

ON-LINE PROGRAM CHANGE

 On-line změna programu

 2 TXV 003 42.01

ON-LINE PROGRAM CHANGE

2nd edition- March 2008

CONTENTS

1. INTRODUCTION ...3
1.1. Basic principles of operation...3
1.2. On-line changes options ...3
1.3. Turn on of on-line changes support within Mosaic..4
1.4. Indication of on-line changes support within Mosaic...5

2. ON-LINE PROGRAM CHANGES IN ST LANGUAGE ..6
2.1. Opening of PLC programming while on-line changes are on....................................6
2.2. Changes in program code ..5
2.3. Changes in program variables..10
2.4. Changes of local variables to global variables..14
2.5. Risks during on-line changes in ST language...17

2.5.1. Variable renaming ...17

3. ON-LINE CHANGES OF *.MOS PROGRAM ..18
3.1. On-line program changes in assembler ..18
3.2. Changes in program code ..20
3.3. Changes in program variables..22
3.4. Risks during on-line changes in assembler ..25

3.4.1. Directive #def ..25
3.4.2. Access to the absolute addresses of variables..25
3.4.3. Timers, counters, shift registers ..26

4. LIST OF ERRORS IN ON-LINE CHANGE ..26

 On-line změna programu

 3 TXV 003 42.01

1. Introduction

On-line program change is a feature of the central unit of the PLC Tecomat that enables
to undertake modifications of the user program without stopping the technology operation,
i. e. without the necessity to shut the operated technology during the PLC program chan-
ges. This feature allows the Tecomat system programmer to undertake modifications of
the PLC program while the program is running. The responsibility for correctnes of chan-
ges undertaken in on the system programmer. The PLC central unit in cooperation with the
Mosaic environment ensure the safe changes modification in one moment so, that the
smoothnes of operation is not endangered.

On-line program change can be undertaken in the TC700 system with central units CP-

7001 and CP-7002 from version SW v4.1. The support of on-line program change is inte-
grated in the Mosaic programming environment from version v1.5.10. The behaviour du-
ring the on-line change can be also tested with the PLC simulator in Mosaic environment.

1.1 Basic principles of operation

For explanation of the basic principle, the following example will be used. Lets suppose
that PLC Tecomat control the technology which shut-down means considerable economic
loss, e. g.: burning kiln and the programmer´s task is to modify the PLC program. In this si-
tuation is quite indifferent if it will be a change of the wrong control algorithm or addition of
a new function, e. g. for burning of another product line. The program for PLC needs to be
changes and the oven must not be stopped. On-line program change offers the solution.
The programmer accomplish the relevant PLC program changes and central unit of the
PLC ensures the swith between the old program so, that the n cycle of the calculation is
undertaken completely and the following cycle is undertaken according to the new pro-
gram. The central unit, at the same time, ensures the neccessary operations connected
with the changes done so, that the smoothness of control is not disturbed.

1.2 On-line changes options

In terms of on-line change, the PLC Tecomat system programmer is able to modify fol-
lowing program parts:

♦ Program code, i. e. optionable changes of all program parts (functions, function blocks,
programs) including the insertion of new POU, or rather their omitting.

♦ POU interface modifications, i. e. changes of input and output POU variables including
their adding or omitting

♦ Variable modification, i.e. insertion and omitting of all variable types (local and global) or
change of variables as a e.g. change of the field size.

♦ Data types modifications, e. g. changes in structures, adding of new data types and
omitting of obsolete data types.

♦ Remanent zone size modifications

Following modifications can not be within the on-line program changes undertaken:

 On-line změna programu

 4 TXV 003 42.01

♦ system hw configuration changes, e.g.. adding of IO modules or change of the IO mo-
dule type

♦ changes of IO modules settings
♦ changes in communication parameter settings for serial channels
♦ changes in the PLC network

1.3 Turn on of on-line changes support within Mosaic

On-line program changes can be turn on using the following procedure:

♦ choose in the menu Project | Project manager (CTRL+ALT+F11)
♦ in the project tree choose the nod Environment | PLC control
♦ choose the item „Enable on-line changes“

The procedure of turnin on the support of on-line changes is shown in pictures bellow:

 On-line změna programu

 5 TXV 003 42.01

If the PLC central unit does not support on-line changes, the item enabling on-line

changes will be grey and the thicking box will not be active.
If on-line changes are swithed on, also the option „Confirm the request within the HALT

option“ will be turn on automatically, which means that the switch-over of PLC to the HALT
mode must be confirmed in a special dialogue and, therefore, the control can not be stop-
ped by pressing the icon HALT only or using the keyboard shortcut CTRL+F2. Furthermo-
re, it is not possible to suppress the query on the restart type after the first instalation of
the new program to the PLC. The dialogue with the inquiry on restart type is displayed
whenever the new program is loaded to the PLC for the first time (i. e. there is no program
in the PLC towards which the changes could be evaluated).

1.4 Indication of on-line changes support within Mosaic

The switched support of on-line changes is in the Mosaic environment indicated on the
bar Menu by an icon with the symbol of a flower . If the icon is coloured, the support of
on-line changes is switched on. If the icon is grey, on-line changes are switched off and
each program change will lead to control stopping while the new program is loaded to the
PLC.

 On-line změna programu

 6 TXV 003 42.01

On-line changes can be also switched on or off from the menu which appears after

pressing the left mouse button above the icon of the on-line changes or above the icon wi-
th the symbol of the connected PLC as shown on the following picture.

Similarly to the previous description the on-line change can be switched on only in case

when the central unit of the PLC support these changes. In other cases the option is not
active (grey) and can not be selected.

2. On-line program changes in ST language

In this chapter, we will introduce on-line changes in the program that is written in ST

language.

2.1 Opening of PLC programming while on-line changes are on

After we turn on the support for on-line program changes, it is neccessary to write the
first program version, succesfully compile this program (e.g.: F9) and load it to the PLC
central unit (e.g.: CTRL+F9). Before loading of the program to the PLC, the Mosaic envi-
ronment check whether there exists, in the PLC, any previous version of the program loa-
ded. If not (e.g.:it is a brand new program and new central unit), then the program is loa-
ded to the PLC in a standard way. It means that the central unit is set to HALT mode, PLC
outputs are blocked, program is loaded to the PLC and the central unit transfers to the
RUN mode with preset reset type. Afterwards, the PLC central unit along with the pro-
gramming Mosaic environment is ready to accept changes within the program without con-
trol cessation.

For further description, we will use the following example. Lets suppose that the pro-

gram in the PLC switch on or off the cooling according to the central unit temperature data.
Variable temp_CP7002 shows temperature in degree Celsius (system registry S36). Out-
put cool is switched on when the temperature overflow 50 degrees.

VAR_GLOBAL
 temp_CP7002 AT %S36 : SINT; // CPU temperature
 cool AT %Y0.0 : BOOL; // cooling

 On-line změna programu

 7 TXV 003 42.01

END_VAR

PROGRAM Prog1

 CASE temp_CP7002 OF
 0..50 : cool := false;
 51..127 : cool := true;
 END_CASE;
END_PROGRAM

CONFIGURATION ExampleOnLineChange
 RESOURCE CPM
 TASK FreeWheeling(Number := 0);
 PROGRAM main WITH FreeWheeling : Prog1 ();
 END_RESOURCE
END_CONFIGURATION

We compile the program (F9) and send it to the central unit (CTRL+F9). Before the pro-

gram code is sent, the dialogue with information on on-line changes will appear.

If we choose „Send“ the program code will be sent in a standard way because it is a

new program. This means that the central unit transfer to the HALT mode (where outputs
are blocked standardly), the new program will load, restart is undertaken and then the cen-
tral unit transfer to the RUN mode.

If we choose „Cancel“ the program code will not be sent and the central unit remains wi-
thout changes with the original program and in the original mode.

Option „Details“ enables to display additional information.

 On-line změna programu

 8 TXV 003 42.01

Options „Send“ and „Cancel“ have the same meaning as in the previous dialogue. Opti-
on „Summary“ undertakes the return to the previous dialogue. Option „Save“ saves all in-
formation about on-line change into the text file.

Bookmark „Messages“ contains summary information about on-line chage. Bookmarks
„Deleted“, „New“ and „Changed“ contain information about variable changes and in our
case are empty because we start the on-line change (we load new program).

We send a new code to the PLC using the option „Send“. The dialogue with the restart

option will appear afterwards.

After the restart option is selected, the central unit transfer to the RUN mode. From this

moment it is possible to edit the program without control cessation (thus on-line).

2.2 Changes in program code

Lets suppose that the previous program is neccessary to be updated and heating con-
trol needs to be added. If the tepmerature measured by the central unit is bellow 0 de-
grees, we will switch the output for heating control.

 On-line změna programu

 9 TXV 003 42.01

The first thing that we must realize is the status of the editor windows within the Mosaic

environment. After the new program is loaded and the RUN mode is on, all editor windows
are in the DEBUG status which means that it is not possible to edit the text. This status is

indicated by the icon in the left bottom corner of the editor window. The switch-over to
the EDIT status can be done by clicking the left mouse button on this icon or by using the
hot-key ALT+F6. EDIT status is indicated by the icon .

Now we can modify the program. We add the definition for heating output heat and add

its control to the program. The added parts have turquiouse background.

VAR_GLOBAL
 temp_CP7002 AT %S36 : SINT; // CPU temperature
 cool AT %Y0.0 : BOOL; // cooling
 heat AT %Y0.1 : BOOL; // heating
END_VAR

PROGRAM Prog1

 CASE temp_CP7002 OF
 0..50 : heat := false; cool := false;
 51..127 : heat := false; cool := true;
 ELSE
 heat := true; cool := false;
 END_CASE;
END_PROGRAM

Further on the procedure is standard: compile the modified program and send the code

to the PLC. And because we have the on-line changes switched on and in the central unit
exists previous version of our program, the new program will be accepted by the central
unit without control stopping. Before the program is sent to the PLC, the dialogue with in-
formation about on-line changes undertaken will appear. This time it will looks as follows.

The dialogue informs us that changes were undertaken in the program code only. This

fact can be verified in details.

 On-line změna programu

 10 TXV 003 42.01

2.3 Changes in program variables

For illustration of this feature, we will complete the previously used program with the va-
riable which will file the number of cases when the temperature of the central unit excee-
ded the ranges <0,50>. Consequently, the new variable with number of error states
errCounter of USINT type, is added among local variables. The name of the added varia-
ble is tm, it is an instance of the function block R_TRIG and is used for evaluation of the
change of signals heat and cool. Added parts have again the turquoise background.

VAR_GLOBAL
 temp_CP7002 AT %S36 : SINT; // CPU temperature
 cool AT %Y0.0 : BOOL; // cooling
 heat AT %Y0.1 : BOOL; // heating
END_VAR

PROGRAM Prog1
 VAR
 errCounter : USINT;
 tmp : R_TRIG;
 END_VAR

 CASE temp_CP7002 OF
 0..50 : heat := false; cool := false;
 51..127 : heat := false; cool := true;
 ELSE
 heat := true; cool := false;
 END_CASE;

 tmp(CLK := heat OR cool);
 IF tmp.Q THEN errCounter := errCounter + 1; END_IF;
END_PROGRAM

 On-line změna programu

 11 TXV 003 42.01

Before the compiled code is sent, the dialogue with the summary of changes underta-
ken will appear.

From this dialogue, it is apparent that this change added to the program the total of 4

new variables and one variable from the original program was deleted. This can, on the
first sight, seem illogical because we did not delete any variable from the program and we
added only two new variables errCounter and tmp. The explanation can be found in de-
tails.

If the POU program has not any local variable declared, the compiler in the Mosaic envi-

ronment set up automatically at least one empty variable DUMMY. In the moment when
we add to the program at least one own variable, the variable DUMMY loses its purpose
and the compiler deletes it. This explains the question of the deleted variable. The varian-
ce in the number of new variables is also explained in the details window.

 On-line změna programu

 12 TXV 003 42.01

From this window, it is apparent that to the variable errCounter corresponds really one

new variable while under the variable tmp there are hidden three variables really because
it is an instance of the funcion block of the type R_TRIG. Each instance of this function
block will then contain variables CLK, Q and M of BOOL type.

Moreover, it is shown in this window which initialization value was filled in new variables
after their establishment. Generally applies that new variables are filled with the initializati-
on value that the programmer states in the variable declaration. If the initialization is not
set in the variable declaration then the variable is filled with the implicit initialization value
for the correspondent data type.

Now imagine the following situation. Variable errCounter is of USINT type and maxi-

mum value of this variable can be 255. Lets suppose that it is too little for this case. Ther-
fore, we will change the data type of the variable errCounter from USINT type to UDINT
type. For better oriantation, there is, in this picture, the changed line violet. The rest of the
program remained unchanged.

VAR_GLOBAL
 temp_CP7002 AT %S36 : SINT; // CPU temperature
 cool AT %Y0.0 : BOOL; // cooling
 heat AT %Y0.1 : BOOL; // heating
END_VAR

PROGRAM Prog1
 VAR
 errCounter : UDINT;
 tmp : R_TRIG;
 END_VAR

 CASE temp_CP7002 OF
 0..50 : heat := false; cool := false;
 51..127 : heat := false; cool := true;
 ELSE
 heat := true; cool := false;
 END_CASE;

 tmp(CLK := heat OR cool);
 IF tmp.Q THEN errCounter := errCounter + 1; END_IF;
END_PROGRAM

 On-line změna programu

 13 TXV 003 42.01

Further, we will assume that before the change the variable errCounter has a non-zero

value. The aim of the on-line chage is, of course, to save all actual variable values in the
program in both cases. Firstly, in case of change of variable data type, and, secondly, in
case of change of variable location in the PLC memory. Both cases occured during this
change. errCounter changed its data type and variable tmp changed its location within the
memory.

The overall information displays,again, the dialogue Changes summary.

No variable was added or deleted, however, all four were changed. Changes of data

types are described in details, changes in variable location within the memory are not dis-
played.

Described changes are managed automatically by central unit of the PLC in cooperation

with the Mosaic environment after the program code is sent from Mosaic to PLC. Variables
simply keep values independently of changes of their data type or memory location.

We can act upon the same manner as for local variables changes(VAR ... END_VAR),

also for global variables (VAR_GLOBAL ... END_VAR resp. VAR_GLOBAL RETAIN ...
END_VAR). Variables, consequently, can be added, deleted and data type of variables
can be changed.

 On-line změna programu

 14 TXV 003 42.01

2.4 Changes of local variables to global variables

The example of this type of change can be the requirement on change of the local vari-
able errCounter, from our previous example, to the global variable, e. g. because of the
need of back up of this variable value during power failure. It seems that only a change of
the original declaration of the local variable

PROGRAM Prog1
 VAR
 errCounter : UDINT; ; // local variable
 tmp : R_TRIG;
 END_VAR

to new declaration of the global variable will be sufficient.

VAR_GLOBAL RETAIN
 errCounter : UDINT; // global variable
END_VAR

PROGRAM Prog1
 VAR
 tmp : R_TRIG;
 END_VAR

In this case, unfortunately, appearances are deceptive. The warning shall be the sum-

mary dialogue displaying the undertaken changes.

Here, we can se, that even if we did not change the number of variables nor their na-

mes, one variable would be deleted from the program (omitted) and one new variable
would be added. The reason will be obvious from the detailed information about on-line
changes.

 On-line změna programu

 15 TXV 003 42.01

The local variable errCounter and global variable errCounter are not really called simi-

larly. Because the full name of any local variable consists of the instance name and varia-
ble name. Thus, in our case the local variable errCounter is accualy called ma-
in.errCounter where main is the name of the program instance. And because names are
not identical, they are treated during the on-line change as two different variables. Thus,
the local variable errCounter will be omitted and new global variable will be created. The
consequence will be the loss of the errCounter value because the newly created global va-
riable is initialized to the 0 value.

So how to proceed during the change of the local variable to the global variable? This

situation is neccessary to be treated in two steps. In the first stem we only add new global
variable retainErrCounter. Then change the local variable errCounter to output variable
and add its value into the newly created global variable. The modified program will appear
as follows.

 On-line změna programu

 16 TXV 003 42.01

VAR_GLOBAL
 temp_CP7002 AT %S36 : SINT; // CPU temperature
 cool AT %Y0.0 : BOOL; // cooling
 heat AT %Y0.1 : BOOL; // heating
END_VAR

VAR_GLOBAL RETAIN
 retainErrCounter : UDINT;
END_VAR

PROGRAM Prog1
 VAR
 tmp : R_TRIG;
 END_VAR
 VAR_OUTPUT
 errCounter : UDINT;
 END_VAR

 CASE temp_CP7002 OF
 0..50 : heat := false; cool := false;
 51..127 : heat := false; cool := true;
 ELSE
 heat := true; cool := false;
 END_CASE;

 tmp(CLK := heat OR cool);
 IF tmp.Q THEN errCounter := errCounter + 1; END_IF;
END_PROGRAM

CONFIGURATION ExampleOnLineChange
 RESOURCE CPM
 TASK FreeWheeling(Number := 0);
 PROGRAM main WITH FreeWheeling : Prog1 (errCounter => retainErrCounter);
 END_RESOURCE
END_CONFIGURATION

When the on-line change is undertaken, the output variable errCounter will keep the ori-

ginal value of the local variable errCounter becase, as we already know, their real names
are the same, i. e. main.errCounter. The value of the output variable errCounter is copied
in each cycle into the new global variable retainErrCounter.

The second step is omittance of the output variable errCounter and program change

where we must replace the processing of the output variabe errCounter for the processing
of the global variable retainErrCounter. The assignment of the output variable errCounter
must be also done because it does not exist anymore. The program will appear as follows.

VAR_GLOBAL
 temp_CP7002 AT %S36 : SINT; // CPU temperature
 cool AT %Y0.0 : BOOL; // cooling
 heat AT %Y0.1 : BOOL; // heating
END_VAR

VAR_GLOBAL RETAIN
 retainErrCounter : UDINT;
END_VAR

PROGRAM Prog1
 VAR

 On-line změna programu

 17 TXV 003 42.01

 tmp : R_TRIG;
 END_VAR

 CASE temp_CP7002 OF
 0..50 : heat := false; cool := false;
 51..127 : heat := false; cool := true;
 ELSE
 heat := true; cool := false;
 END_CASE;

 tmp(CLK := heat OR cool);
 IF tmp.Q THEN retainErrCounter := retainErrCounter + 1; END_IF;
END_PROGRAM

CONFIGURATION ExampleOnLineChange
 RESOURCE CPM
 TASK FreeWheeling(Number := 0);
 PROGRAM main WITH FreeWheeling : Prog1 ();
 END_RESOURCE
END_CONFIGURATION

Renumeration for this complicated process is correctly undertaken on-line program

change.

2.5 Risks during on-line changes in ST language

2.5.1 Variable renaming

While working with variables, it is neccessary to bear in mind that the compiler recogni-
zes on-line changes of variables according to their names and data types. This applies al-
so for repair of the variable name. The compiler does not evaluate grammar correctness of
the name, it only compare the similarity of variable names between old and new program.

VAR_GLOBAL
 temp_CP7002 : SINT; // CPU temperature
END_VAR

 On-line změna programu

 18 TXV 003 42.01

3. On-line changes of *.mos program

On-line changes can be also used for programs that are written in traditional instructions

for PLC Tecomat. The following chapter is devoted to these changes.

3.1 On-line program changes in assembler

For further explanation we will use the same example as for the description of changes
in ST language. Lets suppose that the program in the PLC switch on and off the cooling
according to the central unit temperature data. Variable temp_CP7002 displays temperatu-
re in Celsius degrees (system registry S36). Output cool is turned on when the temperatu-
re overflow 50 degrees. The program will appear as follows.

#def temp_CP7002 %S36 ; CPU temperature
#def cool %Y0.0 ; cooling
;
P 0
 LD temp_CP7002
 EXTB
 GTS -1
 LD temp_CP7002
 EXTB
 LTS 51
 OR
 NEG
 RES cool
 ;
 LD temp_CP7002
 EXTB
 GTS 50
 SET cool
E 0

We switch on on-line changes, compile the program (F9) and send it to the central unit

(CTRL+F9). Before the sending of the program code take place, the dialogue with informa-
tion about on-line changes will appear.

 On-line změna programu

 19 TXV 003 42.01

If we choose „Send“, the program code will be send in a standard way because it is a

new program. It means that the central unit will transfer to the HALT mode (where outputs
are typically blocked), new program will be loaded, restart will be done and then the central
unit will transfer to the RUN mode.

If we choose „Cancel“ the program code will not be send and the central unit will remain
without a change with the original program and in the original mode.

Option „Details“ enables to display additional information.

Options „Send“ and „Cancel“ have the same meaning as in the previous dialogue. Opti-
on „Summary“ accomplish the return to the previous dialogue. Option „Save“ saves all in-
formation about on-line chage into the text file.

Bookmark „Messages“ contains summary information about on-line change. Bookmarks
„Deleted“, „New“ and „Changed“ carry information about changes of variables and, in our
case, are empty because we initialize the on-line change (we load new program).

Therefore, we will send a new code to the PLC using the option „Send“. Afterwards, the

dialogue with the restart option will appear.

 On-line změna programu

 20 TXV 003 42.01

After the selection of the restart type, the central unit transfers to the RUN mode. From

this moment it is possible to modify program without control stopping (thus on-line).

3.2 Changes in program code

Lets suppose that the previous program needs the heating control to be added. If the
temperature measured by the central unit is bellow 0 degrees, the output for heating con-
trol is switched on.

The first thing that we need to realize is the status of editor windows in the Mosaic envi-

ronment. After the new program is loaded and RUN mode is active, all windows of the edi-
tor are in the DEBUG status which means that it is not possible to edit text. This status is

indicated by the icon in the left bottom corner of the editor window. The switch-over to
the EDIT status can be done by clicking the left-mouse button on this icon or by a hot key
ALT+F6. EDIT status is indicated by the icon .

Now we can modify the program. We add the definition for heating output heat and add

its control to the program. Added parts have turquoise background.

#def temp_CP7002 %S36 ; CPU temperature
#def cool %Y0.0 ; cooling
#def heat %Y0.1 ; heating
;
P 0
 LD temp_CP7002
 EXTB
 GTS -1
 LD temp_CP7002
 EXTB
 LTS 51
 OR
 NEG
 RES cool
 RES heat
 ;
 LD temp_CP7002
 EXTB
 GTS 50
 SET cool
 RES heat

 On-line změna programu

 21 TXV 003 42.01

 ;
 LD temp_CP7002
 EXTB
 LTS 0
 RES cool
 SET heat
E 0

Further, the procedure is standard: compile the modified program and send the code to

the PLC. And because the on-line changes are on and in the central unit exists the previ-
ous version of our program then the new program will be accepted by the central unit wi-
thout control cessation. Before the program is sent to the PLC, the dialogue is displayed
again with information about on-line changes undetaken. This time it will be as follows.

The dialogue informs us that changes were done within the program code only. This

can be verified in details.

 On-line změna programu

 22 TXV 003 42.01

3.3 Changes in program variables

For illustration of this feature, we will complete the previously used program with the va-
riable which will file the number of cases when the temperature of the central unit excee-
ded the ranges <0,50>. Consequently, the new variable with number of error states
errCounter of USINT type, is added among local variables. The name of the added varia-
ble is tmp, and it is a subsidiary variable for LET instruction which is used for evaluation
of.the change of signals heat and cool. Added parts have again the turquoise background.

#def temp_CP7002 %S36 ; CPU temperature
#def cool %Y0.0 ; cooling
#def heat %Y0.1 ; heating
;
#reg USINT errCounter
#reg BOOL tmp
;
P 0
 LD temp_CP7002
 EXTB
 GTS -1
 LD temp_CP7002
 EXTB
 LTS 51
 OR
 NEG
 RES cool
 RES heat
 ;
 LD temp_CP7002
 EXTB
 GTS 50
 SET cool
 RES heat
 ;
 LD temp_CP7002
 EXTB
 LTS 0
 RES cool
 SET heat
 ;
 LD heat
 OR cool
 LET tmp
 AND 1
 LD errCounter
 ADD
 WR errCounter
E 0

Before the compiled code is send, the dialogue with the summary of changes underta-

ken will appear.

 On-line změna programu

 23 TXV 003 42.01

In this dialogue it is apparent that this change added to the program the total of two new

variables. These are our variables errCounter and tmp. We can find out information on this
in details.

This window states which variables were newly created and which initialization value

were added to these variables after their creation. Variables created according to the dire-
citve #reg have initialization value 0.

Now imagine following situation. Variable errCounter is of an USINT type and maximum

value of this variable can be 255. Lets assume that it is too little in this case. Therefore, we
will change the data type of the variable errCounter from USINT type (variable of the size
of 1 byte, without a sign) to UDINT type (variable of the size of 4 bytes, without a sign).
The changed line in this text is violet for better orientation. The rest of the program is un-
changed.

#def temp_CP7002 %S36 ; CPU temperature
#def cool %Y0.0 ; cooling
#def heat %Y0.1 ; heating
;
#reg UDINT errCounter
#reg BOOL tmp
;

 On-line změna programu

 24 TXV 003 42.01

P 0
 LD temp_CP7002
 ...

Further, we will suppose, that before the change the variable errCounter has a non-zero

value. The aim of the on-line change is, of course, to retain all actual values of program
variables both in case of data type change or in case of change of variable location within
the PLC memory. Both cases occured during this change. Variable errCounter changed its
data type and variable tmp changed its location within the memory.

The overall information is shown, again, in the changes summary dialogue.

No variable was added or deleted, however, all were changed. In details, the data type

changes are described, variable location changes are not described, only their number is
edited.

Described changes are undertaken automatically by the PLC central unit in cooperation

with the Mosaic environment after the program code is sent from Mosaic to the PLC. Vari-
able values remain the same independently of whether their data type or memory location
was changed.

 On-line změna programu

 25 TXV 003 42.01

 On-line změna programu

 26 TXV 003 42.01

3.4 Risks during on-line changes in assembler

3.4.1 Directive #def

The compiler „knows nothing“ about directives #def in the program. This directive is un-
derstood by the compiler as a macro for text substitution. What does this mean for on-line
changes in process will show us the following example.

#def SQ7 %X0.0 ; switch

P 0
 LD SQ7
E 0

In the above mentioned example, the compiler substitute during the program compilati-

on all present words SQ7 with string %X0.0. Nothing else will happen. This means that the
change of the directive #def is not filed anyhow during the on-line change. Therefore, the
programmer himself is liable for the continuity of variable´s content that are defined accor-
ding to the directive #def

3.4.2 Access to the absolute addresses of variables

Access to the absolute addresses of variables in the user program is also not filed in on-
line changes.

; old program
P 0
 LD %R100 ; error_counter
E 0

If we change the above shown program during the on-line change, only the program

code will be changed.

; new program
P 0
 LD %R200 ; error_counter
E 0

Variables %R100 and %R200 are not during the on-line change influenced which me-

ans that the new program can (and probably also will) continue in calculation with a diffe-
rent value error_counter than the program before the change.

If we need, from any reason, to access the variable on the particular address in the

memory (e.g.: owing to linkage to the visualisation program) and we want to retain advan-
tages fo on-line changes, we can use the following procedure.

; old program
#reg byte 100,error_counter ; == %R100

 On-line změna programu

 27 TXV 003 42.01

P 0
 LD error_counter
E 0

If we change the above shown program during the on-line change, the variable

error_counter will keep its original value also after the on-line program change.

; new program
#reg byte 200,error_counter ; == %R200
P 0
 LD error_counter
E 0

The variable, thus, must be declared by the directive #reg.

3.4.3 Timers, counters, shift registers

In the instruction file of Tecomat systems are instructions for timers, counters and shift
registers that use for their functioning internal subsidiary variable. It is used as a memory
of entering edges of counted inputs etc. And is not visible from the user program. It is,
however, vital for the correct functioning. Internal subsidiary variable is used by following
instructions:

♦ timers TON, TOF, RTO, IMP
♦ counters CTU, CTD, CNT
♦ shift registers SFL, SFR

If these instructions should be functioning correctly during the on-line change, their ope-
rand must be formulated in the program by symbolic name of the variable. In this case the
Mosaic environment in cooperation with the PLC central unit ensure the retention of the
variable value including internal subsidiary variable.

4. List of errors during the on-line change

70 xx xxxx Errors announced by the central unit during the on-line change
(technology control continue with the original program)

70 05 0000 incorrect map lenght of the new user program

70 06 0000 incorrect security sign (CRC) of the map of the new user program

70 07 0000 incorrect security sign (CRC) of the whole user program

70 09 0000 New program is compiled for a different line of central units

70 24 0000 List of on-line changes missing

70 25 0000 List of on-line changes have faulty CRC

 On-line změna programu

 28 TXV 003 42.01

70 31 rr pp In definition of I/Omodule is missing the initialization table

70 43 rr pp In definition of I/Omodule is exceeded max. rack number

where rr ... rack number and pp ... position of I/O module on the rack

