THEN
 Memcpy(length := min(80, HttpRequest.DataLen),
 source := VOID(DataIn),
 dest := VOID(DataInString));
 IF FIND(IN1 := DataInString, IN2 := 'OK') > 0 THEN
 PostSuccesful := true;
 END_IF;
 END_IF;
END_PROGRAM

25 TXV 003 54.02

InternetLib Library

The following PHP script on the server side saves data sent by the method POST into the
SQL database. Apart from this function the script in addition generates as a reaction to the method
GET the overview table with all data recorded during the day. The file is saved on the server in the
file index.php which the example above refers to. Variables $db_server, $db_name, $db_user,
$db_pass contain information for connection to the sever with the SQL database. Data sent from
the PLC are approached via the global variable $POST where the value name is used as an index.

<?php
 $db_server = "mysql.ic.cz";
 $db_name = "ht_foxtrot";
 $db_user = "ht_foxtrot";
 $db_pass = "**********";
 $link = mysql_connect($db_server, $db_user, $db_pass)
 or die("ERR - " . mysql_error());
 mysql_select_db($db_name) or die("ERR - unable to select database");
 if(!empty($_POST)) {
 header("Content-type: text/plain");

 $query = "INSERT INTO plc_data VALUES ('".date("Y-m-d-H:i:s").
 "', '".$_POST['Heat']."', '".$_POST['TempOut']."', '".
 $_POST['TempIn']."', '".$_POST['TempHeat']."');";
 $result = mysql_query($query) or die("ERR - " . mysql_error());

 echo "OK";
 } else {

 echo "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01 Transitional//EN\">";
 echo "<html><head><title>PLC data</title></head><body><center>";

 $query = "SELECT * FROM plc_data WHERE datetime LIKE '".date("Y-m-d")."%';";
 $result = mysql_query($query) or die("ERR - " . mysql_error());

 print "

<table border='1' cellpadding='2' cellspacing='1'>";
 print "<tr><th>Time stamp</th><th>State</th><th>Outdoor temperature</th>".
 "<th>Indoor temperature</th><th>Heating temperature</th></tr>";
 while ($line = mysql_fetch_array($result, MYSQL_ASSOC)) {
 print "<tr><td>".$line['datetime']."</td><td>".$line['Heat'].
 "</td><td>".number_format($line['TempOut'],1)."</td><td>".
 number_format($line['TempIn'],1)."</td><td>".
 number_format($line['TempHeat'],1)."</td></tr>";
 }
 print "</table></center>";
 echo "</body></html>";
 }
 mysql_close($link);
?>

Table in the database used by the PHP script was saved by the following SQL command:

CREATE TABLE `plc_data` (
 `datetime` timestamp NOT NULL default CURRENT_TIMESTAMP,
 `Heat` tinyint(1) NOT NULL, `TempOut` double NOT NULL,
 `TempIn` double NOT NULL, `TempHeat` double NOT NULL,
 UNIQUE KEY `datetime` (`datetime`)
);

26 TXV 003 54.02

InternetLib Library

27 TXV 003 54.02

InternetLib Library

TXV 003 54.02

The manufacturer reserves the right of changes to this documentation.
The latest edition of this document is available at www.tecomat.com

28 TXV 003 54.02

For more information please contact:
Teco a. s. Havlíčkova 260, 280 58 Kolín 4, Czech Republic
tel.: +420 321 737 611, fax: +420 321 737 633, teco@tecomat.cz, www.tecomat.com

http://www.tecomat.com/

	1 INTRODUCTION
	2 DATA TYPES
	3 CONSTANTS
	4 DOMAIN NAMES COMPILATION
	4.1 Function block fbNsLookUp
	4.2 Function block fbNsLookUpByTable

	5 TIME SYNCHRONIZATION
	5.1 Function block fbSntp

	6 ELECTRONIC MAIL OPERATIONS
	6.1 Function block fbSmtp

	7 HTTP protocol communication
	7.1 Function block fbHttpRequest

