

PROGRAMOVATELNÉ AUTOMATY

CONTROL LIBRARIES FOR MOSAIC

TXV 003 23.02

CONTROL LIBRARIES FOR MOSAIC

2nd edition – december 2006

CONTENT

1.	INT	RODUCTION	3
2	RE	GOLIBLIBRARY	4
	21	WEATHER-COMPENSATED CURVES	5
	211	Ekviterm1 – weather-compensated curve with fixed points of outdoor ter	nperature
	2.1.1.	5	nporataro
	2.1.2.	Ekviterm2 – weather-compensated curve with adjustable points of outdo	or
	tempe	erature	7
	2.2.	HYSTERESIS CONTROLLERS	9
	2.2.1.	Hyst1 - hysteresis	9
	2.2.2.	Hyst2 - hysteresis MIN,MAX	9
	2.2.3.	Hyst3 – double hysteresis MIN,MAX	10
	2.2.4.	Hyst31 - double hysteresis MIN, MAX with control variable	10
	2.3.	PID CONTROLLERS	12
	2.3.1.	General description	12
	2.3.2.	PID1 - controller with incremental control	15
	2.3.3.	PID11 - controller with incremental control and shortlist of variables	16
	2.3.4.	PID2 – controller with direct control	18
	2.3.5.	PID21 - controller with direct control and shortlist of variables	19
	2.3.6.	PID3 - freely adjustable controller	21
	2.4.	CASCADING	23
	2.4.1.	Cascade2 - cascade of 2 degrees with variation	23
	2.4.2.	Cascade3 - cascade of 3 degrees with variation	25
	2.4.3.	Cascade4 - cascade of 4 degrees with variation	26
	2.4.4.	Cascade5 - cascade of 5 degrees with variation	28
	2.5.	ERROR INDICATION	30
	2.5.1.	SigErr1 – binary error indication	30
	2.5.2.	SigErr11 - binary error indification with fault No. indication	31
	2.5.3.	SigErr12 - binary error indication with connection attendance	32
	2.5.4.	SigErr13 - binary error indication with resetting option	33
	2.5.5.	SigErr2 - analog error indication	35
	2.5.6.	SigErr21 - analog error indication with error No. indication	36
	2.5.7.	SigErr22 - analog error indication with connection attendance	37
	2.5.8.	SigErr23 - analog indication with resetting option	39
	2.6.	ERROR'S HISTORY	41
	2.6.1.	History1 - error 's history on one error indication	41
	2.6.2.	History5 - error 's history on five error indications	42
	2.6.3.	History10 - error 's history on ten error indications	43
	2.7.	SCHEDULE PROGRAMS	44
	2.7.1.	I Prog1 - weekly schedule with one ON/OFF interval a day	44
	2.7.2.	I Prog2 - weekly schedule with two ON/OFF intervals a day	45
	2.7.3.	I Prog31 - weekly schedule with one operating time	46
	2.7.4.	I Prog41 - weekly schedule with two operating times	47
z	IRC		18
σ.	3.1.	IRC – PALATINE MODULE	
			····· • •

1.INTRODUCTION

Function's and function block's libraries are an inseparable part of a programmable Mosaic environment installation. In term of their conception, libraries can be divided into following types:

- Built-in libraries
- Standardly supplied external libraries
- User-defined libraries

The library can contain function declaration, declaration of function blocks, data's types and global variables.

2. REGOLIB LIBRARY

Regulation library RegoLib.mlb contains basic function blocks that are used especially for regulation task's solutions within PLC Tecomat. However, number of function blocks of this library have also a wide range of use outside regulation tasks.

The basis of the RegoLib library is a set of selected components from a programmable environment Merkur. In particular, these are function blocks of PID,weather-compensated and hysteresis regulations, cascading, fault signallizations, fault history and schedule programs.

The following picture shows the structure of the RegoLib library in the Mosaic environment.

Obr. 2.1 RegoLib Library

2.1. WEATHER-COMPENSATED CURVES

2.1.1. Ekviterm1 – weather-compensated curve with fixed points of outdoor temperature

Ekviterm1 function block executes a calculation of a requested temperature *OUT* on the basis of measured outdoor temperature *IN*, set parameters of four-point weather-compensated curve and a requirement on attenuation program.

Parameters *TempEkvA-TempEkvD* enable to move the set weather-compensated curve in vertical direction. Temperatures of weather-compensated curve breakpoint are firmly set on *TempA* = -20°C, *TempB* = -8°C, *TempC* = +5°C, *TempD* = +15°C. Maximum calculated temperature according to the weather-compensated curve is equal to the *TempEkvA* point, the minimum is equal to *TempEkvD* point.

Obr. 2.2 Weather-compensated curve

The calculated weather-compensated temperature can be lessened by a set attenuation, however, not more than it is determined by a parameter of a minimum output temperature *MinTempOut*. If the input variable *Act* is in log.0, then the calculated weather-compensated temperature is gradually decreased according to a ramp function to a level of a weather-compensated value lessened by a set attenuation *Drop*. If the variable *Act* changes from log.0 to log.1, then again the output temperature will according to the ramp function be increased to a level of the calculated weather-compensated temperature. The period during which is this value reached is due to a parameter *Ramp*. The function of attenuation algorithm is illustrated by the following picture.

Obr. 2.3 Attenuation curve

The graph shows a course of output weather-compensated temperature *Out* during a transition to the attenuated operation for:

Calculated weather-compensated temperature $OUT = 55^{\circ}C$, Size of attenuation $DROP = 20^{\circ}C$, RAMP = 60 min Heating disconnection at 22.00 o'clock. 🖻 😑 Ekviterm1 🖻 🖕 VAR_INPUT ---- 🖬 Act : BOOL --- 🔲 In : REAL 🗄 📲 Cfg : _TEkviterm1_Cfg_ - 🔲 TempEkvA : REAL - 🔲 TempEkvB : REAL --- 🔲 TempEkvC : REAL Ekviterm1 - 🔲 TempEkvD : REAL Act Out MinTempOut : REAL - 🔲 Drop : REAL In---- 🔲 Ramp : INT E VAR_OUTPUT Cfg 🛄 🔲 Out : REAL

Obr. 2.4 The structure of FB Ekviterm1

Obr. 2.5 The appearance of FB Ekviterm1

Variables description :

Term		Signification	Туре	Format
Act		Heating operation (1/0 – topit/útlum)		bool
In		Outdoor temperature [°C]		real
Cfg		Configuration block parameters		_TEkviterm1_Cfg_
	.TempEkvA	Required weather-compensated temperature		real
		at outdoor temperature point A (-20) [°C]		
	.TempEkvB	Required weather-compensated temperature		real
		at outdoor temperature point B (-8) [°C]		
-	.TempEkvC	Required weather-compensated temperature	output	real
		at outdoor temperature point C (+5) [°C]		
-	.TempEkvD	Required weather-compensated temperature		real
		at outdoor temperature point D (+15) [℃]		
-	.MinTempOut	Minimum weather-compensated output		real
		temperature [°C]		
	.Drop	Output temperature attenuation [\mathfrak{C}]		real
-	.Ramp	Time-lag of initiation and termination of		int
		attenuated operation [min]		
Out		Output weather-compensated temperature	output	real
		[°]		

2.1.2. Ekviterm2 – weather-compensated curve with adjustable points of outdoor temperature

Ekviterm2 function block executes a calculation of a required temperature *OUT* on the basis of measured outdoor temperature *IN*, set parameters of four-point weather-compensated curve and a requirement on attenuation program.

With its functions the Ekviterm2 is similar to Ekviterm1, the only difference is that temperatures of weather-compensated curve breakpoint *TempA* – *TempD* are optional.

Parameters *TempEkvA-TempEkvD* enable to move the set weather-compensated curve in vertical direction and parameters TempA-TempD in horizontal direction.

Obr. 2.7 The appearance of FB Ekviterm2

Vari	Variables description:						
Terr	n	Signification	Туре	Format			
Act		Heating operation (1/0 – heat/attenuation)		bool			
In		Outdoor temperature [°C]		real			
Cfg		Configuration block parameters		_TEkviterm2_Cfg_			
	.TempEkvA	Required weather-compensated temperature		real			
	-	at outdoor temperature point A [°C]					
	.TempEkvB	Required weather-compensated temperature		real			
		at outdoor temperature point B [${f C}$]					
	.TempEkvC	Required weather-compensated temperature		real			
		at outdoor temperature point C [°C]					
	.TempEkvD	Required weather-compensated temperature	Output	real			
		at outdoor temperature point D [$^{ m C}$]					
	.TempA	Required outdoor temperature point A [°C]		real			
	.TempB	Required outdoor temperature point B $[C]$		real			
	.TempC	Required outdoor temperature point C [°C]		real			
	.TempD	Required outdoor temperature point D [°C]		real			
	.MinTempOut	Minimum weather-compensated output		real			
	-	temperature [°C]					
	.Drop	Output temperature attenuation [°C]		real			
	.Ramp	Time-lag of initiation and termination of		int			
	-	attenuated operation [min]					
Out		Output weather-compensated temperature $[^{\circ}C]$	Output	real			

2.2. HYSTERESIS CONTROLLERS

2.2.1. Hyst1 - hysteresis

Hyst1 function block will realize a comparison of measured value *IN* with the set required value *PV* and hysteresis *HV* under consideration. If the measured value *IN* is higher than the required value PV+HV/2, then the output signal *OUT* is set to log.1. If the measured value *IN* is lower than the required value PV-HV/2, then the output signal *OUT* is set to log.0.

Obr. 2.8 The sturcture of FB Hyst1

Obr. 2.9 The appearance of FB Hyst1

Variables description:

Term	Signification	Туре	Format
PV	Required value		real
IN	Measured value	Input	real
HV	Hysteresis		real
OUT	Output value	Output	bool

2.2.2. Hyst2 - hysteresis MIN,MAX

If the measured value *IN* exceeds the required maximum value MX, then the output binary signal *OUT* is set to log.1. In case that the measured value *IN* falls below the required minimum value *MN*, then the output signal *OUT* is set to log.0.

Obr. 2.10 The structure of FB Hyst2

Obr. 2.11 The appearance of FB Hyst2

Variables description.							
Term	Signification	Туре	Format				
IN	Measured value		real				
MX	Maximum	Input	real				
MN	Minimum		real				
OUT	Output value	Output	bool				

Variables description:

2.2.3. Hyst3 – double hysteresis MIN,MAX

If the measured value *IN* exceeds the required maximum value *MX2*, then the output binary signal *LESS* is set to log.1. In case that the measured value *IN* falls below the required minimum value *MN2*, then the output binary signal *MORE* is set to log.0.

If the measured value *IN* falls below the required minimum value *MN1*, then the output binary signal *MORE* is set to log.1. In case that the measured value *IN* exceeds the required maximum value *MX1*, then the output signal *MORE* is set to log.0.

Obr. 2.12 The structure of FB Hyst3

Obr. 2.13 The appearance of FB Hyst3

Variables description:						
Term	Signification	Туре	Format			
IN	Measured value		real			
MX2	maximum 2		real			
MN2	minimum 2	Input	real			
MX1	maximum1		real			
MN1	minimum 1		real			
LESS	Output "less"	Output	bool			
MORE	Output "more"		bool			

2.2.4. Hyst31 - double hysteresis MIN,MAX with control variable

If the input variable *ACT* is in log.1, then this function block is functioning in the same way as Hyst3, it means:

If the measured value *IN* exceeds the required maximum value *MX2*, then the output binary signal *LESS* is set to log.1. In case that the measured value *IN* falls below the required minimum value *MN2*, then the output binary signal *MORE* is set to log.0.

If the measured value *IN* falls below the required minimum value *MN1*, then the output binary signal *MORE* is set to log.1. In case that the measured value *IN* exceeds the required maximum value *MX1*, then the output signal *MORE* is set to log.0.

If the input variable ACT is in log.0, then also outputs LESS and MORE are set to log.0.

Obr. 2.14 The structure of FB Hyst31

Obr. 2.15 The appearance of FB Hyst31

Variables description:						
Term	Signification	Туре	Format			
ACT	Control variable		bool			
IN	Measured value		real			
MX2	maximum 2	Input	real			
MN2	minimum 2		real			
MX1	maximum1		real			
MN1	minimum 1		real			
LESS	Output "less"	Output	bool			
MORE	Output "more"		bool			

2.3. PID CONTROLLERS

2.3.1. General description

General structure of variables:

PID controller in PLC Tecomat systems is implemented directly in a command file of individual PLCs. Individual function blocks of PID regulations work with this command in order to simplify the settings and operating of the controller for the programmer. They offer, from the whole structure of the controller, only selected variables and set implicit values to some variables.

The controller works according to a discrete version of this formula:

$$u(t) = K * \left[e(t) + \frac{1}{Ti} \int_{0}^{t} e(\tau) d\tau + Td * \frac{de(t)}{dt} \right]$$

MinY	- minimum measured value, used for normalization of a deviation
MaxY	-maximum measured value, used for normalization of a deviation
Input1	- measured (regulated) quantity
gW	 required value, lying within measured value subrange <miny,maxy></miny,maxy>
tiW	 time response for filtr of the 1st order or linear interpolation of required value in multiples of automaton's cycles
ConW	- current required value
Dev (e)	- the deviation of true value from required value [%]
Output	- output set by an algorithm or manually. The action intervention can lie within maximum of -10000 up to +10000 (i.e100,00% up to +100,00%) range. Thus it is regulated so, that for gain 1 (zone of proportionality 100%) and deviation 100,00% is an interference 100,00%. The range is always limited by a subrange <minu, maxu="">.</minu,>
LastOut	- last action interference, i.e. 1 step delayed [%] or valve possition
CurOut	- output actually required in given step [%] or action interference gain
ConOut	 output realized by the controller [%] or an actual value realized by output unit or by time proportional control on/off in an absolute value
DefOut	- implicite output value at measurement error
MinU	- minimum granted action interference 0-10000 [0-100,00 %]. The direct action interference can not be lower than this value.

- *MaxU* -maximum granted action interference 0-10000 [0-100,00 %]. The direct action interference can not be higher than this value.
- *dMaxU* maximum granted action interference gain 0-10000 [0-100,00 %]. The new action interference can not in the absolute value differ from the last value by more than dMaxU
- OutCycle
 lenght of an output cycle, period of sampling [hundredths of sec] in range from 1 up to 60000 (i.e. 10 ms up to 10 min by 10 ms). It determines the period in which the action interference is not changing, or more precisely the period of frequency rate for time proportional control

Pbnd - range of proportionality, it is set in a range from 1 up to 30000 (0,1up to 3000,0%). It determines the gain coefficient by correlation:

$$K = \frac{1000}{PBnd}$$

RelCool - auxiliary range of proportionality for negative deviation, it is set in a range from 1 up to 30000 (0,1 up to 3000,0%). The gain coefficient is then determined by correlation:

$$K = \frac{1000}{PBnd} * \frac{1000}{\text{Re}\,lCool}$$

Ti - constant of integration, it is set in a range from 1 up to 30000 (0,1 up to 3000,0 s). For zero value is the constant of integration switched off.

- *Td* derivative constant, it is set in a range from 1 up to 30000(0,1 up to 3000,0 s).
- *Egap* symmetric zone of insensibility, it is set in a range from 0 up to 10000 (0 up to 100,00%). If the deviation is lower than EGap, the action interference remains unchanged.
- **Dgap** symmetric deviation zone where the derivative constant is functioning, range is from 0 up to 10000 (0 up to 100,00%). It means that derivative constant functions constantly at DGap = 10000.
- *Igap* symmetric deviation zone where the constant of integration is functioning, range is from 0 up to 10000 (0 up to 100,00%). It means that constant of integration functions constantly at IGap = 10000.
- control
 control word used for setting the controller's activity. The controller can be in automatic, manual or emergency mode. It can function as a controller with direct or incremental algorithm. If a servo-operated valve is used as an action member, it is possible to use for action interference correction the measured value of its possible to realize time proportional output control on/off. The resolution is set by automaton cycle period. E.g. if the automaton cycle period is 100ms and output cycle 10s then the resolution is 1%.

.15	.14	.13	.12	.11	.10	.9	.8	.7	.6	.5	.4	.3	.2	.1	.0
FU2	FU1	FU0	-	-	P41	RIO	RF	HR	AM	IP	ΒU	KC	A12	AO	RC

RC AO A12 KC BU IP AM HR RF RF RIO P41 Note:In this case control on / off or e.g. output unit in	 1 - required cold start of controller (component itself reset the bit) 1 - zero movement of controller output in range 4-20mA 1 - output on to twelve-bit converter D/A 1 - cascade control 0 - unified output 1 - binary output (time proportional control on/off) 0 - direct control 1 - incremental control 0 - manual mode 1 - automatic mode 1 - more reliable measurement mode, two measured values used 0 - adjustment of required value via filtr of 1st order 1 - ratio control 1 - ratio control 1 - PID instruction is invoked in process P41, i.e. in a grid 10 ms also it is possible to use the setting of period for variable Output pulse is 10ms i.e. 1%. While using the provide the period is 1s and width resolution of output pulse is 10ms i.e. 1%. While using
e.g. output unit, i voltage.	is possible to realize the output of cyclic control type this way, i.e. with resolution of one period of phase
FU2-FU0	 filtration of short action interferences. It is generally applied that if CurOut < 32 * FU, the interference is not proceeded and a content CurOut is set to zero. 0 – all action interferences allowed

- 1 action interferences lower than 32 suppressed (i.e. 0,32%)
- 2 action interferences lower than 64 suppressed (i.e. 0,64%)
- 3 action interferences lower than 96 suppressed (i.e. 0,96%)
- 4 action interferences lower than 128 suppressed (i.e. 1,28%)
- 5 action interferences lower than 160 suppressed (i.e. 1,6%)
- 6 action interferences lower than 192 suppressed (i.e. 1,92%)
- 7 action interferences lower than 224 suppressed (i.e. 2,24%)
- **Status** is used particularly for bit value transmision at on/off control as far as the action interference is dealt as time proportional control (pulse width). Further it contains error bit measuring.

.7	.6	.5	.4	.3	.2	.1	.0
-	EY3	EY2	EY1	DR	U-	UC	UH

- .0 (UH) output for positive action interference i.e. heating
- .1 (UC) output for negative action interference i.e.cooling
- .2 (U-) action interference indication
 - 0 positive action interference
 - 1 negative action interference
- .3 (DR) detection of linear interpolation course of required value 1 – interpolation is active
- .4 (EY1) detection of measurement error y1(*Input1*)
 - 1 y1 outside subrange <MinY, MaxY>
- .5 (EY2) detection of measurement error y1(*Input2*)
 - 1 y2 outside subrange <MinY, MaxY>
- .6 (EY3) detection of measurement error y1(*Input3*) 1 - y3 outside subrange <MinY, MaxY>
- AuxD auxiliary controller variables. Entry and saving in this zone is prohibited!!!

2.3.2. PID1 - controller with incremental control

If the variable *ACT* is in log.1, other input variables of function block are accepted and PID algorithm of the controller is activated – regulation of measured value *MSR* to required value *RQR*. In variables *MORE* and *LESS* are transmitted statements for action member (regulation valve).

Function block sets these variables of general PID structure:

MSR = Input1 RQR = gW MORE = Status.0 LESS = Status.1 CONTROL = \$0071 (at start of regulation only)

If there is no user values assigned to the input structure of function block *CFI*, the function block will set following default values to the structure during cold restart: CFI :=

(MinY := 0.// value of unified range corresponding to 0% MaxY := 1000, // value of unified range corresponding to 100% tiW // time constant of required value filter := 0. // minimum granted action interference MinU := 0,MaxU := 10000, // maximum granted action interference dMaxU := 1000, // maximum action quantity gain within one period // period of sampling of regulation algorithm [10ms] OutCycle := 820. PBnd := 500. // proportionality range RelCool := 1000, // relative proportionality range for negative regulation deviations := 740. // integrative time constant Ti Τd := 26. // derivative time constant EGap := 10. // symetric range of insensibility := 10000, // symetric range of derivation unit action DGap IGap := 10000); // symetric range of integration unit action 🖻 🗧 🔁 PID1 🖻 🖊 VAR_INPUT - 🚨 ACT : BOOL - 📕 MSR : REAL - 📕 RQR : REAL 🖻 -- 📲 CFI : _TPID1_IN_ MinY : INT. 🔲 MaxY : INT 🔲 tiw : UINT MinU : UINT - 🔲 MaxU : UINT - 🔲 dMaxU : UINT • OutCvcle : UINT Bnd: UINT PID1 BelCool : UINT ACT. MORE - 🔲 Ti : UINT - 🔲 Td: UINT MSR. LESS EGap : UINT DGap : UINT RQR 🔲 IGap : UINT 🖻 📑 VAR_OUTPUT - 🔲 MORE : BOOL CFI LESS : BOOL 🖻 📲 😽 🗛 🖾 🖾 CFIO-CFIO 🗄 🖳 📲 CFIO : _TPID1_IN_OUT_

Obr. 2.17 The appearance of FB PID1

Variat	oles descrip	tion :		
Term	•	Signification	Туре	Format
ACT		Activation		bool
MSR		Measured value		real
RQR		Required value		real
CFI		Input control structure		_TPID1_IN_
	.MinY	value of unified range for 0%		int
	.MaxY	value of unified range for 100%		int
	.tiW	time constant of required value filter		uint
	.MinU	minimum granted action interference		uint
	.MaxU	maximum granted action interference		uint
	.dMAxU	maximum action quantity gain within one	input	uint
		period		
	.OutCycle	Period of sampling of regulation algorithm		uint
	.PBnd	proportionality range		uint
	.RelCool	relative proportionality range for negative		uint
	.Ti	integrative time constant		uint
	.Td	derivative time constant		uint
	.Egap	symetric range of insensibility		uint
	.DGap	symetric range of derivation unit action		uint
	.IGap	symetric range of integration unit action		uint
MORE		Positive action interference	output	bool
LESS		Negative action interference		bool
CFIO		Input/output control structure	Input/output	_TPID1_IN_OUT_
	.Control	Control word of controller (see c. 2.3.1.)		_TPID_Control_

2.3.3. PID11 - controller with incremental control and shortlist of variables

If the variable *ACT* is in log.1, other input variables of function block are accepted and PID algorithm of the controller is activated – regulation of measured value MSR to required value RQR. In variables MORE and LESS are transmitted statements for action member (regulation valve).

So the function block works similarly to PID1, the only diference is in shortlist of adjustable variables. Variables tiW, RelCool, DGap, IGap are set to fixed values.

The function block sets these variables of general PID structure:

MSR	= Input1
RQR	= gŴ
MORE	= Status.0
LESS	= Status.1
CONTROL	= \$0071 (at start of regulation only)
tiW	= 0
RelCool	= 1000
DGap	= 10000
IGap	= 10000

If there is no user values assigned to the input structure of function block *CFI*, the function block will set following default values to the structure during cold restart:

Obr. 2.18 The structure of FB PID11

Variables description :	
-------------------------	--

Term	•	Signification	Туре	Format
ACT		Activation		bool
MSR		Measured value		real
RQR		Required value		real
CFI		Input control structure		_TPID11_IN_
	.MinY	value of unified range for 0%		int
	.MaxY	value of unified range for 100%		int
	.MinU	minimum granted action interference	Input	uint
	.MaxU	maximum granted action interference		uint
	.dMAxU	maximum action quantity gain within one		uint
		period		
	.OutCycle	Period of sampling of regulation algorithm		uint
		[10ms]		
	.PBnd	proportionality range		uint
	.Ti	integrative time constant		uint
	.Td	derivative time constant		uint
	.Egap	symetric range of insensibility		uint
MORE		Positive action interference	Output	bool
LESS		Negative action interference		bool

2.3.4. PID2 – controller with direct control

If the variable ACT is in log.1, other input variables of function block are accepted and PID algorithm of the controller is activated – regulation of measured value MSR to required value RQR. There is, in OUT variable, transmitted the required action interference for action member (regulation valve) in 0-100% range that corresponds to PCT format of analog output cards.

The function block sets these variables of general PID structure:

MSR = Input1 RQR = gW OUT = Output CONTROL = \$0041 (at start of regulation only)

If there is no user values assigned to the input structure of function block *CFI*, the function block will set following default values to the structure during cold restart: CFI :=

 (MinY := 0, // value of unified range corresponding 0% MaxY := 1000, // value of unified range corresponding 100% tiW := 0, // time constant of required value filter MinU := 0, // minimum granted action interference MaxU := 10000, // maximum granted action interference dMaxU := 1000, // maximum action quantity gain within one period OutCycle:= 820, // period of sampling of regulation algorithm [10ms] PBnd := 500, // proportionality range RelCool := 1000, // relative proportionality range for negative regulation deviations Ti := 740, // integrative time constant Td := 26, // derivative time constant EGap := 10, // symetric range of insensibility DGap := 10000, // symetric range of derivation unit action 					
WAR_INPUT ACT : BOOL MSB : REAL BQB : REAL Imaxy : INT MinY : INT IminU : UINT MinU : UINT Maxy : UINT					
Td:UINT - MSR					
EGap: UINT					
Diap: UNI - RQR					

Obr. 2.20 The structure of FB PID2

Obr. 2.21 The appearance of FB PID2

Variables description :					
Term		Signification	Туре	Format	
ACT		Activation		bool	
MSR		Measured value		real	
RQR		Required value		real	
CFI		Input control structure		_TPID2_IN_	
	.MinY	value of unified range for 0%		int	
	.MaxY	value of unified range for 100%		int	
	.tiW	time constant of required value filter		uint	
	.MinU	minimum granted action interference		uint	
	.MaxU	maximum granted action interference		uint	
	.dMAxU	maximum action quantity gain within one	Input	uint	
		period			
	.OutCycle	Period of sampling of regulation algorithm		uint	
		[10ms]			
	.PBnd	proportionality range		uint	
	.RelCool	relative proportionality range for negative		uint	
		regulation deviations			
	.Ti	integrative time constant		uint	
	.Td	derivative time constant		uint	
	.Egap	symetric range of insensibility		uint	
	.DGap	symetric range of derivation unit action		uint	
	.IGap	symetric range of integration unit action		uint	
OUT		Action interference	output	real	
CFIO		Input/output control structure	Input/	_TPID2_IN_OUT_	
	.Control	Control word of controller (see c. 2.3.1.)	Output	_TPID_Control_	

2.3.5. PID21 - controller with direct control and shortlist of variables

If the variable *ACT* is in log.1, other input variables of function block are accepted and PID algorithm of the controller is activated – regulation of measured value MSR to required value RQR. There is, in *OUT* variable, transmitted the required action interference for action member (regulation valve) in 0-100% range that corresponds to PCT format of analog output cards.

So the function block works similarly to PID2, the only diference is in shortlist of adjustable variables. Variables tiW, RelCool, DGap, IGap are set to fixed values.

The function block sets these variables of general PID structure:

MSR	= Input1
RQR	= gW
OUT	= Output
CONTROL	= \$0041 (at start of regulation only)
tiW	= 0
RelCool	= 1000
DGap	= 10000
IGap	= 10000

If there is no user values assigned to the input structure of function block *CFI*, the function block will set following default values to the structure during cold restart: CFI :=

Obr. 2.22 The structure of FB PID21

Variables description :				
Term		Signification	Туре	Format
ACT		activation		bool
MSR		Measured value		real
RQR		Required value		real
CFI		Input control structure		_TPID21_IN_
	.MinY	value of unified range for 0%		int
	.MaxY	value of unified range for 100%		int
	.MinU	minimum granted action interference	Input	uint
	.MaxU	maximum granted action interference		uint
	.dMAxU	maximum action quantity gain within one		uint
		period		
	.OutCycle	Period of sampling of regulation algorithm [10ms]		uint
	.PBnd	proportionality range		uint
	.Ti	integrative time constant		uint
	.Td	derivative time constant		uint
	.Egap	symetric range of insensibility		uint
OUT		Action interference	Output	real

Obr. 2.23 The appearance of FB PID21

2.3.6. PID3 - freely adjustable controller

This function block allows the access to all variables of general data structure of PID regulation (see c. 2. 3. 1.) and so enables the user to use freely all PID regulation resources.

The function block sets these variables of general PID structure:

Obr. 2.24 The structure of FB PID3

Obr. 2.25 The appearance of FB PID3

Variables description :					
Term	•	Signification	Туре	Format	
ACT		Activation		bool	
MSR		Measured value		real	
RQR		Required value		real	
IN2		Ratio control		real	
IN3		Servo-operated valve possition		uint	
CFI		Input variables of PID structure		_TPID3_IN_	
	.MinY	value of unified range for 0%		int	
	.MaxY	value of unified range for 100%		int	
	.tiW	time constant of required value filter		uint	
	.DefOut	Pre-defined action interference at failure	Input	int	
	.MinU	minimum granted action interference		uint	
	.MaxU	maximum granted action interference		uint	
	.dMAxU	maximum action quantity gain within one period		uint	
	.OutCycle	Period of sampling of regulation algorithm [10ms]		uint	
	.PBnd	Proportionality range		uint	
	.RelCool	relative proportionality range for negative regulation deviations		uint	
	.Ti	Integrative time constant		uint	
	.Td	Derivative time constant		uint	
	.Egap	Symetric range of insensibility		uint	
	.DGap	symetric range of derivation unit action		uint	
	.IGap	symetric range of integration unit action		uint	
MORE		Positive action interference		bool	
LESS		Negative action interference		bool	
OUT		Action interference		real	
CFO		Input variables of PID structure		_TPID3_OUT_	
	.Dev	Control deviation	Output	int	
	.LastOut	Last action interference		int	
	.CurOut	Actual required action interference		int	
	.ConOut	Realized action interference		int	
	.Status	Controller status word (see c. 2.3.1.)		_TPID_Status_	
CFIO		Input/output variables of PID structure		_TPID3_IN_OUT_	
	.ConW	Actual required value	input/	int	
	.Output	Action interference	output	int	
	.Control	Control word of controller (see c. 2.3.1.)		_TPID_Control_	

2.4. CASCADING

Cascading function blocks work according to undermentioned characterization. Individual function blocks of cascading differ only by a number of switching cascade degrees (from 2 to 5).

If the variable *ACT* is in log.1, then on the basis of input variable *IN* single cascade degrees *STx* are controlled. Degrees are switched and isolated according to individual limits *LIMITx* (relating to input variable IN) and according to a set hysteresis *HYSTER*. In case of failure of one of the degrees *ERRx* is this degree switched off and replaced by another (the other one in the cascade)

The component also contains a function for variation in switching the degrees. If the variable *ECHNG* is in log.1, the sequence of degrees is changed at entering edge of binary signal *CHNG*.

Individual degrees are lined so, that their use is even (see the sequence table). In case that the variable ECHNGT is also in log.1, then degrees of the cascade are lined according to running hours WTx in such a way that the one with the lowest number of hours would be on the first place in the cascade. Counting of cascade degree's running hours is activated by the setting of particular variable WRKx into log.1 in a period where the run degree is given.

By the *RES* signal are all running hours of all cascade degrees resetted.

The input *IN* is connected to joint input of regulation PID function blocks and can take the value in range from 0 to 100 [%]. The value of input *IN* is coppied to output *OUT* for the purpose of further cascading.

2.4.1. Cascade2 - cascade of 2 degrees with variation

Obr. 2.27 The appearance of FB Cascade2

Variables description :					
Term		Signification	Туре	Format	
IN		Input power required		real	
ACT		Action activation		bool	
ERRx		Failure x. cascade degrees		bool	
WRK	K	run x. cascade degrees		bool	
CHNC	3	Variation in the sequence of cascade degrees		bool r_edge	
RES		Running hours reset	Input	bool	
CFG		Control structure		_Tcascade2_IN_	
	.LIMITx	On/off limit x. cascade degrees		real	
	.HYSTER	On/off hysteresis		real	
	.ECHNG	Permission for variation of cascade degrees		bool	
	.EGNGT	Permission for variation of cascade degrees		bool	
		according to running hours			
OUT		Output power required		real	
STx		x. cascade output		bool	
STAT		Status structure	Output	_Tcascade2_OUT_	
	.WTx	Running hours x. cascade degrees		time	
	.SEQ	Sequence of cascade degrees		usint	

Sequence table :

SEQ	Order
0	12
1	21

2.4.2. Cascade3 - cascade of 3 degrees with variation

Obr. 2.28 The structure of FB Cascade3

Obr. 2.29 The appearance of FB Cascade3

Variables description :					
Term	•	Signification	Туре	Format	
IN		Input power required		real	
ACT		Action activation		bool	
ERRx		Failure x. cascade degrees		bool	
WRK	x	run x. cascade degrees		bool	
CHNC	3	Variation in the sequence of cascade degrees		bool r_edge	
RES		Running hours reset	Input	bool	
CFG		Control structure		_Tcascade3_IN_	
	.LIMITx	On/off limit x. cascade degrees		real	
	.HYSTER	On/off hysteresis		real	
	.ECHNG	Permission for variation of cascade degrees		bool	
	.EGNGT	Permission for variation of cascade degrees		bool	
		according to running hours			
OUT		Output power required		real	
STx		x. cascade output		bool	
STAT	•	Status structure	Output	_Tcascade3_OUT_	
	.WTx	Running hours x. cascade degrees		time	
	.SEQ	Sequence of cascade degrees		usint	

Sequence table :		
SEQ	Order	
0	123	
1	231	
2	312	

2.4.3. Cascade4 - cascade of 4 degrees with variation

Obr. 2.30 The structure of FB Cascade4

Obr. 2.31 The appearance of FB Cascade4

Varia	oles descrip	otion :		
Term		Signification	Туре	Format
IN		Input power required		real
ACT		Action activation		bool
ERRx		Failure x. cascade degrees		bool
WRK	ĸ	run x. cascade degrees		bool
CHNC	3	Variation in the sequence of cascade degrees		bool r_edge
RES		Running hours reset	Input	bool
CFG		Control structure		_Tcascade4_IN_
	.LIMITx	On/off limit x. cascade degrees		real
	.HYSTER	On/off hysteresis		real
	.ECHNG	Permission for variation of cascade degrees		bool
	.EGNGT	Permission for variation of cascade degrees		bool
		according to running hours		
OUT		Output power required		real
STx		x. cascade output		bool
STAT		Status structure	Output	_Tcascade4_OUT_
	.WTx	Running hours x. cascade degrees		time
	.SEQ	Sequence of cascade degrees		usint

Sequence table :

SEQ	Order
0	1234
1	2341
2	3412
3	4123

2.4.4. Cascade5 - cascade of 5 degrees with variation

Obr. 2.32 The structure of FB Cascade5

Obr. 2.33 The appearance of FB Cascade5

Varia	oles descrip	otion :		
Term		Signification	Туре	Format
IN		Input power required		real
ACT		Action activation		bool
ERRx		Failure x. cascade degrees		bool
WRK	ĸ	run x. cascade degrees		bool
CHNC	3	Variation in the sequence of cascade degrees		bool r_edge
RES		Running hours reset	Input	bool
CFG		Control structure		_Tcascade5_IN_
	.LIMITx	On/off limit x. cascade degrees		real
	.HYSTER	On/off hysteresis		real
	.ECHNG	Permission for variation of cascade degrees		bool
	.EGNGT	Permission for variation of cascade degrees		bool
		according to running hours		
OUT		Output power required		real
STx		x. cascade output		bool
STAT		Status structure	Output	_Tcascade5_OUT_
	.WTx	Running hours x. cascade degrees		time
	.SEQ	Sequence of cascade degrees		usint

Sequence table :

SEQ	Order
0	12345
1	23451
2	34512
3	45123
4	51234

2.5. ERROR INDICATION

2.5.1. SigErr1 – binary error indication

The function block executes an evaluation of failure occurance with set time-lag *PRESETTIMEx* for 8 binary inputs. If the input signal *INx* is active for more than the set preselection, the output signal *ERRx* is set to log.1. Furthermore, the function block executes a logical sum of all evaluated failures into a variable *SUM* and accomplish an indication of new evaluated failure *SIG*.

The failure occurance can be confirmed by *ACK* signal and non-active failures can be resetted by *RES* signal. Every new evaluated failure will invoke blinking of optical indication output *SIG* at intervals of 1sec. If there is after confirmation (at input ACK log.1) the variable *SUM* in log.1, the optical indication *SIG* is in log.1. Conversely it is in log.0.

Obr. 2.34 The structure of FB SigErr1

Obr. 2.35 The appearance of FB SigErr1

|--|

Ter	m	Signification	Туре	Format
InX		Input failure indication X		bool
Ack		Failure confirmation		bool
Res		Failure reset	Input	bool
Cfg		Configuration block structure		_TSigErr1_IN_
	.PresetTimeX	Failure evaluation delay X		time
Err>	<	Output failure indication X		bool
Sig		Indicator	Output	bool
Sun	n	Joint failure		bool

2.5.2. SigErr11 - binary error indification with fault No. indication

The function block executes an evaluation of failure occurance with set time-lag *PRESETTIMEx* for 8 binary inputs. If the input signal *INx* is active for more than the set preselection, the output signal *ERRx* is set to log.1. Furthermore, the function block executes a logical sum of all evaluated failures into a variable *SUM* and accomplish an indication of new evaluated failure *SIG*.

The failure occurance can be confirmed by *ACK* signal and non-active failures can be resetted by *RES* signal. Every new evaluated failure will invoke blinking of optical indication output *SIG* at intervals of 1sec. If there is after confirmation (at input ACK log.1) the variable *SUM* in log.1, the optical indication *SIG* is in log.1. Conversely it is in log.0.

The function block further contains an output variable with the number of last active failure *ERRC* that is intended for connection onto the function block of failure history (History1, History5, History10).

Obr. 2.36 The structure of FB SigErr11

Obr. 2.37 Tł	e appearance	of FB SigErr11
--------------	--------------	----------------

Term	Signification	Туре	Format	
InX	Input failure indication X		bool	
Ack	Failure confirmation		bool	
Res	Failure reset	Input	bool	
Cfg	Configuration block structure		_TSigErr1_IN_	
.PresetTimeX	Failure evaluation delay X		time	
ErrX	Output failure indication X		bool	
Sig	Indicator	Output	bool	
Sum	Joint failure		bool	
ErrC	Failure number		usint	

Variables description :

2.5.3. SigErr12 - binary error indication with connection attendance

The function block executes an evaluation of failure occurance with set time-lag *PRESETTIMEx* for 8 binary inputs. If the input signal *INx* is active for more than the set preselection, the output signal *ERRx* is set to log.1. Furthermore, the function block executes a logical sum of all evaluated failures into a variable *SUMO* and accomplish an indication of new evaluated failure *SIGO*.

The failure occurance can be confirmed by *ACKI* signal and non-active failures can be resetted by *RESI* signal. Variables *ACKO*, *RESO*, *SIGO*, *SUMO* are used for cascading of more components. The function block further contains an output variable with the number of last active failure *ERRC* that is intended for connection onto the function block of failure history (History1,History5,History10). Every new evaluated failure will invoke blinking of optical indication output *SIGO* at intervals of 1sec. If there is after confirmation (at input ACKI log.1) the variable *SUMO* in log.1, the optical indication *SIGO* is in log.1. Conversely it is in log.0.

Obr. 2.38 The structure of FB SigErr12

Obr. 2.39 The appearance of FB SigErr12

Variables description :				
Term		Signification	Туре	Format
InX		Input failure indication X		bool
Ackl		Failure confirmation		bool
Resl		Failure reset	Input	bool
Sigl		Indicator		bool
SumI		Joint failure		bool
Cfg		Configuration block structure		_TSigErr1_IN_
.F	PresetTimeX	Failure evaluation delay X		time
ErrX		Output failure indicator X		bool
AckO		Failure confirmation		bool
ResO		Failure reset	Output	bool
SigO		indicator		bool
SumO		Joint failure]	bool
ErrC		Failure number		usint

2.5.4. SigErr13 - binary error indication with resetting option

The function block executes an evaluation of failure occurance with set time-lag *PRESETTIMEx* for 8 binary inputs. If the input signal *INx* is active for more than the set preselection, the output signal *ERRx* is set to log.1. Furthermore, the function block executes a logical sum of all evaluated failures into a variable *SUMO*, accomplish an indication of new evaluated failure *SIGO* and acoustic indication *AKUO*.

The failure occurance can be confirmed by *ACKI* signal and resetted by *RESI* signal. Variables *CASI*, *CASO* are used for cascading of more components. The function block further contains an output variable with the number of last active failure *ERRC* that is intended for connection onto the function block of failure history (History1,History5,History10). The *ERRC* code is compared to other components SigErr set for one cycle only at new failure occurance. Alongside every failure it is possible to set the form of resetting of particular failure within variable CONTROLx. The variable CONTROLx determine the form of optical and acoustic indication.

CONTROLx = 0	- if the input signal <i>INx is not active, the output variable ERRx</i> is resetted (self-reverse failure)
CONTROLx = 1	- the output variable <i>ERRx</i> is resetted by <i>RESI</i> signal regardless of a value of input signal
CONTROLx = 2	- if the input signal <i>INx is not active, the output variable ERRx</i> is resetted by <i>RESI</i> signal

Every new evaluated failure will invoke blinking of optical indication output *SIGO* at intervals of 1sec and set to log.1 the output for acoustic indication *AKUO*. After confirmation (at input ACKI log.1) is the acoustic indication resetted. If the variable *SUMO* is in log.1, the optical indication *SIGO* is also after confirmation in log.1. Conversely it is in log.0.

The variable *CONTROLS* determines the form of indication if the evaluated failures are resetted without a previous confirmation. (for self-reverse failures).

Obr. 2.40 The structure of FB SigErr13

Obr. 2.41 The appearance of FB SigErr13

Var	iables descripti	on :		
Ter	m	Signification	Туре	Format
InX		Input failure indication X		bool
Ack		Failure confirmation		bool
Res	sl	Failure reset		bool
Cas	sl	Cascade input		usint
Cfg		Configuration block structure	Input	_TSigErr1_IN_
	.PresetTimeX	Failure evaluation delay X		time
	.controlX	Control word for failure resetting form X		usint
	.controls	Control word for non-confirmed failures		usint
		indication form		
Err〉	X	Output failure indicator X		bool
Sun	nO	Joint failure		bool
SigO		Indicator	Output	bool
AkuO		horn		bool
CasO		Cascade output		usint
Err	C	Failure number		usint

2.5.5. SigErr2 - analog error indication

The function block executes the control of four input analog values. If a measured value *INx* is higher than the set maximum *PRESETMAXx* for a period longer than the set preselection *PRESETTIMEx*, the output signal *EMAXx* is set to log.1. In case that the measured value *INx* is lower than the set minimum *PRESETMINx* for a period longer than the set preselection *PRESETTIMEx*, then into log.1 is set the signal *EMINx*.

Furthermore, the function block executes a logical sum of all evaluated failures into the variable *SUM* and an indication of newly evaluated failure *SIG*. The occurance of failures is possible to confirm by *ACK* signal and non-active failures can be resetted by *RES* signal.

Every new evaluated failure will invoke blinking of optical output indication *SIG* at intervals of 1sec. If the variable *SUM* is after confirmation (at input ACK log.1) in log.1, the optical indication *SIG* is in log.1. Conversely it is in log.0.

Obr. 2.42 The structure of FB SigErr2

 In3 EMax2 In4 EMin2 Ack EMax3 Res EMin3 Cfg EMax4 EMin4 Sig Sum 		1112	EHILL	
 In4 EMin2 Ack EMax3 Res EMin3 Cfg EMax4 EMin4 Sig Sum 	_	In3	EMax2	_
 Ack EMax3 Res EMin3 Cfg EMax4 EMin4 Sig Sum 	_	In4	EMin2	_
- Res EMin3 - Cfg EMax4 - EMin4 - Sig - Sum -	_	Ack	EMax3	_
- Cfg EMax4 - EMin4 - Sig - Sum -	_	Res	EMin3	_
EMin4 - Sig - Sum -	_	Cfg	EMax4	_
Sig - Sum -			EMin4	_
Sum -			Sig	_
			Sum	_

SigErr2

In1 EMax1

Obr. 2.43 The appearance of FB SigErr2

Var	Variables description :					
Ter	m	Signification	Туре	Format		
InX		Input analog value X		real		
Ack		Failure confirmation		bool		
Res	;	Failure resetting		bool		
Cfg		Configuration block structure	Input	_TSigErr2_IN_		
	.PresetTimeX	Failure evaluation delay X		time		
	.PresetMaxX	Limit for failure evaluation of maximum X		real		
	.PresetMinX	Limit for failure evaluation of minimum X		real		
EMa	axX	Excess of input maximum X		bool		
EMinX		Input minimum not reached X	Output	bool		
Sig		indicator		bool		
Sum		Joint failure		bool		

2.5.6. SigErr21 - analog error indication with error No. indication

The function block executes the control of four input analog values. If a measured value *INx* is higher than the set maximum *PRESETMAXx* for a period longer than the set preselection *PRESETTIMEx*, the output signal *EMAXx* is set to log.1. In case that the measured value *INx* is lower than the set minimum *PRESETMINx* for a period longer than the set preselection *PRESETTIMEx*, then into log.1 is set the signal *EMINx*.

Furthermore, the function block executes a logical sum of all evaluated failures into the variable *SUM* and an indication of newly evaluated failure *SIG*. The occurance of failures is possible to confirm by *ACK* signal and non-active failures can be resetted by *RES* signal.

Every new evaluated failure will invoke blinking of optical output indication *SIG* at intervals of 1sec. If the variable *SUM* is after confirmation (at input ACK log.1) in log.1, the optical indication *SIG* is in log.1. Conversely it is in log.0.

The function block further contains an output variable with the number of last active failure *ERRC* that is intended for connection onto the function block of failure history (History1, History5, History10)

Obr. 2.44 The structure of FB SigErr21

Obr. 2.45 The appearance of FB SigErr21

Variables description :					
Ter	m	Signification	Туре	Format	
InX		Input analog value X		real	
Ack		Failure confirmation		bool	
Res	5	Failure resetting		bool	
Cfg		Configuration block structure	Input	_TSigErr2_IN_	
	.PresetTimeX	Failure evaluation delay X		time	
	.PresetMaxX	Limit for failure evaluation of maximum X		real	
	.PresetMinX	Limit for failure evaluation of minimum X		real	
EMa	axX	Excess of input maximum X		bool	
EMi	nX	Input minimum not reached X		bool	
Sig		indicator	Output	bool	
Sum		Joint failure		bool	
ErrC		Error No.		usint	

2.5.7. SigErr22 - analog error indication with connection attendance

The function block executes the control of four input analog values. If a measured value *INx* is higher than the set maximum *PRESETMAXx* for a period longer than the set preselection *PRESETTIMEx*, the output signal *EMAXx* is set in log.1. In case that the measured value *INx* is lower than the set minimum *PRESETMINx* for a period longer than the set preselection *PRESETTIMEx*, then into log.1 is set the signal *EMINx*.

Furthermore, the function block executes a logical sum of all evaluated failures into the variable *SUMO* and an indication of newly evaluated failure *SIGO*. The occurance of failures is possible to confirm by *ACKI* signal and non-active failures can be resetted by *RESI* signal. Tha variables *ACKO*, *RESO*, *SIGO*, *SUMO* are used for cascading of more components.

The function block further contains an output variable with the number of last active failure *ERRC* that is intended for connection onto the function block of failure history (History1,History5,History10). Every newly evaluated failure will invoke blinking of optical output indication *SIGO* at intervals of 1sec. If the variable *SUMO* is after confirmation (at input ACKI log.1) in log.1, the optical indication *SIGO* is in log.1. Conversely it is in log.0.

Obr. 2.46 The structure of FB SigErr22

Obr. 2.47The appearance of FB SigErr22

SigErr22 In1 EMax1

In3 EMax2

In4 EMin2

AckI EMax3

ResI EMin3

SigI EMax4

SumI EMin4

AckO

Res0

SigO

SumO

ErrC

Cfg

EMin1

In2

Variables description :					
Ter	m	Signification	Туре	Format	
InX		Input analog value X		real	
Ack	I	Failure confirmation		bool	
Res		Failure resetting		bool	
Sigl		Indicator		bool	
Sun	nl	Joint failure	Input	bool	
Cfg		Configuration block structure		_TSigErr2_IN_	
	.PresetTimeX	Failure evaluation delay X		time	
	.PresetMaxX	Limit for failure evaluation of maximum X		real	
	.PresetMinX	Limit for failure evaluation of minimum X		real	
EMa	axX	Excess of input maximum X		bool	
EMi	nX	Input minimum not reached X		bool	
Ack	0	Failure confirmation		bool	
ResO		Failure resetting	Output	bool	
SigO		Indication		bool	
Sun	nO	Joint failure	bc		
ErrC	2	Error No.		usint	

2.5.8. SigErr23 - analog indication with resetting option

The function block executes the control of four input analog values. If a measured value *INx* is higher than the set maximum *PRESETMAXx* for a period longer than the set preselection *PRESETTIMEx*, the output signal *EMAXx* is set in log.1. In case that the measured value *INx* is lower than the set minimum *PRESETMINx* for a period longer than the set preselection *PRESETTIMEx*, then into log.1 is set the signal *EMINx*.

Furthermore, the function block executes a logical sum of all evaluated failures into the variable *SUMO*, an indication of newly evaluated failure by *SIGO* optical indication and an acoustic indication *AKUO*. The occurance of failures is possible to confirm by *ACKI* signal and non-active can be resetted by *RESI* signal. The variables *CASI*, *CASO* are used for cascading of more components.

The function block further contains an output variable with the number of last active failure *ERRC* that is intended for connection onto the function block of failure history (History1,History5,History10). The *ERRC* code is, on the contrary of other components SigErr, set for one cycle only within new failure occurance.

Alongside every input it is possible to set the form of resetting of particular failure within variable CONTROLx. The variable CONTROLx determine the form of optical and acoustic indication.

CONTROLx = 0	- if the input signal <i>INx is not active, the output variable ERRORx</i> is resetted (self-reverse failure)
CONTROLx = 1	- the output variable <i>ERRORx</i> is resetted by <i>RESI</i> signal regardless of a value of input signal
CONTROLx = 2	- if the input signal <i>INx is not active, the output variable ERRORx</i> is resetted by <i>RESIN</i> signal

Every newly evaluated failure will invoke blinking of optical output indication *SIGO* at intervals of 1sec. and set into the log.1 the output for acoustic signalization *AKUO*. After confirmation (at input ACKI log.1) is the acoustic indication resetted. If the variable *SUMO* in log.1, the optical indication *SIGO* is after confirmation also in log.1. Conversely it is in log.0.

The variable *CONTROLS* determines the form of indication if the evaluated failures are resetted without a previous confirmation. (for self-reverse failures).

CONTROLS = 0	- optical and acoustic indication is in log.0
CONTROLS = 1	- acoustic indication is in log.0, optical indication blinks at intervals of 1sec.
CONTROLS = 2	- acoustic indication is in log.1, optical indication blinks at intervals of 1sec.

Obr. 2.48 The structure of FB SigErr23

Obr. 2.49 The appearance of FB SigErr23

SigErr23 In1 EMax1

In3 EMax2

In4 EMin2

AckI EMax3

ResI EMin3

CasI EMax4

SumO

Sig0

AkuO |

CasO

ErrC

- Cfg EMin4

EMin1

In2

Var	Variables determination:					
Ter	m	Signification	Туре	Format		
InX		Input analog value X		real		
Ack		Failure confirmation		bool		
Res	sl	Failure resetting		bool		
Cas	sl	Cascade input		usint		
Cfg		Joint failure		_TSigErr23_IN_		
	.PresetTimeX	Failure evaluation delay X	Input	time		
	.PresetMaxX	Limit for failure evaluation of maximum X		real		
	.PresetMinX	Limit for failure evaluation of minimum X		real		
	.ControlX	Form of failure resetting control word X		usint		
	.Controls	Form of identification of unconfirmed failures		usint		
		control word				
EM	axX	Excess of input maximum X		bool		
EM	inX	Input minimum not reached X		bool		
SumO		Joint failure		bool		
SigO		Indicator	Output	bool		
AkuO		Horn		bool		
CasO		Cascade output		usint		
Err	C	Error No.		usint		

2.6. ERROR'S HISTORY

Failure history function blocks works according to undermentioned description. Individual failure history function blocks differs only by number of failure indications that are possible to be connected to the history block (1, 5 or 10).

The function block executes saving of failure occurance into a packet of FIFO type. There is, onto an input INx of history function block, inducted an output *ERRC* from failure indications (SigErr11, SigErr12, SigErr13 or SigErr21, SigErr22, SigErr23). Into and internal diabase of 10 failures BUF is always saved a newly arisen failure with a date and time of origination. The last – tenth failure, disappears owing to shift of the packet. According to the time period the newest failure's No. is [0] and the oldest has No. [9]. Using a RES signal it is possible to erase the diabase of saved failures.

Alongside failures from components inducted onto a second input and higher, there is to the failure No. added an offset 8 and further multiples of 8 (applies to History 5 and History 10 only).

(e.g.: the number of the fifth failure from a SigPor12 component inducted onto an input IN3 of a History5 component will be 21).

2.6.1. History1 - error 's history on one error indication

Obr. 2.50 The structure of FB History1

Obr. 2.51 The appearance of FB History1

. <i>.</i>		
Variahlee	description	•
vanabies	uescription	•

Те	rm	S	ignification	Туре	Format
In1		Т	he actual failure No. from a failure block indication	Input	usint
Re	es	Sa	aved failures packet resetting		bool
Buf		0	Output structure		_History_Buf_
	.Err[X]	e	rror buffer		array [09] of
				Output	_History_Rec_
	.ETin	ne D	ate and time of failure origination		date_and_time
	.ECo	de F	ailure code		usint

2.6.2. History5 - error 's history on five error indications

Obr. 2.52 The structure of FB History5

Obr. 2.53 The appearance of FB History5

Variables description :

Term	Signification	Туре	Format
In1	The actual failure No. from failure indication 1		usint
ln2	The actual failure No. from failure indication 2		usint
ln3	The actual failure No. from failure indication 3	Input	usint
In4	The actual failure No. from failure indication 4	-	usint
ln5	The actual failure No. from failure indication 5		usint
Res	saved failures packet resetting		bool
Buf	Output structure		_History_Buf_
.Err[X]	error buffer		array [09] of
		Output	_History_Rec_
.ETime	Date and time of failure origination		date_and_time
.ECode	Failure code		usint

Obr. 2.54 The structure of FB History10

Obr. 2.55The appearance of FB History10

v c						
Те	rm		Signification	Туре	Format	
In1			The actual failure No. from failure indication 1		usint	
Inź	2		The actual failure No. from failure indication 2		usint	
In	3		The actual failure No. from failure indication 3		usint	
ln-	4		The actual failure No. from failure indication 4		usint	
Int	5		The actual failure No. from failure indication 5		usint	
Ine	6		The actual failure No. from failure indication 6	Input	usint	
In7	7		The actual failure No. from failure indication 7		usint	
In8			The actual failure No. from failure indication 8		usint	
In	9		The actual failure No. from failure indication 9		usint	
In	10		The actual failure No. from failure indication 10		usint	
Re	es		saved failures packet resetting		bool	
Βι	ıf		Output structure		_History_Buf_	
	.Er	r[X]	error buffer		array [09] of	
				Output	_History_Rec_	
		.ETime	Date and time of failure origination		date_and_time	
		.ECode	Failure code		usint	

Variables desc	ription

2.7. SCHEDULE PROGRAMS

2.7.1. TProg1 - weekly schedule with one ON/OFF interval a day

The function block sets on the basis of set weekly schedule and PLC system date the output operation signal *OUT*.

The variable *OUT* is in log.1 if the actual system date is between parameters T_ON and T_OFF for a set day in a week, otherwise, it is in log.0. Variables can be set in a range from 00:00:00 to 24:00:00 where value 00:00:00 is thought as a start and value 24:00:00 as the end of the set day.

For each day in a week there can be set one time period of operation.

Obr. 2.56 The structure of FB TProg1

TProg1 TPg Out

Obr. 2.57 The appearance of FB TProg1

Variab	les descr	iption :		
Term		Signification	Туре	Format
TPg		Weekly schedule		_TimeProg1_Week_
.Mon		Schedule for Monday		_TimeProg1_Day_
	.T_ON	Start of operation		time
	.T_OFF	End of operation		time
			Input	
•			-	•
.Sun		Schedule for Sunday		_TimeProg1_Day_
	.T_ON	Start of operation		time
	.T_OFF	End of operation		time
Out		operation	Output	bool

Examples:

Mon.T_ON = 00:00:00, Mon.T_OFF = 24:00:00 ... continuous operating on Monday Mon.T_ON = 06:30:00, Mon.T_OFF = 20:15:00 ... operating from 06:30 to 20:15 on Monday Mon.T_ON = 00:00:00, Mon.T_OFF = 00:00:00 ... operating is switched off on Monday

2.7.2. TProg2 - weekly schedule with two ON/OFF intervals a day

The function block sets on the basis of set weekly schedule and PLC system date the output operation signal *OUT*.

The variable OUT is in log.1 if the actual system date is between parameters T_ON1 and T_OFF1, or T_ON2 and T_OFF2 for a set day in a week, otherwise, it is in log.0. Variables can be set in a range from 00:00:00 to 24:00:00 where value 00:00:00 is thought as a start and value 24:00:00 as the end of the set day.

For each day in a week there can be set two time periods of operation.

Obr. 2.58 The structure of FB TProg2

TProg2 TPg Out

Obr. 2.59 The appearance of FB TProg2

Term		Signification	Туре	Format
TPg		Weekly schedule		_TimeProg2_Week_
.Mo	n	Schedule for Monday		_TimeProg2_Day_
.T_ON1		Start of operation 1		time
	.T_OFF1	End of operation 1		time
	.T_ON2	Start of operation 2		time
.T_OFF2		End of operation 2		time
			Input	
.Sun		Schedule for Sunday		_TimeProg2_Day_
	.T_ON1	Start of operation 1		time
	.T_OFF1	End of operation 1		time
	.T_ON2	Start of operation 2		time
	.T_OFF2	End of operation 2		time
Out		Operation	Output	bool

Variables	description:
valiables	uescription.

2.7.3. TProg31 - weekly schedule with one operating time

The function block sets on the basis of set weekly schedule and PLC system date the output operation signal *OUT*.

The variable *OUT* is in log.1 if the actual system date is greater than or equal to the parameter T_ON and less than T_OFF + parameter T_DUR for a set day in a week. Otherwise, the output OUT is in log.0. Variables *T-ON* and *T_DUR* can be set in a range from 00:00:00 to 24:00:00 where value 00:00:00 is thought as a start and value 24:00:00 as the end of the set day. During the set day it is possible in the sum of values T_ON and T_DUR to reach maximum value of 24:00:00.

For each day in a week there can be set one time period of operation.

Obr. 2.60 The structure of FB TProg31

TProg31 - TPg Out -

Obr. 2.61 The appearance of FB TProg31

Term		Signification	Туре	Format	
TPg		Weekly schedule		_TimeProg31_Week_	
.Mon		Schedule for Monday		_TimeProg31_Day_	
.T_ON		Start of operation		time	
	.T_DUR	Period of operation		time	
			Input		
.Sun		Schedule for Sunday		_TimeProg31_Day_	
	.T_ON	Start of operation		time	
	.T_DUR	Period of operation		time	
Out		Operation	Output	bool	

Variables	description	:
-----------	-------------	---

2.7.4. TProg41 - weekly schedule with two operating times

The function block sets on the basis of set weekly schedule and PLC system date the output operation signal *OUT*.

The variable *OUT* is in log.1 if the actual system date is greater than or equal to the parameter T_ON and less than T_OFF + parameter T_DUR for a set day in a week. Otherwise, the output OUT is in log.0. Variables *T*-*ON* and *T_DUR* can be set in a range from 00:00:00 to 24:00:00 where value 00:00:00 is thought as a start and value 24:00:00 as the end of the set day. During the set day it is possible in the sum of values T_ON and T_DUR to reach maximum value of 24:00:00.

For each day in a week there can be set two time periods of operation.

Obr. 2.62 The structure of FB TProg41

TProg41 TPg Out

Obr. 2.63 The appearance of FB TProg41

Term	•	Signification	Туре	Format
TPg		Weekly schedule		_TimeProg41_Week_
.Mc	on	Schedule for Monday		_TimeProg41_Day_
	.T_ON1	Start of operation 1		time
	.T_DUR1	Period of operation 1		time
	.T_ON2	Start of operation 2		time
	.T_DUR2	Period of operation 2		time
			Input	
.Su	n	Schedule for Sunday		_TimeProg41_Day_
	.T_ON1	Start of operation 1		time
	.T_DUR1	Period of operation 1		time
	.T_ON2	Start of operation 2		time
	.T_DUR2	Period of operation 2		time
Out		Operation	Output	bool

Variable	s description ·	
valiable		

3. IRCLIB LIBRARY

The IRCLib.mlb library contains only an IRC function block (Inteligent Room Control).

3.1. IRC – PALATINE MODULE

The function block is used for control of up to 16 room modules of Tecoreg IRC line (Tecoreg TR100) connected to a serial PLC channel. The communication with room modules is proceed via communications registry Tnet which is realized in the function block. Datas gained from room IRC modules are saved in PLC notebook in a global public data structure *_IRC_PS* (this structure is created automaticly by adding a library IRCLib.mlb into the project).

There is, for this structure, in the corporate visualization tool Reliance implemented a direct support (IRC component) and so there is not any concrete knowledge of the whole IRC structure needed.

Simultaneously with the data structure_*IRC_PS*, a control structure_*IRC_Flags* is created which contains tags for address implementation and time setting to IRC room modules.

Functions of address implementation and time setting are also accessible directly via inputs of the function block *SetAdr* a *SetTime*.

The function block assignment to the serial channel is realized via an input variable *Chnum* that contains the number of the serial channel configured for Tnet registry.

Communications zones of this serial channel are assigned to the block via input/output variables UNI_CH_IN and UNI_CH_OUT. It is necessary to interconnect these variables onto system variables UNI_CHx_IN and UNI_CHx_OUT (where x represents the number of selected serial channel).

It is necessary to have one dedicated serial *PLC* communication channel for the use of IRC function block. This channel must be mounted by RS-485 interface and set to "uni" mode. Communications parameters of this channel must be set in accordance with the picture 2.35.

The communication via Tnet registry will not be functional if parameters of the channel are set differently!!!

Simultaneously the output signal of *ErrCH* block is set. There are also alarm reports from individual room IRC modules directly accesible on the output of the block (alarms are included also in the public data structure *_IRC_PS*).

Warning!

The IRC function block can be used in every project at the most just once!!! Multiple usage of this block in one project leads to a data conflict within the public data structure_*IRC_PS*.

Obr. 3.65 The appearance of FB IRC

Obr. 3.64 The structure of FB IRC

Variables description :

Term Signification Format Туре SetAdr Tnet network address implementation bool SetTime Tnet network time setting bool Input CHnum Serial channel No. usint (configurated for Tnet) UNI CH IN TTnetUNI_CHx_IN Thet input communication zone input/ UNI CH OUT Tnet output communication zone TTnetUNI_CHx_OUT output IRC AlarmOUT Alarms Output structure Room modules alarm reports array [0..31] of .alm[X] IRC_TypeAlarm_ .ALMIN Area minimum temperature (<+8 $^{\circ}$ C) bool Area maximum temperature (>+39,5 $^{\circ}$ C) .ALMAX Output bool breaking doors (if it is activated) .ALPIR bool .ALPOR Room module failure bool .ALKOM Failure of communication with the room bool module ErrCH Failure of parameters of the serial channel bool

Control Libraries for Mosaic

Nastavení univerzálního režimu kanálu		X			
Přijímací zóna Délka zóny 48	Vysílací zóna Délka zóny 48	Komunikační rychlost 🛛 🗍 19 200 💌			
Adresa zóny 4 Přijímací zóna CH2_ZonelN	Adresa zóny 4 Vysílací zóna CH2_ZoneOUT	Formát dat 8b 💌 sudá parita 💌			
Počáteční znak Detekovat Vysílat Kód znaku	Koncový znak Detekovat Vysílat Dva znaky Kód znaku 0 0	Adresa stanice Adresa stanice Detekovat při příjmu Zápis při vysílání			
Parita prvního bytu přijímané zprávy Stejná parita jako u ostatních Opačná parita než u ostatních Potvrzení zprávy bez dat	Parita prvního bytu vysílané zprávy Stejná parita jako u ostatních Opačná parita než u ostatních Délka zprávy	Kontrolní součet Kontrola při příjmu Výpočet při vysílání Poz. prvního znaku CHS			
Detekovat Vysílat Dva znaky Kód znaku 0 0	Detekovat při příjmu Zápis při vysílání Pozice délky zprávy Maximální délka	Režim řízení modemových signálu Řízení signálu RTS automatická hodnota Řízení signálu DTR			
Min. doba klidu na lince mezi přijímanými zprávan Min. doba klidu na lince mezi vysílanými zprávam	ni (počet bytů) 5 i (počet bytů) 5	trvale hodnota 0			
✓ OK X Zrušit ? Nápověda					

Obr. 3.66 setting of the serial channel in the "uni" mode for Tnet registry (for channel CH2 here)

Structures _IRC_Flags and _IRC_PS are surveyed in the PLC notepad and are intended for data transfer from/to a superior system(visualization SW Reliance).

The structure _IRC_Flags

The structure _*IRC_Flags* occupies in the PLC notepad 1 byte and contains only a flag register with these variables of bool type:

```
STRUCT
                    (* address implementation of Tnet network *)
 SetAdr1
           : bool;
 dummy1 : bool;
 SetTime1 : bool;
                   (* time setting of Tnet network *)
 dummy3
           : bool;
 dummy4
           : bool;
 dummy5
          : bool;
 dummy6
          : bool;
 dummy7
           : bool;
END_STRUCT;
```

The variable *SetAdr1* is used for activation of address implementation mode of room modules. The variable *SetTime1* is used for setting of system time of room modules (according to PLC system time).

The structure _IRC_PS

The structure _*IRC_PS* occupies in the PLC notepad 7200 bytes and is divided in to four data zones. These are operational datas, control datas, configuration datas and room modules alarms (alarms are accesible also as output variables of IRC function block).

```
STRUCT
ProvTR : ARRAY [0..31] OF _IRC_ProvData_;(* room module oper. datas *)
ContTR : ARRAY [0..31] OF _IRC_ContData_;(* room module control datas *)
KfgTR : ARRAY [0..31] OF _IRC_KfgData_; (* room module config. datas*)
AlmTR : ARRAY [0..31] OF _IRC_TypAlarm_;(* room modules alarms *)
END_STRUCT;
```

The whole structure_*IRC_PS* is designed for 32 IRC room modules, however, the IRC function block contains only 16 modules within addresses 0-15. The concrete meaning of individual items of the whole structure is described in TXV 138 04 documentation, Technical equipment of communication module TR101, chapter Public data structure. Compared to TR101 is this structure not fixly surveyed (it is R100 register in TR101).

The example of use at ST

If the IRC function block is used while programming at ST language, than it is necessary while calling the block to suppres a type control of input/output variables UNI_CH_IN and UNI_CH_OUT via a directive void(). The source text of calling FB IRC will then look e.g. like this:

iIRC(CHnum:=2, UNI_CH_IN:=void(UNI_CH2_IN), UNI_CH_OUT:=void(UNI_CH2_OUT));

IRC link on to Reliance

There is in the corporate visualization system Reliance prepared a direct support for IRC system in the form of IRC component. This component enables a user friendly parametrization as well as IRC system operation itself. It operates above the public data structure _*IRC_PS* and for correct operation it requires information on location of this data structure in the PLC notepad. In Mosaic environment is this information accesible in menu *Tools->Map of user registers*, variable_*IRC_PS*.

Notes :

<u>Notes :</u>

Objednávky a informace: Teco a. s. Havlíčkova 260, 280 58 Kolín 4, tel. 321 737 611, fax 321 737 633

TXV 003 23.02

We reserve the right to make modifications and/or changes of the documentation without prior notice. The up-to-date issue documentation is always available on-line at: www.tecomat.cz.