Reliance

Industrial SCADA/HMI system

Reliance 4

SCRIPTS ¢

\[%
AN

o~
\@ GEOVAP

Reliance

Industrial SCADA/HMI system

Reliance 4

SCRIPTS <

~
© GEOVAP

© 2012 GEOVAP, spol. s r.o. All rights reserved.

GEOVAP, spol. s r.o.
Cechovo nabrezi 1790
530 03 Pardubice
Czech Republic

+420 466 024 618
http://www.geovap.cz

Products that are referred to in this document may be trademarks and/or registered trademarks of the
respective owners.

While every precaution has been taken in the preparation of this document, GEOVAP, spol. s r.0. assumes no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this
document or from the use of programs and source code that may accompany it. In no event shall GEOVAP, spol.
s r.0. be liable for any loss of profit or any other commercial damage caused or alleged to have been caused
directly or indirectly by this document.

Table of Contents

1 INErOAUCTION ... e s e e e e e e e e e e e e e aneeeeennnns 1
2 VBScript Language REfEreNncCeccccueiiiiiiii ittt e e s e ssnee e e e e s e e annnes 3
2.1 Syntax of procedure and function Callscccovriiiiiii e 3
2.2 Working with properties and methods of ObjJECtScccccceiiiiiiciii e 4
2.3 DataType FUNCLIONSeeeeiieee et e e e e e e n e e e e e e e e e nne e e eee s 5
231 103270 Yo] I8 1T T3 Vo3 d o) o TR 5
2.3.2 (04 23%) J ST 4 o1 4o o [T 6
2.3.3 L0702 1 1 gl =¥ ' T o T 7
234 CDAte FUNCHION ...t e e e e e e e nnr e e 8
2.3.5 (010 o1 I8 STVt 1 o o 9
2.3.6 L0 1o ¥ 4 Vo1 4 o I 10
2.3.7 CLNE FUNCLION ...ttt s 11
2.3.8 (0307 3 F = S U] T Lo) o T 12
2.3.9 L0357 g ¥ 4 o1 4 o o 1 13
2.3.10 Q8 ST T o o SR 14
b2 e T I 13 G 13 Vo1 4 o T S 15
2.3.12 ISArray FUNCHION ...t e e 16
2.3.13 ISDate FUNCLIONoooiieeeeeceee et s e e 16
2.3.14 ISEMPLY FUNCLION ...t e 17
2.3.15 ISNUII FUNCLION ... s 18
2.3.16 ISNUMENC FUNCRION ... e 19
2.3.17 ISOBJECt FUNCHION ... s 20
b2 20 It T Y/ o T=1\VF=Y 0 T30 o T U] o) o 20
2.3.19 VarTyPe FUNCLION ...ttt e e e e s e e s s e s nnnne e e e e e e ean 22
2.4 Date and Time FUNCHIONScoooor e e e e e e 25
241 Date FUNCHioN ... 25
2.4.2 DateAdd FUNCLION ..o 26
243 DateDiff FUNCHIONcooieeee e e 28
244 DatePart Functioncccoeee 31
245 DateSerial FUNCHIONooiiee e 34
2.4.6 DateValue Functioncccco i, 35
2.4.7 DAy FUNCHION ..ot e e e nnn e e e e e 36

Reliance 4 - Scripts N

n Table of Contents

248 [Lo 10 g ¥ T T [o 36
249 Minute FUNCLION ... 37
24.10 Month FUNCLION ..., 37
2.4.11 MonthName FUNCLIONcoo it e 38
24.12 NOW FUNCHION ... 39
2.4.13 Second FUNCLIONooiiieiee ettt e e e 39
D2 30a I S 1 1= 0 ¥ T [o 40
2.4.15 TiMEr FUNCLIONeeeeeeeeeeee e e e e e e nn e e e e e e 40
2.4.16 TimeSerial FUNCHIONooiiieeeeeee e 41
24.17 TimeValue FUNCLION ... 42
2.4.18 Weekday FUNCHIONoooeeeieiieeeeeeeee et 43
2.4.19 WeekdayName FUNCLIONcccueiiiiiee et e e e s e eee e e e e e 44
D23 32 0 B (= T 1 e d o o IR 46
b2 T N - | VA 01 e o o 47
251 AFray FUNCLION ...t e 47
2.5.2 Dim Statementooo e 48
253 Erase Statement ... 49
254 Filter FUNCLION ... e e 50
2.5.5 LN g = L 1y e o o RN 52
2.5.6 JOIN FUNCTION ... s 52
2.5.7 [=0T 013 o I8 W] T [0 o 53
258 Private Statement ... 54
259 Public Statement ... 55
2.5.10 ReDim Statement ... e 56
b5 ¢ e I T o 111 1 Ve d o o IR 58
2.5.12 UBoUNd FUNCLION ...t e 59
2.6 StHNG FUNCLIONSoeeeeiiecciiiiee ettt e e e s s s e ann e e e e e e e s e s e annsne e e e e e e sennnsnnseneeens 61
26.1 A= o3 1 Vo3 4 o RS 62
2.6.2 L0 T g ¥ 4 Vo2 4 o o 62
2.6.3 FormatCurrency FUNCHION ...ttt nnr e e 63
2.6.4 FormatDateTime FUNCLIONcoooiiieicee e 65
2.6.5 FormatNumber Function ..., 66
2.6.6 FormatPercent FUNCLIONoooriiii e 68
2.6.7 L g 0T e 4 o o R 70
2.6.8 INSTIREV FUNCLION ... e e e e e e e 72
2.6.9 0= 1= T o o o 74
2.6.10 =Y i T 3 Vo1 4 o IR 74
b2 5 T e S =Y o I 1 Vo 4 o Y 75
2.6.12 LTrim FUNCRION ... e e 76

I Reliance 4 - Scripts

2.6.13 1o I 0T Vo3 4 oY SR 77
2.6.14 MonthName FUNCHION s 78
2.6.15 Replace FUNCLION ... s 79
2.6.16 g T L O T 13 Ted dTo] o R 81
2.6.17 RTHM FUNCLION ... s 82
2.6.18 SPACE FUNCLION ...ttt e e s s e snn e e e e e s s annne e e e e e eean 82
2.6.19 STrCOMP FUNCLION ...ttt e e s s s nnne e e e e e e as 83
2.6.20 SEriNG FUNCLION ...t 84
2.6.21 StrReverse FUNCLIONoooiiieiie et e e e 85
2.6.22 THIM FUNCHION ... s 86
2.6.23 UCASE FUNCLION ...t e e e e e e e e e e 87
2.6.24 WeekdayName FUNCLIONcccumiiiiiie ettt e s e e e 87
CoNVErsion FUNCLIONSoooiiiiiciiee et e e e e e e e e e e e e e nne e e e e e aean 90
2.7.1 ASC FUNCLION ... s 91
2.7.2 03270 o] I8 ST T3 Vo3 d T o 91
2.7.3 (04 23%) L8 ST] 4T 4o Y o T 92
2.7.4 L0 02 1 1 gl W' T o Y 93
2.7.5 010 F= 1 2= 30 ¥ ' o 4 [o 1 94
2.7.6 101 o] I8 ST T Tt 1 [0 o 95
2.7.7 03 T g ST 3 Vo1 4 oY s 96
2.7.8 CINt FUNCLION ... e 97
2.7.9 CLNE FUNCLION ...ttt s 98
P2 (e O N 54 = ¥ | T [U UPRPRR 99
b2 (e T A 013 g ¥ T o o 100
2.7.12 DateSerial FUNCLIONooooieeeee e e 101
2.7.13 DateValue FUNCLIONooorieeeee e 102
2.7.14 (D2 Y ST 4T 4 o o RN 103
2.7.15 FiX FUNCHION ... s 104
2.7.16 [U= ¥ 1 o3 4 o 105
2.7.17 HOUK FUNCTION ... s 106
2.7.18 INE FUNCHION ... s 106
2.7.19 LCase FUNCLIONooieeee st e 107
2.7.20 Minute FUNCHION ... e 108
b2 (8.3 W | Uo Y} 4 N =¥ [o d) o 1 108
b2 (2.5 SN © o1 8 o ¥ | o d ' o 109
2.7.23 SeCONA FUNCLIONooeieeeeeeee e e e e e e nnes 110
2.7.24 TimeSerial FUNCLIONooomiieeeees e 110
2.7.25 TimeValue FUNCLION ...t e e e 112
2.7.26 UCASe FUNCLION ... e e s e e e e e e 112

Reliance 4 - Scripts N

Table of Contents

2.7.27 WeeKday FUNCLIONeeiiiiieiie et s s nnre e e e s s e e nnne e e e e e e ean 113
D2 21 T (- T 01 e d o o 115
b2 T | - d o T T 4 o1 4 o s L= 116
28.1 PAY o138 VT T3 4o o PN 116
2.8.2 DN € ¥ o 4 [o T 117
283 {00 =38 1 15 o3 4 o o 118
284 EXP FUNCHION ... s 118
2.8.5 Q8 ST 4 o Lo o 119
2.8.6 INE FUNCHION ... s 120
2.8.7 oY= W] T o Y o 121
2.8.8 RN FUNCHION ...t e 122
2.8.9 ROUNA FUNCHION ... s 123
b2 20 O T - {3 ¥ [T 4 o) [124
2811 SINFUNCHION ..o e e e e e e e e e e e e e e ean 125
2.8.12 Yo g 0 T3 Vo3 d] o 125
2.8.13 TaAN FUNCLION ...t 126
2.9 Miscellaneous FUNCLIONSoooeeeeieiiiiiie e e e e e e e e e e e 127
29.1 Eval FUNClioN ... 127
29.2 GetObject FUNCLIONcceoiie e 128
29.3 GetRef FUNCHION ... e e e 130
294 INPUEBOX FUNCHION ... s 132
295 LoadPicture FUNCLIONoooneeiiee et 133
2.9.6 MSEBOX FUNCLIONueieiiiiiiii ettt e e e e e nnn e e e e e 134
29.7 RGB FUNCHION ...t e e e s e e e e e nnn e e e e e 137
2.9.8 ScHPtENGINE FUNCLION ...ttt 138
2.9.9 ScriptEngineBuildVersion FUNCLIONcooi i 139
2.9.10 ScriptEngineMajorVersion FUNCLION ... 139
2.9.11 ScriptEngineMinorVersion FUNCLIONcccceviiiiii e 140
2.10 VBSCcript Statements ... 142
2.10.1 Call StatemMeNt ... 143
2.10.2 Const Statement ... 144
2.10.3 DIim Statement ... 145
2.104 Do...Loop Statement ... 146
2.10.5 Erase Statement ... e 148
2.10.6 EXecute StatemeENt ... e 149
2.10.7 Exit Statement ... 150
2.10.8 For Each...Next Statement ..., 152
2.10.9 For...Next Statementeeir e 153
2.10.10 Function Statementoooo e 155

I Reliance 4 - Scripts

2.10.11 If..Then...Else Statementcccocmier i 158
2.10.12 OnError Statement ... 160
2.10.13 Option Explicit Statement ... 161
2.10.14 Private Statement ... e 162
2.10.15 Public Statement ... 163
2.10.16 Randomize Statementcccoeiriiei e 164
2.10.17 ReDim Statementc..eoeiiiiieeeee e 165
2.10.18 Rem Statement ... 167
2.10.19 Select Case Statementcccoerreiir e 167
2.10.20 SetStatement.......... .o 169
2.10.21 Stop Statement ... —————————————— 172
2.10.22 Sub Statementooo i 172
2.10.23 While..WENd Statement ... 174
2.10.24 With Statement ... e 176
2.11 VBSCrIPt CONSTANTS ...ttt nee e e e e e e s e ssnne e e e e e e s e e snnnneeeeeens 178
2.11.1 Color ConStantsoooieeiiiicciee e e 178
2.11.2 Comparison CONSLANTSccooiiiiieee e e 179
2113 Date and Time Constantscccooeeiir e 179
2.11.4 Date Format Constantsccccceerriiir i e 180
2.11.5 Miscellaneous CONStaNtsccccceeiiiiccciiiieee e ee e e 181
2.11.6 MSEBOX CONSLANTSoeeeeeiiiieciieiiiiee e e e e nrrr e e e s s e e snnr e e e e e s s e ennns 181
2.11.7 String CONSLANTSeeeiiieiiiei e e 183
2.11.8 Tristate CONSLANLESooiiiiiiieeeee e e 184
2.11.9 VarType CONSLANESoeiiiiiiiiccieiiieee e e srn e e e e s s e e nne e e e e s e senas 184
2.12 VBSCrIPt OPErators e s e e e e e e e e e e e an e e e e e e e e e nneeeeees 186
2,121 Addition Operator (1) ... e 186
2.12.2 FA Y q Lo B0 o =T = | Lo 187
2.12.3 ASSIZNMENT OPEIALOFooeeeeieceeee e e e e 189
2124 Concatenation Operator (&) ... e 189
2.125 DTNV Y Lo T o T 0] 0 T=T = 1 £) g (/) TN 190
2.12.6 L0 A A 010 T=T - 1 (o RN 190
2.12.7 Exponentiation Operator (™) ... e 192
2.12.8 [aY oI 0] 01T = | o] RN 192
2129 Integer DiviSion OPerator (\)ceveeceeerirnieeeserrree s sseee e s 194
b2 54 20 0 TR -0 o 1= - | o] 194
b2 54 2 0 Tt RO /o Yo) oY= = Y o1 RN 195
2.12.12 Multiplication Operator (*)cccceeeeiie e 196
2.12.13 Negation OPEerator (=)ueeeeiei e srrrr e e s s e e annr e e e e e e e e eenan 196
D2 2 0 N1 Y 0 1= - | o RN 197

Reliance 4 - Scripts N

Table of Contents

D B B SR 0T 0T o =Y - | o 198
2.12.16 Subtraction OPerator (=) ... e 199
D204 2.4 Ny (D (o T G 'Y= -) o1 200
3 Reliance-defined ODJECES ...t e s e 203
3.1 Reliance-defined ODJECESeieiiiiiie e e 203
3.2 Execution of Scripts in the Runtime Environment ..o, 204
3.3 Processing of Data Passed to Scripts from the Runtime Environment 205
3.4 Working with Global Constants, Variables, Procedures and Functions 206
3.5 Tips for WIting SCrPLSueeeiieee e e e e e e e e e nnn s 207
BC T 7Y ' 4 T 0 o [T o2 208
3.6.1 RAIM.ACKAIArm ProCedureocooeeeiecceiee e e cseeee s e s e e e e 208
3.6.2 RAIM.ACKAIIAIarms Procedure ... 209
3.6.3 RAImM.CreateAlarm Procedureccooieeiccciiee s 209
3.64 RAIM.CurrentAlarms Procedure.............occcoeerieeiieeccieeee e e 211
3.6.5 RAIm.CurrentAlarmsByDevice Procedurecccoooceeiriceeenincciennssieeeens 212
3.6.6 RAIM.DBAIArms ProCedureooooieeieceiee e e e 212
3.6.7 RAIm.DbAlarmsByDevice Procedure ..o 213
3.6.8 RAIm.DbAlarmsByFilter Procedure ... e 214
3.6.9 RAIm.DisableDeviceAlarms Procedureccccceveeiieerccceeescccceeee e 214
3.6.10 RAIm.EnableDeviceAlarms Procedurecccccooiiiiiiiiiiirncicirrcrcccrccceesees 215
3.6.11 Alarm Type CONSLANTSc..eeieiieeiiee et e e e 216
3.6.12 Alarm Triggering Condition Constantscccccccceerreiieeiccccce e 216
RC TR A {0 o T T - o1 (S 218
3.7.1 RDb.AppendRecord Procedure ... 218
3.7.2 RDb.CreateTableObject Functionccccoeeeiiercciciee e 219
3.7.3 RDb.GetTagHistValue FUNCLIONcoooeeciiiiiiee e reree e 220
3.74 RDb.GetTagStatistics Procedureccoccceeiiiciiieninieeeeeceees e 221
B T2 T 4 0 1=V T =T o 224
381 RDev.ConnectToCommbDriver Procedurecccoooveeercccceencceceeee e, 224
3.8.2 RDev.SendCustomData Procedurecccoooeiercciieeicceee e 225
3.8.3 RDev.RDev.ReceiveCustomDataReply Procedurecccccevveeienriicnennnn. 226
BC TS T 4 =1 ¢ (o g0 =T o 228
39.1 RError.Code Propertyccoeeeiierinieieceeecse e 228
3.9.2 RError.Description PropPertyccoceeeeiiieccciiniiiiee e e s e e ennneeeee e s 229
3.93 The List of Reliance-defined Objects Error Codescccooevieriiiiiiicnnnnee. 229
B 0 0 TR 4 ' T=1 0. o =Y o 238

I Reliance 4 - Scripts

Table of Contents vii

3.10.1 RInet.SendMail FUNCLIONccceummieiieee e 238
8C 2 e I 41 [Yo L= g 0T o =T SRR 240
3.11.1 RModem.GSMSendATCommand Functionccccccooeeiieieencccceeen e, 240
3.11.2 RModem.GSMGetSMSStatus Functionoocoiiiiiii e, 241
3.11.3 RModem.GSMSendSMS FUNCLioNc.eeerieieieceeee e 243
3114 RModem.GSMSendSMSEX Functioncccccerieeceiiie e 244
3.11.5 The List of Error Codes (CMS) According to GSM 07.05 Standard 245
BC T 52 £ o] G0 o =Y o2 249
3121 RScr.DisableScript ProCeAUIEcoooviccireiieeee e e e e 249
3.12.2 RScr.EnableScript Procedure ... e 250
3.123 RScr.EXecScript Procedure ... e e 251
3.124 RScr.GetCurrentScriptData Functionccccccv e 252
3.12.5 RScr.GetCurrentScriptDataEx Functionccccciieii e, 253
3.12.6 RScr.GetScriptinfo FUNCHIONcooeeiiiici e 257
3.12.7 RScr.GetScriptText FUNCLIONccoeeiii it e e 258
3.12.8 BasSiC EVENTS ... e 259
3.129 Events Triggered by a COmponentccccceeeeeeiieccciieeiiee e 260
3.12.10 Events Triggered by an SMS MeSSageccccvrverrrririerenissceeee e 261
3.12.11 Events Triggered by an Alarmccccoviiiiiiiiniceees e e 261
3.12.12 Events Triggered by a Thin Client Requestcccccceeeeecvieiiee e, 263
B 20 G O & 80 V=0 = o SRR 265
3.13.1 RSys.ActivateWindow Procedureccocooemririiieiiiccciee e 267
3.13.2 RSys.CloSeWindOoW ProCedureccoocceeeriiiieeneciieee e sseeee s 267
3.133 RSys.ConvertTimeToDST FUNCLIONccceevieeeiii e eee e 268
3.13.4 RSyYS.COpYFile FUNCLIONceeeiiiiceeee et 269
3.13.5 RSys.CreateDir FUNCLIONccccviiieeiee ettt e e 270
3.13.6 RSys.DateTimeTolnt64Time FUNCLionccccccev e 271
3.13.7 RSys.DeleteFile FUNCLIONcoooiiiiiei e 272
3.13.8 RSyS.DirEXiSts FUNCLIONcuvmiiiiiieii ettt e e 273
3.13.9 RSYS.EXECAPP ProCedUre ... e e e e e nr e e e e e 274
3.13.10 RSys.ExitRuntimeModule Procedureccoorimeiiiiiiieniinceeen e 275
3.13.11 RSyS.FileEXiStS FUNCLIONccoooeeiieiieee et 276
3.13.12 RSys.GetComputerName FUNCtioncccccoeiriiiiiiiccienn e 277
3.13.13 RSys.GetProjectDir FUNCLIONcooeeiieieee e 277
3.13.14 RSys.Int64TimeToDateTime Functionccccceveeevieiccieeiiee e, 278
3.13.15 RSys.LocalDateTimeToUTCDateTime Functionccccceeerriiiinnnnenn. 279
3.13.16 RSys.LogMeSSage Procedurecccccceeeiiieciiineiieiee e eccsnerrree e s s e snnneneeees 280
3.13.17 RSYS.NOW FUNCHION ..ot 281
3.13.18 RSys.PlaySound ProCedurecccocccieiiiiiieiiesieeees e e sssee e s 281

Reliance 4 - Scripts N

Table of Contents

3.13.19 RSys.PrintCustomReport Procedureocccvrviieeeiiiccccinrreeeee e 282
3.13.20 RSys.PrintDbReport Procedureccovieiiiieiieen e 283
3.13.21 RSys.PrintDbTrend Procedurecccvieeiiieiiciciien e 283
3.13.22 RSys.PrintTagDbTrend Procedureccccoeeeccreiieee e eenneeeens 284
3.13.23 RSys.PathToRelativePath Functioncccooieiiiicccin e 284
3.13.24 RSys.RelativePathToPath Functionccccvvviiiieiiiccccreeee e, 286
3.13.25 RSys.RemoveDir FUNCLIONcccoimmiiiiee et e 287
3.13.26 RSys.RenameFile FUNCLIONcoooiiiiiiiie e 288
3.13.27 RSys.ReplaceCZChars FUNCLIONccceeeeiieccciierieee e 289
3.13.28 RSys.RestartProject Procedureccooooiiiiiiiiiieiieecee e 290
3.13.29 RSys.RestartWindows Procedureccoccceerieiieenninceies e 292
3.13.30 RSys.SaveCustomReport Procedureccccvvieiieeeiiieecccnnireeee e eeenneeeens 292
3.13.31 RSys.SetLocalTime FUNCLIONcooiiiiiiiieiee e e 294
3.13.32 RSys.SetMainWindowTitle Procedurecccooveiieeeeiicccciinnieeeen e 295
3.13.33 RSys.ShowCustomReport Procedurecccovveireeeeiiceiciinneeeeee e eeesnneeeens 295
3.13.34 RSys.ShowDbReport Procedurecccooeveeiiieiieennicceees e 296
3.13.35 RSys.ShowDDbTrend ProCedureccccceeiieeeciirieiieee s eeecnnereeee e s e seesnneseees 296
3.13.36 RSys.ShowTagDbTrend Procedurec.ccccmririiieniiicenen e 297
3.13.37 RSys.ShutDownWindows Procedurecccooeieemiiiiieenincceeen e 297
3.13.38 RSys.SetProgramLanguage Procedurecccceeeeeiieeiciinieeeeeeseeeesnnneeenns 298
3.13.39 RSys.SetProjectLanguage Procedureccooeieeiiieciiennscceeee e 299
3.13.40 RSYS.SIEEP ProCEUUIEuoveiieeieeiecceetieiee s e eecnserr e e e e s s e essnnsreeeessesessnnnnsees 299
3.13.41 RSys.UTCDateTimeToLocalDateTime Functioncccccvvvvveeeereccccnnnnnnn. 300
3.14 TTable-type ODJECES ... s ne e 302
3.14.1 TTable.ArchiveName Propertyccccccoeeiieiieniniiiees e 303
3.14.2 TTable.DatabaseName Propertyccccccoeeeciirieiieee s ececcneereeee s eennneeens 304
3.14.3 TTable.DateFieldValue Propertyccccccccciieeeciimeiieee s eeecnnneeeee s e eenneseens 304
3.14.4 TTable.ISArchive Property ... 306
3.14.5 TTable.TimeFieldValue Propertyccccccccceiececiiimeiieee s seecnnneeeees s e eeennnseens 307
3.14.6 TTable.Append ProCedureuuiiiieei i e e e s e 308
3.14.7 TTable.Bof FUNCLIONeeieee e e 309
3.14.8 TTable.Cancel Procedureiiiiiceieiee e 310
3.14.9 TTable.CloseTable Procedure ... e 311
3.14.10 TTable.CreateTable Functioncccceeriiericciiee e 312
3.14.11 TTable.Delete ProCedurecccooeiiiiieicceiee e e e 313
3.14.12 TTable.DeleteTable FUNCLIONcriirriiiee e 313
3.14.13 TTable.Edit Procedure ... e 314
3.14.14 TTable.EmptyTable FUNCLIONcooooiiiiiiiee e 316
3.14.15 TTable.Eof FUNCLIONoeiee e e 317

I Reliance 4 - Scripts

3.14.16 TTable.FieldEXists FUNCLIONcoovemmeiiiiceee e 318
3.14.17 TTable.First ProCedureo e cccereree e s cee e e e e e e e e 319
3.14.18 TTable.GetFieldValue Functionccc.oooeiiiin e, 320
3.14.19 TTable.Last Procedureoooiirieiieecceeee e e 321
3.14.20 TTable.MoVEBY ProCedUrecccoiiiiiiiieieeeeceeee e 322
3.14.21 TTable.Next ProCedureccocceeriiiie e s e e e 323
3.14.22 TTable.OpenTable FUNCLIONcccveiiieiiiicccrtieee e 324
3.14.23 TTable.Post ProCeaUIEcooo et 325
3.14.24 TTable.Prior ProCedureooo et 326
3.14.25 TTable.SetFieldValue Procedureccccoomuiiiieei e 327
3.14.26 TTable.TableEXists FUNCLIONcccoiiiiiiie e 328
3.14.27 TTable.UpdateTableStructure Procedurecccccceveericiieeiieeennieeccnnneeeeens 329
B 20 S =T =0 T = o1 R 330
3.15.1 RTag.SetTagElementValues Procedurecccccoeiiiiieniinieeenssseeees e 330
3.15.2 RTag.GetTagElementValue Functionccccviiiiiiinncceeen e 331
3.15.3 RTag.GetTagValue FUNCLIONccooeiviiccieiiiiee et e e 332
3.15.4 RTag.MoveTagElementValues Procedurecccooiiiiiiiiiiiiiciiieeeeeneeeee 333
3.15.5 RTag.MoveTagElementValuesToSimpleTag Procedurecccccvveeeernne. 334
3.15.6 RTag.MoveTagValue ProCedUreccocmmiiieeei e e eeecnnneeeee s e 336
3.15.7 RTag.MoveTagValueToArrayTag Procedureccccceireeiiiiiiiciiieneeenenenne 337
3.15.8 RTag.SetTagElementValue Procedurecccccvveecciiieeiieeeeeeecccinnneeeees e 338
3.15.9 RTag.SetTagValue Procedureccoooeieiiccieenecieeee e 339
3.15.10 RTag.UpdateTagValue Procedurec.cccoommiiiieerniniinens e 340
B ¢ S T o U= 0 o =Y o2 342
3.16.1 RUser.CheckUserAccessRights Functioncccccvvvieeeeeiccccccnnieeeee e 342
3.16.2 RUser.CheckUSerPasswordcoooo i e e e e 343
3.16.3 RUser.GetLoggedOnUserName FUunNCtionccceeceevniieeeniecceiees s 344
3.16.4 RUser.IsUserAdmin FUNCLIONc.ueeiirieiee e 345
3.16.5 RUser.GetUserID FUNCLIONoooiieiiiie e e 346
3.16.6 RUSEr.LOBOTTUSEr PrOCEUUIEcoeeeeeieeccceeeeieee e ccnneere e e e e s e e nnre e e e e s e e 347
3.16.7 RUSEr.LOEONUSETr ProCEAULEcooeeeeieeiccritieee e e e eccnreeeeee e e s s e esnnseeeees s e eenas 347
3.16.8 RUser.LogOnUserWithCode FUNCLIONcccovvreeiiiiiiiieieccreee e 348
3.16.9 RUser.LogOnUserWithNameAndPassword Functioncccccevvvveeennnne. 349
3.16.10 RUser.UserExists FUNCLIONenmmmiiiiiiii e 350
B 20 I & T 0 1o - o1 352
3.17.1 RWS.GetThinClientList Procedurecccoorerininiiniininineccecins 352

Reliance 4 - Scripts N

I Reliance 4 - Scripts

1 Introduction

About Visual Basic Script

Visual Basic Script, or VBScript for short, is a scripting language developed by Microsoft.
The code written using a scripting language is interpreted when executed. This is in
contrast to programming languages where the code must be compiled and linked before
it can be executed. VBScript is designed for writing scripts for programs running on the
Windows operating systems.

About this document

This document contains an introduction to VBScript, provides help on the basic
procedures and functions and points out some basic syntax rules. For detailed
information on VBScript, see the original help.

In addition to help on VBScript, this document also contains detailed information on

Reliance-defined objects, which enable you to access the Reliance runtime environment
from scripts.

Information on VBScript and Reliance is also available on the Internet at:

http://msdn2.microsoft.com/en-us/library/ms950396.aspx

www.reliance.cz

Reliance 4 - Scripts N

http://msdn2.microsoft.com/en-us/library/ms950396.aspx
http://www.Reliance.cz

n Syntax of procedure and function calls

I Reliance 4 - Scripts

Syntax of procedure and function calls n

2 VBScript Language Reference

2.1 Syntax of procedure and function calls

A function is a routine that returns a value when it executes. A procedure is a routine that
does not return a value. In VBScript, there is a syntax difference between calling a procedure
and function.

When calling a procedure with parameters, the parameters cannot be enclosed in
parentheses.

When calling a function with parameters, the parameters cannot be enclosed in parentheses
if the return value is not processed. Otherwise, the parameters must be enclosed in
parentheses.

For detailed information on procedures and functions in VBScript, see the original help.

Example

Dim ArrayOfNumbers(10)

Dim Response

[

A procedure, the parameters are not enclosed in parentheses.
Erase ArrayOfNumbers

[

The return value will be processed,
" the parameters are enclosed in parentheses.
Response = MsgBox('"Continue?", vbYesNo, "Confirm")
If Response = vbYes Then

r

Else

End If
" The return value will not be processed,

the parameters are not enclosed in parentheses.
MsgBox "Finished.", vbOKOnly, "Information"

Reliance 4 - Scripts N

n Working with properties and methods of objects

2.2 Working with properties and methods of objects

VBScript enables you to work with objects. Using a reference to an object, it is possible to
access properties and call methods (procedures and functions) of the object.

Syntax

MyObject. Functionl

When accessing properties of an object, separate the object reference and the name of
the property by a period. When calling a method of an object, separate the object
reference and the name of the method by a period. Moreover, a method call must
comply with the syntax of procedure and function calls.

For detailed information on objects in VBScript, see the original help.

Example

Dim fso, MyFile

' Create an object for working with files.

Set fso = CreateObject("Scripting. FileSystemObject")

" Create the text file C:\testfile.txt

" by calling a method, which returns another object.

Set MyFile = fso.CreateTextFile("C: \testfile. txt", True)

' Write a single line to the file by calling the WriteLine method.
MyFile. WriteLine("This is a test. ")

MyFile.Close ' Close the file by calling the Close method.
Set MyFile = Nothing

Set fso = Nothing

I Reliance 4 - Scripts

Data Type Functions ﬂ

2.3 Data Type Functions

2| cBool Function

W

2| CByte Function
2| CCur Function

W

| cDate Function
2| cDbl Function
2| CInt Function

W

W

2| CLng Function

W

2| CSng Function
2| CStr Function

W

W

2| Fix Function

W

2| Int Function
2| IsArray Function

W

2| IsDate Function
2| IsEmpty Function
2| IsNull Function

W

2| IsNumeric Function

2| IsObject Function

W

2| TypeName Function

W

2| VarType Function

2.3.1 CBool Function

Returns an expression that has been converted to a Variant of subtype Boolean.
Syntax

CBool(Expression)

The Expression argument is any valid expression.

Reliance 4 - Scripts N

n Data Type Functions

Remarks

If Expression is zero, False is returned; otherwise, True is returned. If Expression can't be
interpreted as a numeric value, a run-time error occurs.

Bl Data Type Functions

Bl conversion Functions

Example

The following example uses the CBool function to convert an expression to a Boolean. If
the expression evaluates to a nonzero value, CBool returns True; otherwise, it returns

False.

Dim A, B, Check

A =5

B =5 ' Initialize variables.
Check = CBool(A = B) ' Check contains True.
A =20 ' Define variable.
Check = CBool(A) ' Check contains False.

2.3.2 CByte Function

Returns an expression that has been converted to a Variant of subtype Byte.

Syntax

CByte(Expression)

The Expression argument is any valid expression.

Remarks

In general, you can document your code using the subtype conversion functions to show
that the result of some operation should be expressed as a particular data type rather
than the default data type. For example, use CByte to force byte arithmetic in cases
where currency, single-precision, double-precision, or integer arithmetic normally would
occur.

I Reliance 4 - Scripts

Data Type Functions

Use the CByte function to provide internationally aware conversions from any other data
type to a Byte subtype. For example, different decimal separators are properly
recognized depending on the locale setting of your system, as are different thousand
separators.

If Expression lies outside the acceptable range for the Byte subtype, an error occurs.

Bl Data Type Functions

&l Conversion Functions

Example
The following example uses the CByte function to convert an expression to a byte.
Dim MyDouble, MyByte

MyDouble = 125.5678 " MyDouble is a Double.
MyByte = CByte(MyDouble) ' MyByte contains 126.

2.3.3 CCur Function

Returns an expression that has been converted to a Variant of subtype Currency.
Syntax

CCur(Expression)

The Expression argument is any valid expression.

Remarks

In general, you can document your code using the subtype conversion functions to show
that the result of some operation should be expressed as a particular data type rather
than the default data type. For example, use CCur to force currency arithmetic in cases
where integer arithmetic normally would occur.

You should use the CCur function to provide internationally aware conversions from any
other data type to a Currency subtype. For example, different decimal separators and
thousands separators are properly recoghized depending on the locale setting of your
system.

Bl Data Type Functions

Reliance 4 - Scripts N

n Data Type Functions

Bl conversion Functions

Example

The following example uses the CCur function to convert an expression to a Currency.

Dim MyDouble, MyCurr

MyDouble = 543.214588 ' MyDouble is a Double.

" Convert result of MyDouble * 2 (1086.429176) to a Currency (1086.4292).
MyCurr = CCur(MyDouble * 2)

2.3.4 CDate Function

Returns an expression that has been converted to a Variant of subtype Date.
Syntax

CDate(Date)

The Date argument is any valid date expression.

Remarks

Use the IsDate function to determine if Date can be converted to a date or time. CDate
recognizes date literals and time literals as well as some numbers that fall within the
range of acceptable dates. When converting a number to a date, the whole number
portion is converted to a date. Any fractional part of the number is converted to a time of
day, starting at midnight.

CDate recognizes date formats according to the locale setting of your system. The
correct order of day, month, and year may not be determined if it is provided in a format
other than one of the recognized date settings. In addition, a long date format is not
recognized if it also contains the day-of-the-week string.

Bl Data Type Functions

Bl conversion Functions

I Reliance 4 - Scripts

Data Type Functions ﬂ

Example

The following example uses the CDate function to convert a string to a date. In general,
hard coding dates and times as strings (as shown in this example) is not recommended.
Use date and time literals (suchas#10/19/19624#, #4: 45: 23 PM#) instead.

Dim MyShortTime, MyDate, MyTime

MyDate = "October 19, 1962" ' Define date
MyShortDate = CDate(MyDate) ' Convert to Date data type.
MyTime = "4:35:47 PM" " Define time.
MyShortTime = CDate(MyTime) ' Convert to Date data type.

2.3.5 CDbI Function

Returns an expression that has been converted to a Variant of subtype Double.
Syntax

CDbl(Expression)

The Expression argument is any valid expression.

Remarks

In general, you can document your code using the subtype conversion functions to show
that the result of some operation should be expressed as a particular data type rather
than the default data type. For example, use CDbl or CSng to force double-precision or
single-precision arithmetic in cases where currency or integer arithmetic normally would
occur.

Use the CDbI function to provide internationally aware conversions from any other data type
to a Double subtype. For example, different decimal separators and thousands separators are
properly recognized depending on the locale setting of your system.

Bl Data Type Functions

|l conversion Functions

Example

This example uses the CDbl function to convert an expression to a Double.

Dim MyCurr, MyDouble

Reliance 4 - Scripts N

n Data Type Functions

MyCurr = CCur(234.456784) ' MyCurr is a Currency (234.4567).
' Convert result to a Double (19.2254576).
MyDouble = CDbl(MyCurr * 8.2 * 0.01)

2.3.6 Cint Function

Returns an expression that has been converted to a Variant of subtype Integer.
Syntax

Cint(Expression)

The Expression argument is any valid expression.

Remarks

In general, you can document your code using the subtype conversion functions to show
that the result of some operation should be expressed as a particular data type rather
than the default data type. For example, use ClInt or CLng to force integer arithmetic in
cases where currency, single-precision, or double-precision arithmetic normally would
occur.

Use the CInt function to provide internationally aware conversions from any other data
type to an Integer subtype. For example, different decimal separators are properly
recognized depending on the locale setting of your system, as are different thousand
separators.

If Expression lies outside the acceptable range for the Integer subtype, an error occurs.

NOTE

Cint differs from the Fix and Int functions, which truncate, rather than round, the
fractional part of a number. When the fractional part is exactly 0.5, the ClInt function
always rounds it to the nearest even number. For example, 0.5 rounds to O, and 1.5
rounds to 2.

Bl Data Type Functions

Bl conversion Functions

Example

The following example uses the Clnt function to convert a value to an Integer.

I Reliance 4 - Scripts

Data Type Functions

Dim MyDouble, MyInt
MyDouble = 2345. 5678 " MyDouble is a Double.
MyInt = CInt(MyDouble) ' MyInt contains 2346.

2.3.7 CLng Function

Returns an expression that has been converted to a Variant of subtype Long.
Syntax

CLng(Expression)

The Expression argument is any valid expression.

Remarks

In general, you can document your code using the subtype conversion functions to show
that the result of some operation should be expressed as a particular data type rather
than the default data type. For example, use CInt or CLng to force integer arithmetic in
cases where currency, single-precision, or double-precision arithmetic normally would
occur.

Use the CLng function to provide internationally aware conversions from any other data
type to a Long subtype. For example, different decimal separators are properly
recognized depending on the locale setting of your system, as are different thousand
separators.

If Expression lies outside the acceptable range for the Long subtype, an error occurs.

NOTE

CLng differs from the Fix and Int functions, which truncate, rather than round, the
fractional part of a number. When the fractional part is exactly 0.5, the CLng function
always rounds it to the nearest even number. For example, 0.5 rounds to 0, and 1.5
rounds to 2.

Bl Data Type Functions

&l Conversion Functions

Example

The following example uses the CLng function to convert a value to a Long.

Reliance 4 - Scripts N

“ Data Type Functions

Dim MyVall, MyVal2, MyLongl, MyLong2
MyVall = 25427.45

MyVal2 = 25427.55 ' MyVall, MyValZ are Doubles.
MyLongl = CLng(MyVall) ' MyLongl contains 25427.
MyLong2 = CLng(MyVal2) ' MyLongZ2 contains 25428.

2.3.8 CSng Function

Returns an expression that has been converted to a Variant of subtype Single.
Syntax

CSng(Expression)

The Expression argument is any valid expression.

Remarks

In general, you can document your code using the data type conversion functions to
show that the result of some operation should be expressed as a particular data type
rather than the default data type. For example, use CDbl or CSng to force double-
precision or single-precision arithmetic in cases where currency or integer arithmetic
normally would occur.

Use the CSng function to provide internationally aware conversions from any other data
type to a Single subtype. For example, different decimal separators are properly
recognized depending on the locale setting of your system, as are different thousand
separators.

If Expression lies outside the acceptable range for the Single subtype, an error occurs.

Bl Data Type Functions

=l conversion Functions

Example

The following example uses the €Sng function to convert a value to a Single.

Dim MyDoublel, MyDouble2 " MyDoublel, MyDoubleZ are Doubles.
Dim MySinglel, MySingle2

MyDoublel = 75.3421115

MyDouble2 75. 3421555

MySinglel = CSng(MyDoublel) ' MySinglel contains 75.34211.

I Reliance 4 - Scripts

Data Type Functions

MySingle2 = CSng(MyDouble2) ' MySingle2Z contains 75.34216.

2.3.9 CStr Function

Returns an expression that has been converted to a Variant of subtype String.
Syntax

CStr(Expression)

The Expression argument is any valid expression.

Remarks

In general, you can document your code using the data type conversion functions to
show that the result of some operation should be expressed as a particular data type
rather than the default data type. For example, use CStr to force the result to be
expressed as a String.

You should use the CStr function instead of String to provide internationally aware
conversions from any other data type to a String subtype. For example, different decimal
separators are properly recognized depending on the locale setting of your system.

The data in Expression determines what is returned according to the following table.

If Expression is |CStr returns

Boolean A String containing True or False.

Date A String containing a date in the short-date
format of your system.

Null A run-time error.

Empty A zero-length String ("").

Error A String containing the word Error followed

by the error number.

Other numeric A String containing the number.

Bl Data Type Functions

Bl Conversion Functions

Reliance 4 - Scripts N

n Data Type Functions

Example

The following example uses the CStr function to convert a numeric value to a String.

Dim MyDouble, MyString
MyDouble = 437. 324 " MyDouble is a Double.
MyString = CStr(MyDouble) ' MyString contains "437.324".

2.3.10 Fix Function

Returns the integer portion of a number.
Syntax

Fix(Number)

The Number argument can be any valid numeric expression. If Number contains Null,
Null is returned.

Remarks

Both Int and Fix remove the fractional part of Number and return the resulting integer
value.

The difference between Int and Fix is that if Number is negative, Int returns the first
negative integer less than or equal to Number, whereas Fix returns the first negative
integer greater than or equal to Number. For example, Int converts -8.4 to -9, and Fix
converts -8.4 to -8.

Fix(Number) is equivalent to:

Sgn(Number) * Int(Abs(Number))

Bl Data Type Functions
=l conversion Functions

Bl Math Functions

Example

The following examples illustrate how the Int and Fix functions return integer portions of
numbers.

I Reliance 4 - Scripts

Data Type Functions

Dim MyNumber

MyNumber = Int(99.8 ' Returns 99.

)
MyNumber = Fix(99.2) ' Returns 99.
MyNumber = Int(-99.8) ' Returns -100.
MyNumber = Fix(-99.8) ' Returns -99.
MyNumber = Int(-99.2) ' Returns -100.
MyNumber = Fix(-99.2) ' Returns -99.

2.3.11 Int Function

Returns the integer portion of a number.
Syntax

Int(Number)
The Number argument can be any valid numeric expression. If Number contains Null,
Null is returned.
Remarks

Both Int and Fix remove the fractional part of Number and return the resulting integer
value.

The difference between Int and Fix is that if Number is negative, Int returns the first
negative integer less than or equal to Number, whereas Fix returns the first negative
integer greater than or equal to Number. For example, Int converts -8.4 to -9, and Fix
converts -8.4 to -8.

Fix(Number) is equivalent to.

Sgn(Number) * Int(Abs(Number))

Bl Data Type Functions
Bl Conversion Functions

B’ Math Functions

Example

The following examples illustrate how the Int and Fix functions return integer portions of
numbers.

Dim MyNumber

Reliance 4 - Scripts N

n Data Type Functions

99.8
99. 2

" Returns 99.
" Returns 99.

MyNumber = Int
MyNumber = Fix

()

()
MyNumber = Int(-99.8) ' Returns -100.
MyNumber = Fix(-99.8) ' Returns -99.
MyNumber = Int(-99.2) ' Returns -100.
MyNumber = Fix(-99.2) ' Returns -99.

2.3.12 IsArray Function

Returns a Boolean value indicating whether a variable is an array.

Syntax
IsArray(VarName)

The VarName argument can be any variable.

Remarks

IsArray returns True if the variable is an array; otherwise, it returns False. IsArray is
especially useful with variants containing arrays.

Bl Data Type Functions

Bl Array Functions

Example

The following example uses the IsArray function to test whether MyVariable is an array.

Dim MyVariable
Dim MyArray(3)

MyArray(0) = "Sunday"

MyArray(1l) = "Monday"

MyArray(2) = "Tuesday"

MyVariable = IsArray(MyArray) ' MyVariable contains " True'".

2.3.13 IsDate Function

Returns a Boolean value indicating whether an expression can be converted to a date.

Syntax

IsDate(Expression)

I Reliance 4 - Scripts

Data Type Functions

The Expression argument can be any date expression or string expression recognizable
as a date or time.
Remarks

IsDate returns True if the Expression is a date or can be converted to a valid date;
otherwise, it returns False. In Microsoft Windows, the range of valid dates is January 1,
100 A.D. through December 31, 9999 A.D.; the ranges vary among operating systems.

Bl Data Type Functions

Example

The following example uses the IsDate function to determine whether an expression can
be converted to a date.

Dim MyDate, YourDate, NoDate, MyCheck

MyDate = "October 19, 1962"

YourDate = #10/19/62#

NoDate = "Hello"

MyCheck = IsDate(MyDate) ' Returns True.
MyCheck = IsDate(YourDate) ' Returns True.
MyCheck = IsDate(NoDate) ' Returns False.

2.3.14 IsEmpty Function

Returns a Boolean value indicating whether a variable has been initialized.
Syntax

IsEmpty(Expression)

The Expression argument can be any expression. However, because IsEmpty is used to
determine if individual variables are initialized, the Expression argument is most often a
single variable name.

Remarks

IsEmpty returns True if the variable is uninitialized, or is explicitly set to Empty;
otherwise, it returns False. False is always returned if Expression contains more than
one variable.

Reliance 4 - Scripts N

“ Data Type Functions

Bl Data Type Functions

Example

The following example uses the IsEmpty function to determine whether a variable has
been initialized.

Dim MyVar, MyCheck

MyCheck = IsEmpty(MyVar) ' Returns True.
MyVar = Null " Assign Null.

MyCheck = IsEmpty(MyVar) ' Returns False.
MyVar = Empty ' Assign Empty.
MyCheck = IsEmpty(MyVar) ' Returns True.

2.3.15 IsNull Function

Returns a Boolean value that indicates whether an expression contains no valid data (Null).
Syntax

IsNull(Expression)

The Expression argument can be any expression.

Remarks

IsNull returns True if Expression is Null, that is, it contains no valid data; otherwise,
IsNull returns False. If Expression consists of more than one variable, Null in any
constituent variable causes True to be returned for the entire expression.

The Null value indicates that the variable contains no valid data. Null is not the same as
Empty, which indicates that a variable has not yet been initialized. It is also not the same
as a zero-length string ("), which is sometimes referred to as a null string.

IMPORTANT

Use the IsNull function to determine whether an expression contains a Null value.
Expressions that you might expect to evaluate to True under some circumstances, such
as If Var = Null and If Var <> Null, are always False. This is because any expression
containing a Null is itself Null, and therefore, False.

Bl Data Type Functions

I Reliance 4 - Scripts

Data Type Functions

Example

The following example uses the IsNull function to determine whether a variable contains
a Null.

Dim MyVar, MyCheck

MyCheck = IsNull(MyVar) ' Returns False.
MyVar = Null ' Assign Null.

MyCheck = IsNull(MyVar) ' Returns True.
MyVar = Empty ' Assign Empty.
MyCheck = IsNull(MyVar) ' Returns False.

2.3.16 IsNumeric Function

Returns a Boolean value indicating whether an expression can be evaluated as a number.
Syntax

IsNumeric(Expression)

The Expression argument can be any expression.

Remarks

IsNumeric returns True if the entire Expression is recognized as a number; otherwise, it
returns False. IsNumeric returns False if Expression is a date expression.

Bl Data Type Functions

Example

The following example uses the IsNumeric function to determine whether a variable can
be evaluated as a number.

Dim MyVar, MyCheck

MyVar = 53 ' Assign a value.
MyCheck = IsNumeric(MyVar) ' Returns True.
MyVar = "459.95" ' Assign a value.
MyCheck = IsNumeric(MyVar) ' Returns True.
MyVar = "45 Help" ' Assign a value.
MyCheck = IsNumeric(MyVar) ' Returns False.

Reliance 4 - Scripts N

m Data Type Functions

2.3.17 IsObject Function

Returns a Boolean value indicating whether an expression references a valid Automation
object.

Syntax

IsObject(Expression)

The Expression argument can be any expression.

Remarks

IsObject returns True if Expression is a variable of Object subtype or a user-defined
object; otherwise, it returns False.

Bl Data Type Functions

Example

The following example uses the IsObject function to determine if an identifier represents
an object variable.

Dim MyInt, MyCheck, MyObject

Set MyObject = Me

MyCheck = IsObject(MyObject) ' Returns True.
MyCheck = IsObject(MylInt) " Returns False.

2.3.18 TypeName Function

Returns a string that provides Variant subtype information about a variable.
Syntax

TypeName(VarName)

The required VarName argument can be any variable.

Return Values

The TypeName function has the following return values:

I Reliance 4 - Scripts

Data Type Functions “

Value Description

Byte Byte value.

Integer Integer value.

Long Long integer value.

Single Single-precision floating-point value.

Double Double-precision floating-point value.

Currency Currency value.

Decimal Decimal value.

Date Date or time value.

String Character string value.

Boolean Boolean value; True or False.

Empty Unitialized.

Null No valid data.

<Object type> Actual type name of an object.

Object Generic object.

Unknown Unknown object type.

Nothing Ob.ject.variable that doesn't yet refer to an
object instance.

Error Error.

Hl Data Type Functions

Reliance 4 - Scripts N

E Data Type Functions

Example

The following example uses the TypeName function to return information about a
variable.

Dim ArrayVar(4), MyType

NullVar = Null " Assign Null value.
MyType = TypeName("VBScript") ' Returns " String'.
MyType = TypeName(4) " Returns " Integer".
MyType = TypeName(37.50) " Returns " Doublée".
MyType = TypeName(NullVar) " Returns " Null".
MyType = TypeName(ArrayVvar) " Returns "Variant()".

2.3.19 VarType Function

Returns a value indicating the subtype of a variable.
Syntax

VarType(VarName)

The VarName argument can be any variable.

Return Values

The VarType function returns the following values:

Constant Value Description

vbEmpty 0 Empty (uninitialized).

vbNull 1 Null (no valid data).

vbinteger 2 Integer.

vbLong 3 Long integer.

vbSingle 4 Single-precision floating-point
number.

vbDouble 5 Double-precision floating-point
number.

I Reliance 4 - Scripts

Data Type Functions “

vbCurrency 6 Currency.

vbDate 7 Date.

vbString 8 String.

vbObject 9 Automation object.

vbError 10 Error.

vbBoolean 11 Boolean.

vbVariant 12 Variant (used only with arrays of
Variants).

vbDataObject 13 A data-access object.

vbByte 17 Byte.

vbArray 8192 Array.

Remarks

The VarType function never returns the value for Array by itself. It is always added to
some other value to indicate an array of a particular type. The value for Variant is only
returned when it has been added to the value for Array to indicate that the argument to
the VarType function is an array. For example, the value returned for an array of integers
is calculated as 2 + 8192, or 8194. If an object has a default property, VarType (Object)
returns the type of its default property.

NOTE

These constants are specified by VBScript. As a result, the names can be used anywhere
in your code in place of the actual values.

Bl Data Type Functions

Reliance 4 - Scripts N

m Data Type Functions

Example

The following example uses the VarType function to determine the subtype of a variable.

Dim MyCheck

MyCheck = VarType(300) " Returns Z.
MyCheck = VarType(#10/19/62#) ' Returns 7.
MyCheck = VarType("VBScript") ' Returns 8.

I Reliance 4 - Scripts

2.4 Date and Time Functions

=| Date Function

»| DateAdd Function
»| DateDiff Function
»| DatePart Function

W

W

W

W

| DateSerial Function

| pateValue Function

W

2| Day Function

2| Hour Function

W

2| Minute Function
2| Month Function
2| MonthName Function

2] Now Function

W

2| Second Function
2| Time Function
2| Timer Function

2| TimeSerial Function

W

2| TimeValue Function

2| WeekDay Function

W

2| WeekDayName Function

2| Year Function

2.4.1 Date Function

Returns the current system date.
Syntax

Date

Date and Time Functions “

Reliance 4 - Scripts N

m Date and Time Functions

Bl Date and Time Functions

Example

The following example uses the Date function to return the current system date.

Dim MyDate

MyDate = Date ' MyDate contains the current system date.

2.4.2 DateAdd Function

Returns a date to which a specified time interval has been added.
Syntax

DateAdd(/nterval, Number, Date)
The DateAdd function syntax has these parts:

Part Description

Interval Required. String expression that is the interval you
want to add. See Settings section for values.

Number Rquwed. Numeric expression that is the numbgr
of interval you want to add. The numeric
expression can either be positive, for dates in the
future, or negative, for dates in the past.

Date Required. Variant or literal representing the date
to which Interval is added.

Settings

The Interval argument can have the following values:
Setting Description

Wy Year

uarter
q Q

I Reliance 4 - Scripts

Date and Time Functions

m Month

y Day of year

d Day

W Weekday

W Week of year

h Hour

n Minute

s Second
Remarks

You can use the DateAdd function to add or subtract a specified time interval from a
date. For example, you can use DateAdd to calculate a date 30 days from today or a
time 45 minutes from now. To add days to Date, you can use Day of Year ("y"), Day ("d"),
or Weekday ("w").

The DateAdd function won't return an invalid date. The following example adds one
month to January 31.

NewDate = DateAdd("m", 1, "31-Jan-95")

In this case, DateAdd returns 28-Feb-95, not 31-Feb-95. If Date is 31-Jan-96, it returns
29-Feb-96 because 1996 is a leap year.

If the calculated date would precede the year 100, an error occurs.

If number isn't a Long value, it is rounded to the nearest whole number before being
evaluated.

|l Date and Time Functions

Reliance 4 - Scripts N

“ Date and Time Functions

2.4.3 DateDiff Function

Returns the number of intervals between two dates.
Syntax

DateDiff(/nterval, Datel, Date2[, FirstDayOfWeek|, FirstWeekOfYear]])

The DateDiff function syntax has these parts:

Part Description

Required. String expression that is the
interval you want to use to calculate the
differences between Datel and Date2. See
Settings section for values.

Interval

Required. Date expressions. Two dates you

Datel, Date2 _ _
want to use in the calculation.

Optional. Constant that specifies the day of
the week. If not specified, Sunday is
assumed. See Settings section for values.

FirstDayOfWeek

Optional. Constant that specifies the first
week of the year. If not specified, the first
week is assumed to be the week in which
January 1 occurs. See Settings section for
values.

FirstWeekOfYear

Settings
The Interval argument can have the following values:
Setting Description

Y
yyyy ear

Quarter

I Reliance 4 - Scripts

Date and Time Functions “

m Month

y Day of year
d Day

W Weekday

W Week of year
h Hour

n Minute

s Second

The FirstDayOfWeek argument can have the following values:

Constant Value |Description

0 Use National Language Support

vbUseSystem _
(NLS) API setting.

1 Sunday (default)

vbSunday

vbMonday 2 Monday
vbTuesday 3 |Tuesday
vbWednesday 4 |Wednesday
vbThursday 5 |Thursday
vbFriday 6 Friday
vbSaturday 7 |Saturday

The FirstWeekOfYear argument can have the following values:

Reliance 4 - Scripts N

n Date and Time Functions

Constant Value Description

0 Use National Language Support

vbUseSystem _
(NLS) API setting.

1 Start with the week in which
January 1 occurs (default).

vbFirstJanl

2 Start with the week that has at

vbFirstFourDays _
least four days in the new year.

3 Start with the first full weekof the
new year.

vbFirstFullWeek

Remarks

You can use the DateDiff function to determine how many specified time intervals exist
between two dates. For example, you might use DateDiff to calculate the number of days
between two dates, or the number of weeks between today and the end of the year.

To calculate the number of days between Datel and Date2, you can use either Day of
year ("y") or Day ("d"). When Interval is Weekday ("w"), DateDiff returns the number of
weeks between the two dates. If Datel falls on a Monday, DateDiff counts the number of
Mondays until Date2. It counts Date2 but not Datel. If Interval is Week ("ww"), however,
the DateDiff function returns the number of calendar weeks between the two dates. It
counts the number of Sundays between Datel and Date2. DateDiff counts Date2 if it
falls on a Sunday; but it doesn't count Datel, even if it does fall on a Sunday.

If Datel refers to a later point in time than Date2, the DateDiff function returns a
negative number.

The FirstDayOfWeek argument affects calculations that use the "w" and "ww" interval
symbols.

If Datel or Date2 is a date literal, the specified year becomes a permanent part of that
date. However, if Datel or Date2 is enclosed in quotation marks (" ") and you omit the
year, the current year is inserted in your code each time the Datel or Date2 expression
is evaluated. This makes it possible to write code that can be used in different years.

When comparing December 31 to January 1 of the immediately succeeding year,
DateDiff for Year ("yyyy") returns 1 even though only a day has elapsed.

I Reliance 4 - Scripts

Bl Date and Time Functions

Example

Date and Time Functions n

The following example uses the DateDiff function to display the number of days between

a given date and today.

Function DiffADate(TheDate)

DiffADate = "Days from today: " & DateDiff("d",

End Function

2.4.4 DatePart Function

Returns the specified part of a given date.

Syntax

DatePart(Interval, Date[, FirstDayOfWeek|, FirstWeekOfYear]])

The DatePart function syntax has these parts:

Part Description

Interval))
interval of time you want to return. See
Settings section for values.

Date Required. Date expression you want to
evaluate.

FirstDayofWeek Optional. Constant that sp.e.cmes the day of
the week. If not specified, Sunday
assumed. See Settings section for values.

FirstWeekOfYear Optional. Constant that specifies the first

week of the year. If not specified, the first
week is assumed to be the week in which
January 1 occurs. See Settings section for

values.

Now,

Required. String expression that

TheDate)

is the

is

Reliance 4 - Scripts N

n Date and Time Functions

Settings

The Interval argument can have the following values:

Setting Description
Wy Year

q Quarter

m Month

y Day of year
d Day

w Weekday
ww Week of year
h Hour

n Minute

S Second

The FirstDayOfWeek argument can have the following values:

Constant

vbUseSystem

vbSunday
vbMonday
vbTuesday
vbWednesday
vbThursday
vbFriday

vbSaturday

I Reliance 4 - Scripts

Value

0

N o g A W] NP

Description

Use National Language Support
(NLS) API setting.

Sunday (default)
Monday
Tuesday
Wednesday
Thursday

Friday

Saturday

Date and Time Functions n

The FirstWeekOfYear argument can have the following values:

Constant Value Description

vbUseSystem 0 Use National Language Support
(NLS) API setting.

vbFirstlanl 1 Start with the week in which
January 1 occurs (default).

vbFirstFourDays 2 Start with the week that has at
least four days in the new year.

vbFirstFullWeek 3 Start with the first full weekof the
new year.

Remarks

You can use the DatePart function to evaluate a date and return a specific interval of
time. For example, you might use DatePart to calculate the day of the week or the
current hour.

The FirstDayOfWeek argument affects calculations that use the "w" and "ww" interval
symbols.

If Date is a date literal, the specified year becomes a permanent part of that date.
However, if Date is enclosed in quotation marks (" "), and you omit the year, the current
year is inserted in your code each time the Date expression is evaluated. This makes it
possible to write code that can be used in different years.

Bl Date and Time Functions

Example

This example takes a date and, using the DatePart function, displays the quarter of the
year in which it occurs.

Function GetQuarter(TheDate)
GetQuarter = DatePart("g", TheDate)
End Function

Reliance 4 - Scripts N

m Date and Time Functions

2.4.5 DateSerial Function

Returns a Variant of subtype Date for a specified year, month, and day.
Syntax
DateSerial(Year, Month, Day)
The DateSerial function syntax has these parts:
Part Description

Year Number between 100 and 9999, inclusive, or a
numeric expression.

Month Any numeric expression.
Day Any numeric expression.
Remarks

To specify a date, such as December 31, 1991, the range of numbers for each
DateSerial argument should be in the accepted range for the unit; that is, 1-31 for days
and 1-12 for months. However, you can also specify relative dates for each argument
using any numeric expression that represents some number of days, months, or years
before or after a certain date.

For the Year argument, values between O and 99, inclusive, are interpreted as the years
1900-1999. For all other Year arguments, use a complete four-digit year (for example,
1800).

When any argument exceeds the accepted range for that argument, it increments to the
next larger unit as appropriate. For example, if you specify 35 days, it is evaluated as one
month and some number of days, depending on where in the year it is applied. However,
if any single argument is outside the range -32,768 to 32,767, or if the date specified by
the three arguments, either directly or by expression, falls outside the acceptable range
of dates, an error occurs.

Bl Date and Time Functions

|l conversion Functions

I Reliance 4 - Scripts

Date and Time Functions m

Example

The following example uses numeric expressions instead of absolute date numbers. Here
the DateSerial function returns a date that is the day before the first day (1 - 1) of two
months before August (8 - 2) of 10 years before 1990 (1990 - 10); in other words, May
31, 1980.

Dim MyDatel, MyDate2
MyDatel = DateSerial(1970, 1, 1) " Returns January 1, 1970.
MyDate2 = DateSerial(1990 - 10, 8 - 2, 1 - 1) ' Returns May 31, 1980.

2.4.6 DateValue Function

Returns a Variant of subtype Date.
Syntax

DateValue(Date)

The Date argument is normally a string expression representing a date from January 1,
100 through December 31, 9999. However, Date can also be any expression that can
represent a date, a time, or both a date and time, in that range.

Remarks

If the Date argument includes time information, DateValue doesn't return it. However, if
Date includes invalid time information (such as "89:98"), an error occurs.

If Date is a string that includes only numbers separated by valid date separators,
DateValue recognizes the order for month, day, and year according to the short date
format you specified for your system. DateValue also recognizes unambiguous dates that
contain month names, either in long or abbreviated form. For example, in addition to
recognizing 12/30/1991 and 12/30/91, DateValue also recognizes December 30,
1991 and Dec 30, 1991.

If the year part of Date is omitted, DateValue uses the current year from your computer's
system date.

Bl Date and Time Functions

|l conversion Functions

Reliance 4 - Scripts N

“ Date and Time Functions

Example

The following example uses the DateValue function to convert a string to a date. You can
also use date literals to directly assign a date to a Variant variable, for example, MyDate
= #9/11/63#.

Dim MyDate
MyDate = DateValue("September 11, 1963") ' Return a date.

2.4.7 Day Function

Returns a whole number between 1 and 31, inclusive, representing the day of the month.
Syntax

Day(Date)

The Date argument is any expression that can represent a date. If Date contains Null,
Null is returned.

Bl Date and Time Functions

|l conversion Functions

Example

The following example uses the Day function to obtain the day of the month from a
specified date.

Dim MyDay
MyDay = Day('"October 19, 1962") ' MyDay contains 19.

2.4.8 Hour Function

Returns a whole number between O and 23, inclusive, representing the hour of the day.
Syntax

Hour(Time)

The Time argument is any expression that can represent a time. If Time contains Null,
Null is returned.

I Reliance 4 - Scripts

Date and Time Functions

|l Date and Time Functions

Bl Conversion Functions

Example

The following example uses the Hour function to obtain the hour from the current time.

Dim MyTime, MyHour
MyTime = Now

' MyHour contains the number representing the current hour.

MyHour = Hour(MyTime)

2.4.9 Minute Function

Returns a whole number between O and 59, inclusive, representing the minute of the hour.
Syntax

Minute(Time)

The Time argument is any expression that can represent a time. If Time contains Null,
Null is returned.

|l Date and Time Functions

Bl Conversion Functions

Example

The following example uses the Minute function to return the minute of the hour.

Dim MyVar
MyVar = Minute(Now)

2.4.10 Month Function

Returns a whole number between 1 and 12, inclusive, representing the month of the year.

Reliance 4 - Scripts N

m Date and Time Functions

Syntax

Month(Date)

The Date argument is any expression that can represent a date. If Date contains Null,
Null is returned.

|l Date and Time Functions

Bl conversion Functions

Example

The following example uses the Month function to return the current month.

Dim MyVar
' MyVar contains the number corresponding to the current month.
MyVar = Month(Now)

2.4.11 MonthName Function

Returns a string indicating the specified month.
Syntax
MonthName(Month|[, Abbreviate])
The MonthName function syntax has these parts:
Part Description

Month Required. The numeric designation of the
month. For example, January is 1, February
is 2, and so on.

Abbreviate Optional. Boolean value that indicates if the
month name is to be abbreviated. If omitted,
the default is False, which means that the
month name is not abbreviated.

Bl Date and Time Functions

I Reliance 4 - Scripts

Date and Time Functions “

Bl String Functions

Example

The following example uses the MonthName function to return an abbreviated month
name for a date expression.

Dim MyVar
MyVar = MonthName(10, True) ' MyVar contains " Oct".

2.4.12 Now Function

Returns the current date and time according to the setting of your computer's system date
and time.

Syntax

Now

|l Date and Time Functions

Example

The following example uses the Now function to return the current date and time.

Dim MyVar

MyVar = Now ' MyVar contains the current date and time.

2.4.13 Second Function

Returns a whole number between 0 and 59, inclusive, representing the second of the minute.
Syntax

Second(Time)

The Time argument is any expression that can represent a time. If Time contains Null,
Null is returned.

Bl Date and Time Functions

|l conversion Functions

Reliance 4 - Scripts N

m Date and Time Functions

Example

The following example uses the Second function to return the current second.

Dim MySec
' MySec contains the number representing the current second.
MySec = Second(Now)

2.4.14 Time Function

Returns a Variant of subtype Date indicating the current system time.
Syntax
Time

Bl Date and Time Functions

Example

The following example uses the Time function to return the current system time.

Dim MyTime

MyTime = Time ' Return current system time.

2.4.15 Timer Function

Returns the number of seconds that have elapsed since 12:00 AM (midnight).

Syntax

Timer

|l Date and Time Functions

Example

The following example uses the Timer function to determine the time it takes to iterate a
For...Next loop N times.

I Reliance 4 - Scripts

Date and Time Functions “

Function TimeIt(N)

Dim StartTime, EndTime

StartTime = Timer

For T =1 To N

Next

EndTime = Timer

TimeIt = EndTime - StartTime
End Function

2.4.16 TimeSerial Function

Returns a Variant of subtype Date containing the time for a specific hour, minute, and
second.

Syntax

TimeSerial(Hour, Minute, Second)

The TimeSerial function syntax has these parts:

Part Description
Hour Number between 0 (12:00 A.M.) and 23 (11:00 P.
M.), inclusive, or a numeric expression.
Minute Any numeric expression.
Second Any numeric expression.
Remarks

To specify a time, such as 11:59:59, the range of numbers for each TimeSerial
argument should be in the accepted range for the unit; that is, 0-23 for hours and 0-59
for minutes and seconds. However, you can also specify relative times for each argument
using any numeric expression that represents some number of hours, minutes, or
seconds before or after a certain time.

When any argument exceeds the accepted range for that argument, it increments to the
next larger unit as appropriate. For example, if you specify 75 minutes, it is evaluated as
one hour and 15 minutes. However, if any single argument is outside the range -32,768
to 32,767, or if the time specified by the three arguments, either directly or by
expression, causes the date to fall outside the acceptable range of dates, an error
occurs.

Reliance 4 - Scripts N

n Date and Time Functions

|l Date and Time Functions

Bl conversion Functions

Example

The following example uses expressions instead of absolute time numbers. The
TimeSerial function returns a time for 15 minutes before (-15) six hours before noon (12
- B), or 5:45:00 A.M.

Dim MyTime
MyTime = TimeSerial(1l2 - 6, =15, 0) ' Returns 5:45:00 AM

2.4.17 TimeValue Function

Returns a Variant of subtype Date containing the time.

Syntax
TimeValue(Time)

The Time argument is usually a string expression representing a time from 0:00:00
(12:00:00 A.M.) to 23:59:59 (11:59:59 P.M.), inclusive. However, Time can also be any
expression that represents a time in that range. If Time contains Null, Null is returned.

Remarks

You can enter valid times using a 12-hour or 24-hour clock. For example, "2:24PM" and
"14:24" are both valid Time arguments. If the Time argument contains date information,
TimeValue doesn't return the date information. However, if Time includes invalid date
information, an error occurs.

Bl Date and Time Functions

Bl conversion Functions

Example

The following example uses the TimeValue function to convert a string to a time. You can
also use date literals to directly assign a time to a Variant (for example, MyTime =
#4:35:17 PM#).

I Reliance 4 - Scripts

Date and Time Functions “

Dim MyTime
MyTime = TimeValue("4:35:17 PM") ' MyTime contains 4:35:17 PM

2.4.18 Weekday Function

Returns a whole number representing the day of the week.
Syntax
Weekday(Date/, FirstDayOfWeek])
The Weekday function syntax has these parts:
Part Description

Date Any expression that can represent a date. If
Date contains Null, Null is returned.

FirstDayOfWeek A constant that specifies the first day of the
week. If omitted, vbSunday is assumed.

Settings
The FirstDayOfWeek argument has these settings:

Constant Value |Description

vbUseSystem 0 Use National Language Support
(NLS) API setting.

vbSunday 1 Sunday

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

Reliance 4 - Scripts N

n Date and Time Functions

Return Values

The Weekday function can return any of these values:

Constant Value |Description
vbSunday 1 Sunday
vbMonday 2 Monday
vbTuesday 3 Tuesday
vbWednesday 4 Wednesday
vbThursday 5 Thursday
vbFriday 6 Friday
vbSaturday 7 Saturday

Bl Date and Time Functions

|l conversion Functions

Example

The following example uses the Weekday function to obtain the day of the week from a
specified date.

Dim MyDate, MyWeekDay

MyDate = #October 19, 1962# ' Assign a date.

' MyWeekDay contains 6 because MyDate represents a Friday.
MyWeekDay = Weekday(MyDate)

2.4.19 WeekdayName Function

Returns a string indicating the specified day of the week.
Syntax

WeekdayName(WeekDay[, Abbreviate[, FirstDayOfWeek]])

The WeekdayName function syntax has these parts:

I Reliance 4 - Scripts

Part

WeekDay

Abbreviate

FirstDayOfWeek

Settings

Description

Required. The numeric designation for the
day of the week. Numeric value of each day
depends on setting of the FirstDayOfWeek
setting.

Optional. Boolean value that indicates if the
weekday name is to be abbreviated. If
omitted, the default is False, which means
that the weekday name is not abbreviated.

Optional. Numeric value indicating the first
day of the week. See Settings section for
values.

The FirstDayOfWeek argument can have the following values:

Constant

vbUseSystem

vbSunday
vbMonday
vbTuesday
vbWednesday
vbThursday
vbFriday

vbSaturday

Value |Description

Use National Language Support
(NLS) API setting.

0
Sunday
Monday
Tuesday
Wednesday
Thursday

Friday

N O o B~ W NP

Saturday

|l Date and Time Functions

Bl String Functions

Date and Time Functions “

Reliance 4 - Scripts N

n Date and Time Functions

Example

The following example uses the WeekDayName function to return the specified day.

Dim MyDate
MyDate = WeekDayName(6, True) ' MyDate contains Fri.

2.4.20 Year Function

Returns a whole hnumber representing the year.
Syntax

Year(Date)

The Date argument is any expression that can represent a date. If Date contains Null,
Null is returned.

Bl Date and Time Functions

|l conversion Functions

Example

The following example uses the Year function to obtain the year from a specified date.

Dim MyDate, MyYear
MyDate = #October 19, 1962# ' Assign a date.
MyYear = Year(MyDate) ' MyYear contains 1962.

I Reliance 4 - Scripts

Array Functions

2.5 Array Functions

2| Array Function

W

2| Dim Statement

W

| Erase Statement

W

2| Filter Function

W

2| IsArray Function
2| Join Function

2| LBound Function

W

W

| Private Statement
2| Public Statement

W

W

| ReDim Statement
2 Split Function

W

2| UBound Function

2.5.1 Array Function

Returns a Variant containing an array.
Syntax

Array(ArgList)
The required ArgList argument is a comma-delimited list of values that are assigned to
the elements of an array contained with the Variant. If no arguments are specified, an
array of zero length is created.
Remarks
The notation used to refer to an element of an array consists of the variable name
followed by parentheses containing an index number indicating the desired element.
NOTE

A variable that is not declared as an array can still contain an array. Although a Variant
variable containing an array is conceptually different from an array variable containing
Variant elements, the array elements are accessed in the same way.

Reliance 4 - Scripts N

“ Array Functions

Bl Array Functions

Example

In the following example, the first statement creates a variable named A. The second
statement assigns an array to variable A. The last statement assigns the value contained
in the second array element to another variable.

Dim A
A = Array(10, 20, 30)
B = A(2) ' B is now 30.

2.5.2 Dim Statement

Declares variables and allocates storage space.
Syntax

Dim VarName[([Subscripts])][, VarName[([Subscripts])]]...

The Dim statement syntax has these parts:
Part Description

VarName Name of the variable; follows standard
variable naming conventions.

Subscripts Dimensions of an array variable; up to 60
multiple dimensions may be declared. The
Subscripts argument uses the following
syntax:

upperbound|, upperbound]...

The lower bound of an array is always zero.

Remarks

Variables declared with Dim at the script level (globally) are available to all procedures in
all scripts within the same thread (similar to Public statement). At the procedure level,
variables are available only within the procedure.

I Reliance 4 - Scripts

Array Functions “

You can also use the Dim statement with empty parentheses to declare a dynamic array.
After declaring a dynamic array, use the ReDim statement within a procedure to define
the number of dimensions and elements in the array. If you try to redeclare a dimension
for an array variable whose size was explicitly specified in a Dim statement, an error
occurs.

TIP

When you use the Dim statement in a procedure, you generally put the Dim statement at
the beginning of the procedure.

Bl Array Functions

Bl vBScript Statements

Example

The following examples illustrate the use of the Dim statement.

Dim Names(9) " Declare an array with 10 elements.
Dim Names() " Declare a dynamic array.

Dim MyVar, MyNum ' Declare two variables.

2.5.3 Erase Statement

Reinitializes the elements of fixed-size arrays and deallocates dynamic-array storage space.
Syntax

Erase Array

The Array argument is the name of the array variable to be erased.

Remarks

It is important to know whether an array is fixed-size (ordinary) or dynamic because Erase
behaves differently depending on the type of array. Erase recovers no memory for fixed-
size arrays. Erase sets the elements of a fixed array as follows:

Type of array Effect of Erase on fixed-array elements

Fixed numeric array |Sets each element to zero.

Reliance 4 - Scripts N

m Array Functions

Fixed string array Sets each element to zero-length ("").

Array of objects Sets each element to the special value
Nothing.

Erase frees the memory used by dynamic arrays. Before your program can refer to the
dynamic array again, it must redeclare the array variable's dimensions using a ReDim
statement.

Bl Array Functions

Bl vBScript Statements

Example

The following example illustrates the use of the Erase statement.

Dim NumArray(9)

Dim DynamicArray()

ReDim DynamicArray(9) ' Allocate storage space.
Erase NumArray ' Each element is reinitialized.
Erase DynamicArray " Free memory used by array.

2.5.4 Filter Function

Returns a zero-based array containing a subset of a string array based on a specified filter
criteria.

Syntax
Filter(/nputStrings, Valuel, Include[, Compare]])
The Filter function syntax has these parts:
Part Description

InputStrings Required. One-dimensional array of strings to
be searched.

Value Required. String to search for.

I Reliance 4 - Scripts

Array Functions “

Include Optional. Boolean value indicating whether
to return substrings that include or exclude
Value. If Include is True, Filter returns the
subset of the array that contains Value as a
substring. If Include is False, Filter returns
the subset of the array that does not contain
Value as a substring.

Compare Optional. Numeric value indicating the kind
of string comparison to use. See Settings
section for values.

Settings

The Compare argument can have the following values:

Constant Value Description

vbBinaryCompare 0 Perform a binary comparison.

vbTextCompare 1 Perform a textual comparison.
Remarks

If no matches of Value are found within InputStrings, Filter returns an empty array. An
error occurs if InputStrings is Null or is not a one-dimensional array.

The array returned by the Filter function contains only enough elements to contain the
number of matched items.

Bl Array Functions

Example

The following example uses the Filter function to return the array containing the search
criteria "Mon".

Dim MyIndex
Dim MyArray (3)
MyArray(0) = "Sunday"

Reliance 4 - Scripts N

m Array Functions

MyArray(1l) = "Monday"
MyArray(2) = "Tuesday"
MyIndex = Filter(MyArray, "Mon") ' MyIndex(0) contains " Monday'.

2.5.5 IsArray Function

Returns a Boolean value indicating whether a variable is an array.

Syntax
IsArray(VarName)

The VarName argument can be any variable.

Remarks

IsArray returns True if the variable is an array; otherwise, it returns False. IsArray is
especially useful with variants containing arrays.

Bl Data Type Functions
Bl Array Functions

Example

The following example uses the IsArray function to test whether MyVariable is an array.

Dim MyVariable
Dim MyArray(3)

MyArray(0) = "Sunday"

MyArray(1l) = "Monday"

MyArray(2) = "Tuesday"

MyVariable = IsArray(MyArray) ' MyVariable contains " True".

2.5.6 Join Function

Returns a string created by joining a number of substrings contained in an array.
Syntax

Join(List[, Delimiter])

The Join function syntax has these parts:

I Reliance 4 - Scripts

Array Functions “

Part Description

List Required. One-dimensional array containing
substrings to be joined.

Delimiter |Optional. String character used to separate the
substrings in the returned string. If omitted, the
space character (" ") is used. If Delimiter is a zero-
length string, all items in the list are concatenated
with no delimiters.

Bl Array Functions

Example

The following example uses the Join function to join the substrings of MyArray.

Dim MyString
Dim MyArray(4)

MyArray(0) = "Mr."
MyArray(1l) = "John"
MyArray(2) = "Doe"
MyArray(3) = "III"
MyString = Join(MyArray) ' MyString contains " Mr. John Doe III".

2.5.7 LBound Function

Returns the smallest available subscript for the indicated dimension of an array.
Syntax

LBound(ArrayName[, Dimension])

The LBound function syntax has these parts:

Part Description

Name of the array variable; follows standard

ArrayName) } i
variable naming conventions.

Reliance 4 - Scripts N

m Array Functions

Whole number indicating which dimension's

Dimension i .
lower bound is returned. Use 1 for the first
dimension, 2 for the second, and so on. If
Dimension is omitted, 1 is assumed.

Remarks

The LBound function is used with the UBound function to determine the size of an array.
Use the UBound function to find the upper limit of an array dimension.

The lower bound for any dimension is always O.

Bl Array Functions

2.5.8 Private Statement

Declares private variables and allocates storage space. Declares, in a Class block, a private
variable.

Syntax
Private VarName[([Subscripts])][, VarName[([Subscripts])]]...
The Private statement syntax has these parts:
Part Description

VarName Name of the variable; follows standard variable
naming conventions.

Subscripts Dimensions of an array variable; up to 60
multiple dimensions may be declared. The
Subscripts argument uses the following syntax:

upper{, upper]...

The lower bound of an array is always zero.

I Reliance 4 - Scripts

Array Functions “

Remarks

A variable declared with the Private statement at a script level (globally) is available in all
scripts within the same thread (similar to the Public statement). The Private statement
can still be meaningfully used in a declaration of objects (with the Class statement).

A variable that refers to an object must be assigned an existing object using the Set
statement before it can be used. Until it is assigned an object, the declared object
variable is initialized as Empty.

You can also use the Private statement with empty parentheses to declare a dynamic
array. After declaring a dynamic array, use the ReDim statement within a procedure to
define the number of dimensions and elements in the array. If you try to redeclare a
dimension for an array variable whose size was explicitly specified in a Private, Public, or
Dim statement, an error occurs.

Bl Array Functions

Bl vBScript Statements

Example

The following example illustrates use of the Private statement.

Private MyNumber " Private Variant variable
Private MyArray(9) ' Private array variable
' Multiple Private declarations of Variant variables.

Private MyNumber, MyVar, YourNumber

2.5.9 Public Statement

Declares public variables and allocates storage space. Declares, in a Class block, a private
variable.

Syntax

Public VarName[([Subscripts])][, VarName[([Subscripts])]]...

The Public statement syntax has these parts:

Part Description

Reliance 4 - Scripts N

“ Array Functions

VarName Name of the variable; follows standard
variable naming conventions.

Subscripts Dimensions of an array variable; up to 60
multiple dimensions may be declared. The
Subscripts argument uses the following
syntax:

upper[, upper]...

The lower bound of an array is always zero.

Remarks
Public statement variables are available to all procedures in all scripts.

A variable that refers to an object must be assigned an existing object using the Set
statement before it can be used. Until it is assigned an object, the declared object
variable is initialized as Empty.

You can also use the Public statement with empty parentheses to declare a dynamic
array. After declaring a dynamic array, use the ReDim statement within a procedure to
define the number of dimensions and elements in the array. If you try to redeclare a
dimension for an array variable whose size was explicitly specified in a Private, Public, or
Dim statement, an error occurs.

Bl Array Functions

Bl vBScript Statements

Example

The following example illustrates the use of the Public statement.

Public MyNumber " Public Variant variable.
Public MyArray(9) ' Public array variable.
' Multiple Public declarations of Variant variables.

Public MyNumber, MyVar, YourNumber

2.5.10 ReDim Statement

Declares dynamic-array variables, and allocates or reallocates storage space at procedure

I Reliance 4 - Scripts

level.

Syntax

ReDim [Preserve] VarName(Subscripts)[, VarName(Subscripts)]...

The ReDim statement syntax has these parts:

Part

Preserve

VarName

Subscripts

Remarks

Description

Preserves the data in an existing array when
you change the size of the last dimension.

Name of the variable; follows standard
variable naming conventions.

Dimensions of an array variable; up to 60
multiple dimensions may be declared. The
Subscripts argument uses the following
syntax:

upper|, upper]...

The lower bound of an array is always zero.

Array Functions

The ReDim statement is used to size or resize a dynamic array that has already been
formally declared using a Private, Public, or Dim statement with empty parentheses
(without dimension subscripts). You can use the ReDim statement repeatedly to change
the number of elements and dimensions in an array.

If you use the Preserve keyword, you can resize only the last array dimension, and you
can't change the number of dimensions at all. For example, if your array has only one
dimension, you can resize that dimension because it is the last and only dimension.
However, if your array has two or more dimensions, you can change the size of only the
last dimension and still preserve the contents of the array.

The following example shows how you can increase the size of the last dimension of a
dynamic array without erasing any existing data contained in the array.

ReDim X(10, 10, 10)

r

ReDim Preserve X(10,

10, 15)

Reliance 4 - Scripts N

m Array Functions

CAUTION

If you make an array smaller than it was originally, data in the eliminated elements is
lost.

When variables are initialized, a numeric variable is initialized to O and a string variable is
initialized to a zero-length string (""). A variable that refers to an object must be assigned an
existing object using the Set statement before it can be used. Until it is assigned an object,
the declared object variable has the special value Nothing.

Bl Array Functions
Bl vBScript Statements

2.5.11 Split Function

Returns a zero-based, one-dimensional array containing a specified number of substrings.
Syntax

Split(Expression|[, Delimiter[, Count[, Compare]]])

The Split function syntax has these parts:
Part Description

Expression Required. String expression containing
substrings and delimiters. If Expression is a
zero-length string, Split returns an empty
array, that is, an array with no elements and
no data.

Delimiter Optional. String character used to identify
substring limits. If omitted, the space
character (" ") is assumed to be the delimiter.
If Delimiter is a zero-length string, a single-
element array containing the entire
Expression string is returned.

I Reliance 4 - Scripts

Array Functions “

Count Optional. Number of substrings to be
returned; -1 indicates that all substrings are
returned.

Compare Optional. Numeric value indicating the kind

of comparison to use when evaluating
substrings. See Settings section for values.

Settings

The Compare argument can have the following values:

Constant Value Description

vbBinaryCompare 0 Perform a binary comparison.

vbTextCompare 1 Perform a textual comparison.

Bl Array Functions

Example
The following example uses the Split function to return an array from a string. The

function performs a textual comparison of the delimiter, and returns all of the substrings.

Dim MyString, MyArray

MyString = Split("VBScriptXisXfun!", "x", -1, 1) ' MyString(0) contains " VBScript".

" MyString(1l) contains " is".

" MyString(2) contains " fun!".

2.5.12 UBound Function

Returns the largest available subscript for the indicated dimension of an array.

Syntax

UBound(ArrayName[, Dimension])

The UBound function syntax has these parts:

Reliance 4 - Scripts N

m Array Functions

Part Description

ArrayName Required. Name of the array variable; follows
standard variable naming conventions.

Dimension Optional. Whole number indicating which
dimension's upper bound is returned. Use 1
for the first dimension, 2 for the second, and
so on. If Dimension is omitted, 1 is assumed.

Remarks

The UBound function is used with the LBound function to determine the size of an array.
Use the LBound function to find the lower limit of an array dimension.

The lower bound for any dimension is always O. As a result, UBound returns the following
values for an array with these dimensions:

Dim A(100, 3, 4)

Statement Return Value
UBound(A, 1) 100
UBound(A, 2) 3
UBound(A, 3) 4

Bl Array Functions

I Reliance 4 - Scripts

String Functions “

2.6 String Functions

W

2| Asc Function

2| Chr Function

W

W

2| FormatCurrency Function

W

2| FormatDateTime Function

W

2| FormatNumber Function
2| FormatPercent Function

2| InStr Function

W

W

2| InStrRev Function
| LCase Function

| Left Function

W

W

2| Len Function

2| LTrim Function

=| MonthName Function
2| Mid Function

W

2| Replace Function
2| Right Function
2| RTrim Function

| Space Function

W

2| StrComp Function
2| String Function

W

| StrReverse Function
2| Trim Function

| UcCase Function

W

| WeekDayName Function

Reliance 4 - Scripts N

m String Functions

2.6.1 Asc Function

Returns the ANSI character code corresponding to the first letter in a string.
Syntax

Asc(String)
The String argument is any valid string expression. If the String contains no characters, a
run-time error occurs.
NOTE

The AscB function is used with byte data contained in a string. Instead of returning the
character code for the first character, AscB returns the first byte. AscW is provided for
32-bit platforms that use Unicode characters. It returns the Unicode (wide) character
code, thereby avoiding the conversion from Unicode to ANSI.

Bl String Functions

Bl conversion Functions

Example

In the following example, Asc returns the ANSI character code of the first letter of each
string.

Dim MyNumber

MyNumber = Asc("A") ' Returns 65.
MyNumber = Asc("a") ' Returns 97.
MyNumber = Asc("Apple") ' Returns 65.

2.6.2 Chr Function

Returns the character associated with the specified ANSI character code.
Syntax

Chr(CharCode)

The CharCode argument is a number that identifies a character.

I Reliance 4 - Scripts

String Functions “

Remarks
Numbers from O to 31 are the same as standard, nonprintable ASCII codes. For example,
Chr(10) returns a linefeed character.

NOTE

The ChrB function is used with byte data contained in a string. Instead of returning a
character, which may be one or two bytes, ChrB always returns a single byte. ChrW is
provided for 32-bit platforms that use Unicode characters. Its argument is a Unicode
(wide) character code, thereby avoiding the conversion from ANSI to Unicode.

Bl String Functions

Bl Conversion Functions

Example

The following example uses the Chr function to return the character associated with the
specified character code.

Dim MyChar

MyChar = Chr(65) ' Returns A.
MyChar = Chr(97) ' Returns a.
MyChar = Chr(62) ' Returns >.
MyChar = Chr(37) ' Returns 2.

2.6.3 FormatCurrency Function

Returns an expression formatted as a currency value using the currency symbol defined in the
system control panel.

Syntax

FormatCurrency(Expression[, NumDigitsAfterDecimall, IncludeLeadingDigit],
UseParensForNegativeNumbers|[, GroupDigits]]]])

The FormatCurrency function syntax has these parts:
Part Description

Expression Required. Expression to be formatted.

Reliance 4 - Scripts N

m String Functions

Optional. Numeric value indicating how many places to

NumbDigitsAfterDecimal i) ;]
the right of the decimal are displayed. Default value is -
1, which indicates that the computer's regional settings
are used.

IncludeLeadingDigit Optional. Tristate constant that indicates whether or not

a leading zero is displayed for fractional values. See
Settings section for values.

Optional. Tristate constant that indicates whether or not

UseParensForNegativeNumber i o
to place negative values within parentheses. See

S
Settings section for values.

GroupDigits Optional. Tristate constant thf’:\t indicates whether gr hot
numbers are grouped using the group delimiter
specified in the computer's regional settings. See
Settings section for values.

Settings

The IncludeLeadingDigit, UseParensForNegativeNumbers, and GroupDigits arguments have
the following settings:

Constant Value Description
vbTrue -1 True
vbFalse 0 False

-2 Use the setting from the
computer's regional settings.

vbUseDefault

Remarks

When one or more optional arguments are omitted, values for omitted arguments are
provided by the computer's regional settings. The position of the currency symbol relative
to the currency value is determined by the system's regional settings.

Bl String Functions

I Reliance 4 - Scripts

Example

String Functions “

The following example uses the FormatCurrency function to format the expression as a
currency and assign it to MyCurrency.

Dim MyCurrency

MyCurrency = FormatCurrency(1000)

2.6.4 FormatDateTime Function

Returns an expression formatted as a date or time.

Syntax

FormatDateTime(Date[, NamedFormat])

The FormatDateTime function syntax has these parts:

Part Description

Date Required. Date expression to be formatted.

NamedFormat |Optional. Numeric value that indicates the

date/time

format used. If omitted,

vbGeneralDate is used.

Settings

The NamedFormat argument has the following settings:

Constant Value
vbGeneralDate 0
vbLongDate 1

Description

Display a date and/or time. If
there is a date part, display it as a
short date. If there is a time part,
display it as a long time. If
present, both parts are displayed.

Display a date using the long date
format specified in your
computer's regional settings.

' MyCurrency contains $1000. 00.

Reliance 4 - Scripts N

“ String Functions

vbShortDate 2 Display a date using the short
date format specified in your
computer's regional settings.

vbLongTime 3 Display a time using the time
format specified in your
computer's regional settings.

vbShortTime 4 Display a time using the 24-hour
format (hh:mm).

Bl String Functions

Example

The following example uses the FormatDateTime function to format the expression as a
long date and assign it to MyDateTime.

Function GetCurrentDate
' FormatDateTime formats Date in long date.
GetCurrentDate = FormatDateTime(Date, 1)

End Function

2.6.5 FormatNumber Function

Returns an expression formatted as a number.
Syntax

FormatNumber(Expression[, NumDigitsAfterDecimall[, IncludeLeadingDigit][,
UseParensForNegativeNumbers|[, GroupDigits]]]])

The FormatNumber function syntax has these parts:
Part Description

Expression Required. Expression to be formatted.

I Reliance 4 - Scripts

String Functions

NumDigitsAfterDecimal Optional. Numeric value indicating how
many places to the right of the decimal
are displayed. Default value is -1, which
indicates that the computer's regional
settings are used.

IncludeLeadingDigit Optional. Tristate constant that indicates
whether or not a leading zero is
displayed for fractional values. See
Settings section for values.

UseParensForNegativeNumbers Optional. Tristate constant that indicates
whether or not to place negative values
within parentheses. See Settings section
for values.

GroupDigits Optional. Tristate constant that indicates
whether or not numbers are grouped
using the group delimiter specified in the
control panel. See Settings section for
values.

Settings

The IncludeLeadingDigit, UseParensForNegativeNumbers, and GroupDigits arguments have
the following settings:

Constant Value Description

vbTrue -1 True

vbFalse 0 False

vbUseDefault 2 Use the setting from the

computer's regional settings.

Reliance 4 - Scripts N

m String Functions

Remarks

When one or more of the optional arguments are omitted, the values for omitted
arguments are provided by the computer's regional settings.

Bl String Functions

Example

The following example uses the FormatNumber function to format a number to have four
decimal places.

Function FormatNumberDemo
Dim MyAngle, MySecant, MyNumber
MyAngle = 1.3 " Define angle in radians
MySecant = 1 / Cos(MyAngle) ' Calculate secant.
' Format MySecant to four decimal places.
FormatNumberDemo = FormatNumber(MySecant, 4)

End Function
2.6.6 FormatPercent Function
Returns an expression formatted as a percentage (multiplied by 100) with a trailing %
character.
Syntax

FormatPercent(Expression[, NumDigitsAfterDecimall, IncludeLeadingDigit][,
UseParensForNegativeNumbers|[, GroupDigits]]]])

The FormatPercent function syntax has these parts:

Part Description
Expression Required. Expression to be formatted.
NumbDigitsAfterDecimal Optional. Numeric value indicating

how many places to the right of the
decimal are displayed. Default value is
-1, which indicates that the computer's
regional settings are used.

I Reliance 4 - Scripts

String Functions “

IncludelLeadingDigit Optional. Tristate constant that
indicates whether or not a leading zero
is displayed for fractional values. See
Settings section for values.

UseParensForNegativeNumbers Optional. Tristate constant that
indicates whether or not to place
negative values within parentheses.
See Settings section for values.

GroupDigits Optional. Tristate constant that
indicates whether or not numbers are
grouped using the group delimiter
specified in the control panel. See
Settings section for values.

Settings

The IncludeLeadingDigit, UseParensForNegativeNumbers, and GroupDigits arguments have
the following settings:

Constant Value |Description

vbTrue -1 True

vbFalse 0 False

vbUseDefault 2 Use the setting from the

computer's regional settings.

Remarks

When one or more optional arguments are omitted, the values for the omitted arguments
are provided by the computer's regional settings.

Bl String Functions

Reliance 4 - Scripts N

String Functions

Example

The following example uses the FormatPercent function to format an expression as a
percent.

Dim MyPercent

MyPercent = FormatPercent(2 / 32) ' MyPercent contains 6.25%.

2.6.7 InStr Function

Returns the position of the first occurrence of one string within another.
Syntax
InStr([Start, |String1, String2[, Compare])
The InStr function syntax has these parts:
Part Description

Start Optional. Numeric expression that sets the
starting position for each search. If omitted,
search begins at the first character position. If
Start contains Null, an error occurs. The Start
argument is required if Compare is specified.

Stringl1 Required. String expression being searched.
String2 Required. String expression searched for.

Compare |Optional. Numeric value indicating the kind of
comparison to use when evaluating substrings.
See Settings section for values. If omitted, a
binary comparison is performed.

Settings

The Compare argument can have the following values:
Constant Value |Description

vbBinaryCompare 0 Perform a binary comparison.

I Reliance 4 - Scripts

String Functions

vbTextCompare 1 Perform a textual comparison.

Return Values

The InStr function returns the following values:

If InStr returns

String1 is zero-length 0

String1 is Null Null

String2 is zero-length Start

String2 is Null Null

String2 is not found 0

String2 is found within String1l |Position at which match is
found.

Start > Len(String2) 0

NOTE

The InStrB function is used with byte data contained in a string. Instead of returning the
character position of the first occurrence of one string within another, InStrB returns the
byte position.

Bl String Functions

Example

The following examples use InStr to search a string.

Dim SearchString, SearchChar, MyPos

SearchString ="XXpXXpXXPXXP" ' String to search in.
SearchChar = "p" " Search for " P'.

' A textual comparison starting at position 4.

" Returns 6.

MyPos = Instr(4, SearchString, SearchChar, 1)

" A binary comparison starting at position 1.

Reliance 4 - Scripts N

String Functions

" Returns 9.

MyPos = Instr(1l, SearchString, SearchChar, 0)

' Comparison is binary by default (last argument is omitted).
" Returns 9.

MyPos = Instr(SearchString, SearchChar)

' A binary comparison starting at position 1.

" Returns 0 ("W' is not found).

MyPos = Instr(l, SearchString, "W")

2.6.8 InStrRev Function

Returns the position of an occurrence of one string within another, from the end of string.
Syntax

InStrRev(String1, String2[, Start[, Compare]])

The InStrRev function syntax has these parts:

Part Description

Stringl1 Required. String expression being searched.
String2 Required. String expression being searched for.
Start Optional. Numeric expression that sets the

starting position for each search. If omitted, -1 is
used, which means that the search begins at the
last character position. If Start contains Null, an
error occurs.

Compare |Optional. Numeric value indicating the kind of
comparison to use when evaluating substrings. If
omitted, a binary comparison is performed. See
Settings section for values.

Settings

The Compare argument can have the following values:
Constant Value |Description

vbBinaryCompare 0 Perform a binary comparison.

I Reliance 4 - Scripts

String Functions

vbTextCompare 1 Perform a textual comparison.

Return Values

InStrRev returns the following values:

If InStrRev returns

String1 is zero-length 0

String1 is Null Null

String2 is zero-length Start

String2 is Null Null

String2 is not found 0

String2 is found within String1l |Position at which match is
found.

Start > Len(String2) 0

NOTE
The syntax for the InStrRev function is not the same as the syntax for the InStr function.

Bl String Functions

Example

The following examples use the InStrRev function to search a string.

Dim SearchString, SearchChar, MyPos

SearchString ="XXpXXpXXPXXP" ' String to search in.
SearchChar = "p" " Search for " P'.

' A binary comparison starting at position 10.

" Returns 9.

MyPos = InstrRev(SearchString, SearchChar, 10, 0)

' A textual comparison starting at the last position.

" Returns 12.

MyPos = InstrRev(SearchString, SearchChar, -1, 1)

" Comparison is binary by default (last argument 1is omitted).

" Returns 0.

Reliance 4 - Scripts N

String Functions

MyPos = InstrRev(SearchString, SearchChar, 8)

2.6.9 LCase Function

Returns a string that has been converted to lowercase.
Syntax

LCase(String)

The String argument is any valid string expression. If String contains Null, Null is
returned.

Remarks

Only uppercase letters are converted to lowercase; all lowercase letters and nonletter
characters remain unchanged.

Bl String Functions

Bl conversion Functions

Example

The following example uses the LCase function to convert uppercase letters to
lowercase.

Dim MyString
Dim LCaseString
MyString = "VBSCript"

LCaseString = LCase(MyString) ' LCaseString contains " vbscript".

2.6.10 Left Function

Returns a specified number of characters from the left side of a string.
Syntax

Left(String, Length)
The Left function syntax has these parts:

Part Description

I Reliance 4 - Scripts

String Functions

String String expression from which the leftmost
characters are returned. If String contains Null,
Null is returned.

Length Numeric expression indicating how many
characters to return. If O, a zero-length string("") is
returned. If greater than or equal to the number of
characters in String, the entire string is returned.

Remarks

To determine the number of characters in String, use the Len function.

NOTE

The LeftB function is used with byte data contained in a string. Instead of specifying the
number of characters to return, Length specifies the number of bytes.

Bl String Functions

Example

The following example uses the Left function to return the first three characters of
MyString.

Dim MyString, LeftString
MyString = "VBSCript"
LeftString = Left(MyString, 3) ' LeftString contains "VBS'.

2.6.11 Len Function

Returns the number of characters in a string or the number of bytes required to store a
variable.

Syntax

Len(String | VarName)

The Len function syntax has these parts:

Part Description

Reliance 4 - Scripts N

String Functions

String Any valid string expression. If String contains Null,
Null is returned.

VarName |Any valid variable name. If VarName contains Null
, Null is returned.

NOTE

The LenB function is used with byte data contained in a string. Instead of returning the
number of characters in a string, LenB returns the number of bytes used to represent that
string.

Bl String Functions

Example

The following example uses the Len function to return the number of characters in a
string.

Dim MyString
MyString = Len("VBSCRIPT") ' MyString contains 8.

2.6.12 LTrim Function

Returns a copy of a string without leading spaces (RTrim without trailing spaces, Trim without
both leading and trailing spaces).

Syntax

LTrim(String)

The String argument is any valid string expression. If String contains Null, Null is
returned.

Bl String Functions

I Reliance 4 - Scripts

String Functions

Example

The following example uses the LTrim, RTrim, and Trim functions to trim leading spaces,
trailing spaces, and both leading and trailing spaces, respectively.

Dim MyVar

MyVar = LTrim(" vbscript ") ' MyVar contains "vbscript ".
MyVar = RTrim(" vbscript ") ' MyVar contains " vbscript".
MyVar = Trim(" vbscript ") ' MyVar contains "vbscript".

2.6.13 Mid Function

Returns a specified number of characters from a string.
Syntax

Mid(String, Start[, Length])

The Mid function syntax has these parts:
Part Description

String String expression from which characters are
returned. If String contains Null, Null is returned.

Start Character position in String at which the part to be
taken begins. If Start is greater than the number
of characters in String, Mid returns a zero-length
string (").

Length Number of characters to return. If omitted or if
there are fewer than Length characters in the text
(including the character at Start), all characters
from the Start position to the end of the string are
returned.

Remarks

To determine the number of characters in String, use the Len function.

Reliance 4 - Scripts N

String Functions

NOTE

The MidB function is used with byte data contained in a string. Instead of specifying the
number of characters, the arguments specify numbers of bytes.

Bl String Functions

Example

The following example uses the Mid function to return six characters, beginning with the
fourth character, in a string.

Dim MyVar
MyVar = Mid("VB Script is fun!", 4, 6) ' MyVar contains " Script".

2.6.14 MonthName Function

Returns a string indicating the specified month.
Syntax
MonthName(Month[, Abbreviate])
The MonthName function syntax has these parts:
Part Description

Month Required. The numeric designation of the
month. For example, January is 1, February
is 2, and so on.

Abbreviate Optional. Boolean value that indicates if the
month name is to be abbreviated. If omitted,
the default is False, which means that the
month name is not abbreviated.

Bl Date and Time Functions

Bl String Functions

I Reliance 4 - Scripts

String Functions

Example

The following example uses the MonthName function to return an abbreviated month
name for a date expression.

Dim MyVar
MyVar = MonthName(10, True) ' MyVar contains " Oct".

2.6.15 Replace Function

Returns a string in which a specified substring has been replaced with another substring a
specified number of times.

Syntax

Replace(Expression, Find, ReplaceWith[, Start[, Count[, Compare]]])

The Replace function syntax has these parts:

Part Description

Expression Required. String expression containing substring to
replace.

Find Required. Substring being searched for.

ReplaceWith Required. Replacement substring.

Start Optional. Position within Expression where substring

search is to begin. If omitted, 1 is assumed. Must be
used in conjunction with Count.

Count Optional. Number of substring substitutions to perform. If
omitted, the default value is -1, which means make all
possible substitutions. Must be used in conjunction with
Start.

Compare Optional. Numeric value indicating the kind of
comparison to use when evaluating substrings. See
Settings section for values. If omitted, the default value is
0, which means perform a binary comparison.

Reliance 4 - Scripts N

n String Functions

Settings

The Compare argument can have the following values:

Constant Value |Description
vbBinaryCompare 0 Perform a binary comparison.
vbTextCompare 1 Perform a textual comparison.

Return Values

Replace returns the following values:

If Replace returns
Expression is zero-length Zero-length string ("").
Expression is Null An error.
Find is zero-length Copy of Expression.
ReplaceWith is zero-length Copy of Expression with all
occurences of Find removed.

Start > Len(Expression) Zero-length string.
Countis O Copy of Expression.

Remarks

The return value of the Replace function is a string, with substitutions made, that begins
at the position specified by Start and and concludes at the end of the Expression string.
It is not a copy of the original string from start to finish.

Bl String Functions

Example

The following example uses the Replace function to return a string.

Dim MyString

I Reliance 4 - Scripts

String Functions E

" A binary comparison starting at the beginning of the string.
" Returns " XXYXXPXXY".

MyString = Replace(" XXpXXPXXp", "p", "Y")

' A textual comparison starting at position 3.

" Returns " YXXYXXY".

MyString = Replace("XXpXXPXXp", "p", "Y", 3, -1, 1)

2.6.16 Right Function

Returns a specified number of characters from the right side of a string.
Syntax
Right(String, Length)
The Right function syntax has these parts:
Part Description

String String expression from which the rightmost
characters are returned. If String contains Null,
Null is returned.

Length Numeric expression indicating how many
characters to return. If O, a zero-length string is
returned. If greater than or equal to the number of
characters in String, the entire string is returned.

Remarks

To determine the number of characters in String, use the Len function.

NOTE

The RightB function is used with byte data contained in a string. Instead of specifying
the number of characters to return, Length specifies the number of bytes.

Bl String Functions

Reliance 4 - Scripts N

n String Functions

Example

The following example uses the Right function to return a specified number of characters
from the right side of a string.

Dim AnyString, MyStr

AnyString = "Hello World" " Define string.

MyStr = Right(AnyString, 1) ' Returns "d'.

MyStr = Right(AnyString, 6) ' Returns " World'.
MyStr = Right(AnyString, 20) ' Returns " Hello World'.

2.6.17 RTrim Function

Returns a copy of a string without trailing spaces (LTrim without leading spaces, Trim without
both leading and trailing spaces).

Syntax

RTrim(String)

The String argument is any valid string expression. If String contains Null, Null is
returned.

Bl String Functions

Example

The following example uses the LTrim, RTrim, and Trim functions to trim leading spaces,
trailing spaces, and both leading and trailing spaces, respectively.

Dim MyVar

MyVar = LTrim(" vbscript ") ' MyVar contains "vbscript ".
MyVar = RTrim(" vbscript ") ' MyVar contains " vbscript".
MyVar = Trim(" vbscript ") " MyVar contains "vbscript".

2.6.18 Space Function

Returns a string consisting of the specified number of spaces.

I Reliance 4 - Scripts

String Functions E

Syntax

Space(Number)

The Number argument is the number of spaces you want in the string.

Bl String Functions

Example

The following example uses the Space function to return a string consisting of a specified
number of spaces.

Dim MyString

' Returns a string with 10 spaces.
MyString = Space(10)

" Insert 10 spaces between two strings.
MyString = "Hello" & Space(10) & "World"

2.6.19 StrComp Function

Returns a value indicating the result of a string comparison.
Syntax

StrComp(String1, String2[, Compare])

The StrComp function syntax has these parts:

Part Description
String1 Required. Any valid string expression.
String2 Required. Any valid string expression.

Compare |Optional. Numeric value indicating the kind of
comparison to use when evaluating strings. If
omitted, a binary comparison is performed. See
Settings section for values.

Reliance 4 - Scripts N

m String Functions

Settings

The Compare argument can have the following values:

Constant Value |Description
vbBinaryCompare 0 Perform a binary comparison.
vbTextCompare 1 Perform a textual comparison.

Return Values

The StrComp function has the following return values:

If StrComp returns
String1 is less than String2 -1
String1 is equal to String2 0

String1 is greater than String2 |1

String1 or String2 is Null Null

Bl String Functions

Example

The following example uses the StrComp function to return the results of a string
comparison. If the third argument is 1, a textual comparison is performed; if the third
argument is O or omitted, a binary comparison is performed.

Dim MyStrl, MyStr2, MyComp

MyStrl = "ABCD"

MyStr2 = "abcd" " Define variables.
MyComp = StrComp(MyStrl, MyStr2, 1) ' Returns 0.
MyComp = StrComp(MyStrl, MyStr2, 0) ' Returns -1.
MyComp = StrComp(MyStr2, MyStrl) " Returns 1.

2.6.20 String Function

Returns a repeating character string of the length specified.

I Reliance 4 - Scripts

String Functions “

Syntax

String(Number, Character)

The String function syntax has these parts:
Part Description

Number Length of the returned string. If Number
contains Null, Null is returned.

Character Character code specifying the character or
string expression whose first character is
used to build the return string. If Character
contains Null, Null is returned.

Remarks

If you specify a number for Character greater than 255, String converts the number to a
valid character code using the formula:

character Mod 256

Bl String Functions

Example

The following example uses the String function to return repeating character strings of
the length specified.

Dim MyString

MyString = String(5, "*") " Returns " *xxxAT,
MyString = String(5, 42) " Returns " *xxxAT,
MyString = String(10, "ABC") ' Returns " AAAAAAAAAAR'.

2.6.21 StrReverse Function

Returns a string in which the character order of a specified string is reversed.

Reliance 4 - Scripts N

“ String Functions

Syntax

StrReverse(String)

The String argument is the string whose characters are to be reversed. If String is a zero-
length string ("), a zero-length string is returned. If String is Null, an error occurs.

Bl String Functions

Example

The following example uses the StrReverse function to return a string in reverse order.

Dim MyStr
MyStr = StrReverse("VBScript") ' MyStr contains "tpircSBV'.

2.6.22 Trim Function

Returns a copy of a string without both leading and trailing spaces (LTrim without leading
spaces, RTrim without trailing spaces).

Syntax

Trim(String)

The String argument is any valid string expression. If String contains Null, Null is
returned.

Bl String Functions

Example

The following example uses the LTrim, RTrim, and Trim functions to trim leading spaces,
trailing spaces, and both leading and trailing spaces, respectively.

Dim MyVar

MyVar = LTrim(" vbscript ") ' MyVar contains "vbscript ".
MyVar = RTrim(" vbscript ") ' MyVar contains " vbscript".
MyVar = Trim(" vbscript ") ' MyVar contains "vbscript".

I Reliance 4 - Scripts

String Functions

2.6.23 UCase Function

Returns a string that has been converted to uppercase.
Syntax

UCase(String)

The String argument is any valid string expression. If String contains Null, Null is
returned.

Remarks

Only lowercase letters are converted to uppercase; all uppercase letters and nonletter
characters remain unchanged.

Bl String Functions

&l Conversion Functions

Example

The following example uses the UCase function to return an uppercase version of a
string.

Dim MyWord
MyWord = UCase("Hello World") ' Returns " HELLO WORLD'.

2.6.24 WeekdayName Function

Returns a string indicating the specified day of the week.
Syntax

WeekdayName(WeekDay[, Abbreviate[, FirstDayOfWeek]])

The WeekdayName function syntax has these parts:

Part Description

Reliance 4 - Scripts N

String Functions

WeekDay

Abbreviate

FirstDayOfWeek

Settings

Required. The numeric designation for the
day of the week. Numeric value of each day
depends on setting of the FirstDayOfWeek
setting.

Optional. Boolean value that indicates if the
weekday name is to be abbreviated. If
omitted, the default is False, which means
that the weekday name is not abbreviated.

Optional. Numeric value indicating the first
day of the week. See Settings section for
values.

The FirstDayOfWeek argument can have the following values:

Constant

vbUseSystem

vbSunday
vbMonday
vbTuesday
vbWednesday
vbThursday
vbFriday

vbSaturday

Value |Description

Use National Language Support
(NLS) API setting.

0
Sunday
Monday
Tuesday
Wednesday
Thursday

Friday

N OO o B~ W NP

Saturday

Bl Date and Time Functions

Bl String Functions

I Reliance 4 - Scripts

String Functions m

Example

The following example uses the WeekDayName function to return the specified day.

Dim MyDate
MyDate = WeekDayName(6, True) ' MyDate contains Fri.

Reliance 4 - Scripts N

m Conversion Functions

2.7 Conversion Functions

2| Asc Function

2| CBool Function

22| CByte Function

2| CCur Function

=] cDate Function

2| Dbl Function

2| Chr Function

2| Clnt Function

2| CLng Function

2| CSng Function

2| CStr Function

2| DateSerial Function
»| DateValue Function
2| Day Function

2| Fix Function

2| Hex Function

2| Hour Function

2 Int Function

2| LCase Function

2| Minute Function

2| Month Function

2| Oct Function

2| Second Function
2| TimeSerial Function
2| TimeValue Function
2| UCase Function

2| WeekDay Function

I Reliance 4 - Scripts

Conversion Functions “

2| Year Function

2.7.1 Asc Function

Returns the ANSI character code corresponding to the first letter in a string.
Syntax

Asc(String)

The String argument is any valid string expression. If the String contains no characters, a
run-time error occurs.

NOTE

The AscB function is used with byte data contained in a string. Instead of returning the
character code for the first character, AseB returns the first byte. AscW is provided for
32-bit platforms that use Unicode characters. It returns the Unicode (wide) character
code, thereby avoiding the conversion from Unicode to ANSI.

Bl String Functions

|l conversion Functions

Example

In the following example, Asc returns the ANSI character code of the first letter of each
string.

Dim MyNumber

MyNumber = Asc("A") " Returns 65.
MyNumber = Asc("a") " Returns 97.
MyNumber = Asc('"Apple") ' Returns 65.

2.7.2 CBool Function

Returns an expression that has been converted to a Variant of subtype Boolean.

Reliance 4 - Scripts N

m Conversion Functions

Syntax

CBool(Expression)

The Expression argument is any valid expression.

Remarks

If Expression is zero, False is returned; otherwise, True is returned. If Expression can't be
interpreted as a numeric value, a run-time error occurs.

Bl Data Type Functions

|l conversion Functions

Example

The following example uses the CBool function to convert an expression to a Boolean. If
the expression evaluates to a nonzero value, CBool returns True; otherwise, it returns

False.

Dim A, B, Check

A =5
B =5
Check = CBool(A = B)
A =0

Check = CBool(A)

Initialize variables.
Check contains True.
Define variable.

Check contains False.

2.7.3 CByte Function

Returns an expression that has been converted to a Variant of subtype Byte.

Syntax

CByte(Expression)

The Expression argument is any valid expression.

I Reliance 4 - Scripts

Conversion Functions “

Remarks

In general, you can document your code using the subtype conversion functions to show
that the result of some operation should be expressed as a particular data type rather
than the default data type. For example, use CByte to force byte arithmetic in cases
where currency, single-precision, double-precision, or integer arithmetic normally would
occur.

Use the CByte function to provide internationally aware conversions from any other data
type to a Byte subtype. For example, different decimal separators are properly
recognized depending on the locale setting of your system, as are different thousand
separators.

If Expression lies outside the acceptable range for the Byte subtype, an error occurs.

Bl Data Type Functions

Bl Conversion Functions

Example
The following example uses the CByte function to convert an expression to a byte.
Dim MyDouble, MyByte

MyDouble = 125.5678 " MyDouble is a Double.
MyByte = CByte(MyDouble) ' MyByte contains 126.

2.7.4 CCur Function

Returns an expression that has been converted to a Variant of subtype Currency.
Syntax

CCur(Expression)

The Expression argument is any valid expression.

Remarks

In general, you can document your code using the subtype conversion functions to show
that the result of some operation should be expressed as a particular data type rather
than the default data type. For example, use CCur to force currency arithmetic in cases
where integer arithmetic normally would occur.

Reliance 4 - Scripts N

m Conversion Functions

You should use the CCur function to provide internationally aware conversions from any
other data type to a Currency subtype. For example, different decimal separators and
thousands separators are properly recognized depending on the locale setting of your
system.

Bl Data Type Functions

Bl conversion Functions

Example

The following example uses the CCur function to convert an expression to a Currency.

Dim MyDouble, MyCurr

MyDouble = 543.214588 ' MyDouble is a Double.

" Convert result of MyDouble * 2 (1086.429176) to a Currency (1086.4292).
MyCurr = CCur(MyDouble * 2)

2.7.5 CDate Function

Returns an expression that has been converted to a Variant of subtype Date.
Syntax

CDate(Date)

The Date argument is any valid date expression.

Remarks

Use the IsDate function to determine if Date can be converted to a date or time. CDate
recognizes date literals and time literals as well as some numbers that fall within the
range of acceptable dates. When converting a number to a date, the whole number
portion is converted to a date. Any fractional part of the number is converted to a time of
day, starting at midnight.

CDate recognizes date formats according to the locale setting of your system. The
correct order of day, month, and year may not be determined if it is provided in a format
other than one of the recognized date settings. In addition, a long date format is not
recognized if it also contains the day-of-the-week string.

Bl Data Type Functions

I Reliance 4 - Scripts

Conversion Functions “

Bl Conversion Functions

Example

The following example uses the CDate function to convert a string to a date. In general,
hard coding dates and times as strings (as shown in this example) is not recommended.
Use date and time literals (suchas#10/19/19624#, #4: 45: 23 PM#) instead.

Dim MyShortTime, MyDate, MyTime

MyDate = "October 19, 1962" ' Define date.
MyShortDate = CDate(MyDate) ' Convert to Date data type.
MyTime = "4:35:47 PM" " Define time.
MyShortTime = CDate(MyTime) ' Convert to Date data type.

2.7.6 CDbI Function

Returns an expression that has been converted to a Variant of subtype Double.
Syntax

CDbl(Expression)

The Expression argument is any valid expression.

Remarks

In general, you can document your code using the subtype conversion functions to show
that the result of some operation should be expressed as a particular data type rather
than the default data type. For example, use CDbl or CSng to force double-precision or
single-precision arithmetic in cases where currency or integer arithmetic normally would
occur.

Use the CDbI function to provide internationally aware conversions from any other data type
to a Double subtype. For example, different decimal separators and thousands separators are
properly recognized depending on the locale setting of your system.

Bl Data Type Functions

|l conversion Functions

Example

This example uses the CDbl function to convert an expression to a Double.

Reliance 4 - Scripts N

m Conversion Functions

Dim MyCurr, MyDouble

MyCurr = CCur(234.456784) ' MyCurr is a Currency (234.4567).
' Convert result to a Double (19.2254576).

MyDouble = CDbl(MyCurr * 8.2 * 0.01)

2.7.7 Chr Function

Returns the character associated with the specified ANSI character code.
Syntax

Chr(CharCode)

The CharCode argument is a number that identifies a character.

Remarks
Numbers from O to 31 are the same as standard, nonprintable ASCII codes. For example,
Chr(10) returns a linefeed character.

NOTE

The ChrB function is used with byte data contained in a string. Instead of returning a
character, which may be one or two bytes, ChrB always returns a single byte. ChrW is
provided for 32-bit platforms that use Unicode characters. Its argument is a Unicode
(wide) character code, thereby avoiding the conversion from ANSI to Unicode.

Bl String Functions

=l conversion Functions

Example

The following example uses the Chr function to return the character associated with the
specified character code.

Dim MyChar

MyChar = Chr(65) ' Returns A.
MyChar = Chr(97) ' Returns a.
MyChar = Chr(62) ' Returns >.
MyChar = Chr(37) ' Returns 5.

I Reliance 4 - Scripts

Conversion Functions

2.7.8 Cint Function

Returns an expression that has been converted to a Variant of subtype Integer.
Syntax

Cint(Expression)

The Expression argument is any valid expression.

Remarks

In general, you can document your code using the subtype conversion functions to show
that the result of some operation should be expressed as a particular data type rather
than the default data type. For example, use CInt or CLng to force integer arithmetic in
cases where currency, single-precision, or double-precision arithmetic normally would
occur.

Use the CInt function to provide internationally aware conversions from any other data
type to an Integer subtype. For example, different decimal separators are properly
recognized depending on the locale setting of your system, as are different thousand
separators.

If Expression lies outside the acceptable range for the Integer subtype, an error occurs.

NOTE

Cint differs from the Fix and Int functions, which truncate, rather than round, the
fractional part of a number. When the fractional part is exactly 0.5, the ClInt function
always rounds it to the nearest even number. For example, 0.5 rounds to O, and 1.5
rounds to 2.

Bl Data Type Functions

|l conversion Functions

Example

The following example uses the Clnt function to convert a value to an Integer.

Dim MyDouble, MyInt
MyDouble = 2345. 5678 " MyDouble is a Double.
MyInt = CInt(MyDouble) ' MyInt contains 2346.

Reliance 4 - Scripts N

m Conversion Functions

2.7.9 CLng Function

Returns an expression that has been converted to a Variant of subtype Long.
Syntax

CLng(Expression)

The Expression argument is any valid expression.

Remarks

In general, you can document your code using the subtype conversion functions to show
that the result of some operation should be expressed as a particular data type rather
than the default data type. For example, use Cint or CLng to force integer arithmetic in
cases where currency, single-precision, or double-precision arithmetic normally would
occur.

Use the CLng function to provide internationally aware conversions from any other data
type to a Long subtype. For example, different decimal separators are properly
recognized depending on the locale setting of your system, as are different thousand
separators.

If Expression lies outside the acceptable range for the Long subtype, an error occurs.

NOTE

CLng differs from the Fix and Int functions, which truncate, rather than round, the
fractional part of a number. When the fractional part is exactly 0.5, the CLng function
always rounds it to the nearest even number. For example, 0.5 rounds to O, and 1.5
rounds to 2.

Bl Data Type Functions

|l conversion Functions

Example
The following example uses the CLng function to convert a value to a Long.
Dim MyVall, MyVal2, MyLongl, MyLong2
MyVall = 25427.45

MyVal2 = 25427.55 ' MyVall, MyValZ are Doubles.
MyLongl = CLng(MyVall) ' MyLongl contains 25427.

I Reliance 4 - Scripts

Conversion Functions “

MyLong2 = CLng(MyVal2) ' MyLongZ contains 25428.

2.7.10 CSng Function

Returns an expression that has been converted to a Variant of subtype Single.
Syntax

CSng(Expression)

The Expression argument is any valid expression.

Remarks

In general, you can document your code using the data type conversion functions to
show that the result of some operation should be expressed as a particular data type
rather than the default data type. For example, use CDbl or CSng to force double-
precision or single-precision arithmetic in cases where currency or integer arithmetic
normally would occur.

Use the €Sng function to provide internationally aware conversions from any other data
type to a Single subtype. For example, different decimal separators are properly
recognized depending on the locale setting of your system, as are different thousand
separators.

If Expression lies outside the acceptable range for the Single subtype, an error occurs.

Bl Data Type Functions

Bl Conversion Functions

Example

The following example uses the €CSng function to convert a value to a Single.

Dim MyDoublel, MyDouble?2 " MyDoublel, MyDoubleZ are Doubles.
Dim MySinglel, MySingle2
MyDoublel = 75.3421115

MyDouble2 = 75.3421555
MySinglel = CSng(MyDoublel) ' MySinglel contains 75.34211.
MySingle2 = CSng(MyDouble2) ' MySingleZ contains 75.34216.

Reliance 4 - Scripts N

100 Conversion Functions

2.7.11 CStr Function

Returns an expression that has been converted to a Variant of subtype String.
Syntax

CStr(Expression)

The Expression argument is any valid expression.

Remarks

In general, you can document your code using the data type conversion functions to
show that the result of some operation should be expressed as a particular data type
rather than the default data type. For example, use CStr to force the result to be
expressed as a String.

You should use the CStr function instead of String to provide internationally aware
conversions from any other data type to a String subtype. For example, different decimal
separators are properly recognized depending on the locale setting of your system.

The data in Expression determines what is returned according to the following table.

If Expression is |CStr returns

Boolean A String containing True or False.

Date A String containing a date in the short-date
format of your system.

Null A run-time error.

Empty A zero-length String ("").

Error A String containing the word Error followed

by the error number.

Other numeric A String containing the number.

Bl Data Type Functions

Bl conversion Functions

I Reliance 4 - Scripts

Conversion Functions 101

Example
The following example uses the CStr function to convert a numeric value to a String.
Dim MyDouble, MyString

MyDouble = 437. 324 " MyDouble is a Double.
MyString = CStr(MyDouble) ' MyString contains "437.324".

2.7.12 DateSerial Function

Returns a Variant of subtype Date for a specified year, month, and day.
Syntax
DateSerial(Year, Month, Day)
The DateSerial function syntax has these parts:
Part Description

Year Number between 100 and 9999, inclusive, or a
numeric expression.

Month Any numeric expression.
Day Any numeric expression.
Remarks

To specify a date, such as December 31, 1991, the range of numbers for each
DateSerial argument should be in the accepted range for the unit; that is, 1-31 for days
and 1-12 for months. However, you can also specify relative dates for each argument
using any numeric expression that represents some number of days, months, or years
before or after a certain date.

For the Year argument, values between O and 99, inclusive, are interpreted as the years
1900-1999. For all other Year arguments, use a complete four-digit year (for example,
1800).

Reliance 4 - Scripts N

102 Conversion Functions

When any argument exceeds the accepted range for that argument, it increments to the
next larger unit as appropriate. For example, if you specify 35 days, it is evaluated as one
month and some number of days, depending on where in the year it is applied. However,
if any single argument is outside the range -32,768 to 32,767, or if the date specified by
the three arguments, either directly or by expression, falls outside the acceptable range
of dates, an error occurs.

|l Date and Time Functions

Bl conversion Functions

Example

The following example uses numeric expressions instead of absolute date numbers. Here
the DateSerial function returns a date that is the day before the first day (1 - 1) of two
months before August (8 - 2) of 10 years before 1990 (1990 - 10); in other words, May
31, 1980.

Dim MyDatel, MyDate2
MyDatel = DateSerial(1970, 1, 1) " Returns January 1, 1970.
MyDate2 = DateSerial(1990 - 10, 8 - 2, 1 - 1) ' Returns May 31, 1980.

2.7.13 DateValue Function

Returns a Variant of subtype Date.
Syntax

DateValue(Date)

The Date argument is normally a string expression representing a date from January 1,
100 through December 31, 9999. However, Date can also be any expression that can
represent a date, a time, or both a date and time, in that range.

Remarks

If the Date argument includes time information, DateValue doesn't return it. However, if
Date includes invalid time information (such as "89:98"), an error occurs.

I Reliance 4 - Scripts

Conversion Functions 103

If Date is a string that includes only numbers separated by valid date separators,
DateValue recognizes the order for month, day, and year according to the short date
format you specified for your system. DateValue also recognizes unambiguous dates that
contain month names, either in long or abbreviated form. For example, in addition to
recognizing 12/30/1991 and 12/30/91, DateValue also recoghizes December 30,
1991 and Dec 30, 1991.

If the year part of Date is omitted, DateValue uses the current year from your computer's
system date.

|l Date and Time Functions

&l Conversion Functions

Example

The following example uses the DateValue function to convert a string to a date. You can
also use date literals to directly assign a date to a Variant variable, for example, MyDate
= #9/11/63#.

Dim MyDate
MyDate = DateValue("September 11, 1963") ' Return a date.

2.7.14 Day Function

Returns a whole number between 1 and 31, inclusive, representing the day of the month.
Syntax

Day(Date)

The Date argument is any expression that can represent a date. If Date contains Null,
Null is returned.

Bl Date and Time Functions

|l conversion Functions

Example

The following example uses the Day function to obtain the day of the month from a
specified date.

Reliance 4 - Scripts N

104 Conversion Functions

Dim MyDay
MyDay = Day('"October 19, 1962") ' MyDay contains 19.

2.7.15 Fix Function

Returns the integer portion of a number.
Syntax

Fix(Number)
The Number argument can be any valid numeric expression. If Number contains Null,
Null is returned.
Remarks

Both Int and Fix remove the fractional part of Number and return the resulting integer
value.

The difference between Int and Fix is that if Number is negative, Int returns the first
negative integer less than or equal to Number, whereas Fix returns the first negative
integer greater than or equal to Number. For example, Int converts -8.4 to -9, and Fix
converts -8.4 to -8.

Fix(Number) is equivalent to:
Sgn(Number) * Int(Abs(Number))

Bl Data Type Functions
|l conversion Functions

Bl Math Functions

Example

The following examples illustrate how the Int and Fix functions return integer portions of
numbers.

Dim MyNumber

MyNumber = Int(99.8) ' Returns 99.
MyNumber = Fix(99. 2) ' Returns 99.
MyNumber = Int(-99.8) ' Returns -100.
MyNumber = Fix(-99.8) ' Returns -99.

I Reliance 4 - Scripts

MyNumber = Int(-99
MyNumber = Fix(-99.

Conversion Functions 105

.2) " Returns -100.
2) " Returns -99

2.7.16 Hex Function

Returns a string representing the hexadecimal value of a number.

Syntax

Hex(Number)

The Number argument is any valid expression.

Remarks

If Number is not already a whole number, it is rounded to the nearest whole number
before being evaluated.

If Number is

Null

Empty

Hex returns

Null

Zero (0).

Any other number |Up to eight hexadecimal characters.

You can represent hexadecimal numbers directly by preceding numbers in the proper
range with &H. For example, &H10 represents decimal 16 in hexadecimal notation.

&l Conversion Functions

Example

The following example uses the Hex function to return the hexadecimal value of a
number.

Dim MyHe
MyHex =
MyHex =
MyHex =

b4

Hex(5)
Hex(10)
Hex(459)

r

r

r

Returns 5.
Returns A.
Returns 1CB.

Reliance 4 - Scripts N

106 Conversion Functions

2.7.17 Hour Function

Returns a whole number between 0 and 23, inclusive, representing the hour of the day.
Syntax

Hour(Time)

The Time argument is any expression that can represent a time. If Time contains Null,
Null is returned.

Bl Date and Time Functions

=l conversion Functions

Example
The following example uses the Hour function to obtain the hour from the current time.
Dim MyTime, MyHour
MyTime = Now

" MyHour contains the number representing the current hour.

MyHour = Hour(MyTime)

2.7.18 Int Function

Returns the integer portion of a number.
Syntax

Int(Number)

The Number argument can be any valid numeric expression. If Number contains Null,
Null is returned.

Remarks

Both Int and Fix remove the fractional part of Number and return the resulting integer
value.

I Reliance 4 - Scripts

Conversion Functions 107

The difference between Int and Fix is that if Number is negative, Int returns the first
negative integer less than or equal to Number, whereas Fix returns the first negative
integer greater than or equal to Number. For example, Int converts -8.4 to -9, and Fix
converts -8.4 to -8.

Fix(Number) is equivalent to.

Sgn(Number) * Int(Abs(Number))

Bl Data Type Functions
Bl Conversion Functions

B’ Math Functions

Example

The following examples illustrate how the Int and Fix functions return integer portions of
numbers.

Dim MyNumber

MyNumber = Int(99.8 " Returns 99.

)
MyNumber = Fix(99. 2) " Returns 99.
MyNumber = Int(-99.8) ' Returns -100.
MyNumber = Fix(-99.8) ' Returns -99.
MyNumber = Int(-99.2) ' Returns -100.
MyNumber = Fix(-99.2) ' Returns -99.

2.7.19 LCase Function

Returns a string that has been converted to lowercase.
Syntax

LCase(String)

The String argument is any valid string expression. If String contains Null, Null is
returned.

Remarks

Only uppercase letters are converted to lowercase; all lowercase letters and nonletter
characters remain unchanged.

Reliance 4 - Scripts N

108 Conversion Functions

Bl String Functions

|l conversion Functions

Example

The following example uses the LCase function to convert uppercase letters to
lowercase.

Dim MyString
Dim LCaseString
MyString = "VBSCript"

LCaseString = LCase(MyString) ' LCaseString contains " vbscript".

2.7.20 Minute Function

Returns a whole number between O and 59, inclusive, representing the minute of the hour.
Syntax

Minute(Time)

The Time argument is any expression that can represent a time. If Time contains Null,
Null is returned.

Bl Date and Time Functions

Bl conversion Functions

Example

The following example uses the Minute function to return the minute of the hour.

Dim MyVar
MyVar = Minute(Now)

2.7.21 Month Function

Returns a whole number between 1 and 12, inclusive, representing the month of the year.

I Reliance 4 - Scripts

Conversion Functions 109

Syntax

Month(Date)

The Date argument is any expression that can represent a date. If Date contains Null,
Null is returned.

|l Date and Time Functions

&l Conversion Functions

Example

The following example uses the Month function to return the current month.

Dim MyVar

' MyVar contains the number corresponding to the current month.
MyVar = Month(Now)

2.7.22 Oct Function

Returns a string representing the octal value of a number.
Syntax
Oct(Number)
The Number argument is any valid expression.

Remarks

If Number is not already a whole number, it is rounded to the nearest whole number
before being evaluated.

Oct returns

If Number is
Null Null
Empty Zero (0).

Any other number |Up to 11 octal characters.

Reliance 4 - Scripts N

110 Conversion Functions

You can represent octal numbers directly by preceding numbers in the proper range with
&O0. For example, &010 is the octal notation for decimal 8.

|l conversion Functions

Example

The following example uses the Oct function to return the octal value of a number.

Dim MyOct

MyOct = Oct(4) " Returns 4.
MyOct = Oct(8) ' Returns 10.
MyOct = Oct(459) ' Returns 713.

2.7.23 Second Function

Returns a whole number between O and 59, inclusive, representing the second of the minute.
Syntax

Second(Time)

The Time argument is any expression that can represent a time. If Time contains Null,
Null is returned.

|l Date and Time Functions

Bl conversion Functions

Example

The following example uses the Second function to return the current second.

Dim MySec
' MySec contains the number representing the current second.

MySec = Second(Now)

2.7.24 TimeSerial Function

Returns a Variant of subtype Date containing the time for a specific hour, minute, and
second.

I Reliance 4 - Scripts

Conversion Functions 111

Syntax

TimeSerial(Hour, Minute, Second)

The TimeSerial function syntax has these parts:

Part Description
Hour Number between 0 (12:00 A.M.) and 23 (11:00 P.
M.), inclusive, or a numeric expression.
Minute Any numeric expression.
Second Any numeric expression.
Remarks

To specify a time, such as 11:59:59, the range of numbers for each TimeSerial
argument should be in the accepted range for the unit; that is, 0-23 for hours and 0-59
for minutes and seconds. However, you can also specify relative times for each argument
using any numeric expression that represents some number of hours, minutes, or
seconds before or after a certain time.

When any argument exceeds the accepted range for that argument, it increments to the
next larger unit as appropriate. For example, if you specify 75 minutes, it is evaluated as
one hour and 15 minutes. However, if any single argument is outside the range -32,768
to 32,767, or if the time specified by the three arguments, either directly or by
expression, causes the date to fall outside the acceptable range of dates, an error
occurs.

Bl Date and Time Functions

|l conversion Functions

Example

The following example uses expressions instead of absolute time numbers. The
TimeSerial function returns a time for 15 minutes before (-15) six hours before noon (12
- B6), or 5:45:00 A.M.

Dim MyTime
MyTime = TimeSerial(l2 - 6, -15, 0) ' Returns 5:45:00 AM

Reliance 4 - Scripts N

112 Conversion Functions

2.7.25 TimeValue Function

Returns a Variant of subtype Date containing the time.

Syntax
TimeValue(Time)

The Time argument is usually a string expression representing a time from 0:00:00

(12:00:00 A.M.) to 23:59:59 (11:59:59 P.M.), inclusive. However, Time can also be any

expression that represents a time in that range. If Time contains Null, Null is returned.
Remarks

You can enter valid times using a 12-hour or 24-hour clock. For example, "2:24PM" and
"14:24" are both valid Time arguments. If the Time argument contains date information,
TimeValue doesn't return the date information. However, if Time includes invalid date
information, an error occurs.

|l Date and Time Functions

Bl conversion Functions

Example

The following example uses the TimeValue function to convert a string to a time. You can
also use date literals to directly assign a time to a Variant (for example, MyTime =
#4:35:17 PM#).

Dim MyTime
MyTime = TimeValue("4:35:17 PM") ' MyTime contains 4:35:17 PM

2.7.26 UCase Function

Returns a string that has been converted to uppercase.
Syntax

UCase(String)

The String argument is any valid string expression. If String contains Null, Null is
returned.

I Reliance 4 - Scripts

Conversion Functions 113

Remarks

Only lowercase letters are converted to uppercase; all uppercase letters and nonletter
characters remain unchanged.

Bl String Functions

|l conversion Functions

Example

The following example uses the UCase function to return an uppercase version of a
string.

Dim MyWord
MyWord = UCase("Hello World") ' Returns " HELLO WORLD'.

2.7.27 Weekday Function

Returns a whole number representing the day of the week.
Syntax
Weekday(Date/, FirstDayOfWeek])
The Weekday function syntax has these parts:
Part Description

Date Any expression that can represent a date. If
Date contains Null, Null is returned.

FirstDayOfWeek A constant that specifies the first day of the
week. If omitted, vbSunday is assumed.

Settings
The FirstDayOfWeek argument has these settings:

Constant Value |Description

Reliance 4 - Scripts N

114 Conversion Functions

vbUseSystem 0 Use National Language Support
(NLS) API setting.

vbSunday 1 Sunday

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

Return Values

The Weekday function can return any of these values:

Constant Value |Description
vbSunday 1 Sunday
vbMonday 2 Monday
vbTuesday 3 Tuesday
vbWednesday 4 Wednesday
vbThursday 5 Thursday
vbFriday 6 Friday
vbSaturday 7 Saturday

Bl Date and Time Functions

Bl conversion Functions

Example

The following example uses the Weekday function to obtain the day of the week from a
specified date.

I Reliance 4 - Scripts

Conversion Functions 115

Dim MyDate, MyWeekDay
MyDate = #October 19, 1962# ' Assign a date.

" MyWeekDay contains 6 because MyDate represents a Friday.

MyWeekDay = Weekday(MyDate)

2.7.28 Year Function

Returns a whole number representing the year.
Syntax

Year(Date)

The Date argument is any expression that can represent a date. If Date contains Null,
Null is returned.

|l Date and Time Functions

Bl Conversion Functions

Example

The following example uses the Year function to obtain the year from a specified date.

Dim MyDate, MyYear
MyDate = #October 19, 1962# ' Assign a date.
MyYear = Year(MyDate) " MyYear contains 1962.

Reliance 4 - Scripts N

Math Functions

2.8 Math Functions

2| Abs Function
2| Atn Function
2| Cos Function
22| Exp Function
2| Fix Function
2 Int Function
2| Log Function
2| Rnd Function
2| Round Function
2| Sgn Function
2| Sin Function
2| Sqr Function

2| Tan Function

2.8.1 Abs Function

Returns the absolute value of a number.
Syntax

Abs(Number)

The Number argument can be any valid numeric expression. If Number contains Null,
Null is returned; if it is an uninitialized variable, zero is returned.

Remarks

The absolute value of a number is its unsigned magnitude. For example, Abs(-1) and Abs
(1) both return 1.

Bl Math Functions

I Reliance 4 - Scripts

Math Functions 117

Example

The following example uses the Abs function to compute the absolute value of a number.

Dim MyNumber
MyNumber = Abs(50. 3) " Returns 50. 3.
MyNumber = Abs(-50.3) ' Returns 50. 3.

2.8.2 Atn Function

Returns the arctangent of a number.
Syntax

Atn(Number)

The Number argument can be any valid numeric expression.

Remarks

The Atn function takes the ratio of two sides of a right triangle (Number) and returns the
corresponding angle in radians. The ratio is the length of the side opposite the angle
divided by the length of the side adjacent to the angle. The range of the result is -pi/2 to
pi/2 radians.

To convert degrees to radians, multiply degrees by pi/180. To convert radians to
degrees, multiply radians by 180/pi.
NOTE

Atn is the inverse trigonometric function of Tan, which takes an angle as its argument
and returns the ratio of two sides of a right triangle. Do not confuse Atn with the
cotangent, which is the simple inverse of a tangent (1/tangent).

B’ Math Functions

Example

The following example uses Atn to calculate the value of pi.

Dim pi

pi =4 * Atn(1l) ' Calculate the value of pi.

Reliance 4 - Scripts N

Math Functions

2.8.3 Cos Function

Returns the cosine of an angle.
Syntax

Cos(Number)

The Number argument can be any valid numeric expression that expresses an angle in
radians.

Remarks

The Cos function takes an angle and returns the ratio of two sides of a right triangle. The
ratio is the length of the side adjacent to the angle divided by the length of the
hypotenuse. The result lies in the range -1 to 1.

To convert degrees to radians, multiply degrees by pi/180. To convert radians to
degrees, multiply radians by 180/pi.

Bl Math Functions

Example

The following example uses the Cos function to return the cosine of an angle.

Dim MyAngle, MySecant
MyAngle = 1.3 ' Define angle in radians.
MySecant = 1 / Cos(MyAngle) ' Calculate secant.

2.8.4 Exp Function

Returns e (the base of natural logarithms) raised to a power.

Syntax

Exp(Number)

The Number argument can be any valid numeric expression.

I Reliance 4 - Scripts

Math Functions 119

Remarks
If the value of Number exceeds 709.782712893, an error occurs. The constant e is
approximately 2.718282.

NOTE

The Exp function complements the action of the Log function and is sometimes referred
to as the antilogarithm.

Bl Math Functions

Example

The following example uses the Exp function to return e raised to a power.

Dim MyAngle, MyHSin

MyAngle = 1.3 ' Define angle in radians.

' Calculate hyperbolic sine.

MyHSin = (Exp(MyAngle) - Exp(-1 * MyAngle)) / 2

2.8.5 Fix Function

Returns the integer portion of a number.
Syntax

Fix(Number)

The Number argument can be any valid numeric expression. If Number contains Null,
Null is returned.

Remarks

Both Int and Fix remove the fractional part of Number and return the resulting integer
value.

The difference between Int and Fix is that if Number is negative, Int returns the first
negative integer less than or equal to Number, whereas Fix returns the first negative
integer greater than or equal to Number. For example, Int converts -8.4 to -9, and Fix
converts -8.4 to -8.

Fix(Number) is equivalent to:

Reliance 4 - Scripts N

Math Functions

Sgn(Number) * Int(Abs(Number))

Bl Data Type Functions
Bl Conversion Functions

|l Math Functions

Example

The following examples illustrate how the Int and Fix functions return integer portions of
numbers.

Dim MyNumber
Int(99.8

MyNumber " Returns 99.

)
MyNumber = Fix(99.2) " Returns 99.
MyNumber = Int(-99.8) ' Returns -100.
MyNumber = Fix(-99.8) ' Returns -99.
MyNumber = Int(-99.2) ' Returns -100.
MyNumber = Fix(-99.2) ' Returns -99.

2.8.6 Int Function

Returns the integer portion of a number.
Syntax

Int(Number)
The Number argument can be any valid numeric expression. If Number contains Null,
Null is returned.
Remarks

Both Int and Fix remove the fractional part of Number and return the resulting integer
value.

The difference between Int and Fix is that if Number is negative, Int returns the first
negative integer less than or equal to Number, whereas Fix returns the first negative
integer greater than or equal to Number. For example, Int converts -8.4 to -9, and Fix
converts -8.4 to -8.

Fix(Number) is equivalent to.

Sgn(Number) * Int(Abs(Number))

I Reliance 4 - Scripts

Math Functions 121

Bl Data Type Functions
Bl Conversion Functions

B’ Math Functions

Example

The following examples illustrate how the Int and Fix functions return integer portions of
numbers.

Dim MyNumber

MyNumber = Int(99. 8) " Returns 99.
MyNumber = Fix(99.2) " Returns 99.
MyNumber = Int(-99.8) ' Returns -100.
MyNumber = Fix(-99.8) ' Returns -99.
MyNumber = Int(-99.2) ' Returns -100.
MyNumber = Fix(-99.2) ' Returns -99.

2.8.7 Log Function

Returns the natural logarithm of a number.
Syntax

Log(Number)

The Number argument can be any valid numeric expression greater than O.

Remarks

The natural logarithm is the logarithm to the base e. The constant e is approximately
2.718282.

You can calculate base-n logarithms for any number x by dividing the natural logarithm of
X by the natural logarithm of n as follows.

Logn(x) = Log(x) / Log(n)
&l Math Functions

Example

The following example illustrates a custom function that calculates base-10 logarithms.

Reliance 4 - Scripts N

Math Functions

Function LoglO(X)
Logl0 = Log(X) / Log(10)
End Function

2.8.8 Rnd Function

Returns a random number.
Syntax

Rnd[(Number)]

The Number argument can be any valid numeric expression.

Remarks

The Rnd function returns a value less than 1 but greater than or equal to O. The value of
Number determines how Rnd generates a random number:

1 Number is Rnd generates

Less than zero The same number every time, using Number as the
seed.

Greater than zero The next random number in the sequence.
Equal to zero The most recently generated number.

Not supplied The next random number in the sequence.

For any given initial seed, the same number sequence is generated because each
successive call to the Rnd function uses the previous number as a seed for the next
number in the sequence.

Before calling Rnd, use the Randomize statement without an argument to initialize the
random-number generator with a seed based on the system timer.

NOTE

To repeat sequences of random numbers, call Rnd with a negative argument
immediately before using Randomize with a numeric argument. Using Randomize with
the same value for Number does not repeat the previous sequence.

I Reliance 4 - Scripts

Math Functions 123

Bl Math Functions

Example

To produce random integers in a given range, use this formula (here, upperbound is the
highest number in the range, and lowerbound is the lowest number in the range).

Int((upperbound - lowerbound + 1) * Rnd + lowerbound)

2.8.9 Round Function

Returns a number rounded to a specified number of decimal places.
Syntax

Round(Expression[, NumDecimalPlaces])

The Round function syntax has these parts:

Part Description
Expression Required. Numeric expression being
rounded.

NumDecimalPlaces Optional. Number indicating how many
places to the right of the decimal are
included in the rounding. If omitted,
integers are returned by the Round
function.

Bl Math Functions

Example

The following example uses the Round function to round a number to two decimal
places.

Dim MyVar, pi
pi = 3.14159
MyVar = Round(pi, 2) ' MyVar contains 3. 14.

Reliance 4 - Scripts N

Math Functions

2.8.10 Sgn Function

Returns an integer indicating the sign of a number.
Syntax

Sgn(Number)

The Number argument can be any valid numeric expression.

Return Values

The Sgn function has the following return values:

If Number is Sgn returns

Greater than zero 1

Equal to zero 0

Less than zero -1
Remarks

The sign of the Number argument determines the return value of the Sgn function.

|l Math Functions

Example

The following example uses the Sgn function to determine the sign of a number.

Dim MyVarl, MyVar2, MyVar3, MySign
MyVarl = 12

MyVar2 = -2.4

MyVar3 = 0

MySign = Sgn(MyVarl) ' Returns 1.
MySign = Sgn(MyVar2) ' Returns -1
MySign = Sgn(MyVar3) ' Returns 0.

I Reliance 4 - Scripts

Math Functions 125

2.8.11 Sin Function

Returns the sine of an angle.
Syntax

Sin(Number)

The Number argument can be any valid numeric expression that expresses an angle in
radians.

Remarks

The Sin function takes an angle and returns the ratio of two sides of a right triangle. The
ratio is the length of the side opposite the angle divided by the length of the hypotenuse.
The result lies in the range -1 to 1.

To convert degrees to radians, multiply degrees by pi/180. To convert radians to
degrees, multiply radians by 180/pi.

Bl Math Functions

Example

The following example uses the Sin function to return the sine of an angle.

Dim MyAngle, MyCosecant
MyAngle = 1.3 ' Define angle in radians.
MyCosecant = 1 / Sin(MyAngle) ' Calculate cosecant.

2.8.12 Sqr Function

Returns the square root of a number.
Syntax

Sqr(Number)

The Number argument can be any valid numeric expression greater than or equal to O.

Bl Math Functions

Reliance 4 - Scripts N

Math Functions

Example

The following example uses the Sqr function to calculate the square root of a number.

Dim MySqr
' Returns 2.

MySgr = Sqr(4)
3) " Returns 4.79583152331272.
)
4

MySqr = Sqr
MySqr = Sqr " Returns 0.

MySqr = Sqr

2.8.13 Tan Function

) ' Generates a run-time error.

Returns the tangent of an angle.
Syntax

Tan(Number)
The Number argument can be any valid numeric expression that expresses an angle in
radians.
Remarks

Tan takes an angle and returns the ratio of two sides of a right triangle. The ratio is the
length of the side opposite the angle divided by the length of the side adjacent to the
angle.

To convert degrees to radians, multiply degrees by pi/180. To convert radians to
degrees, multiply radians by 180/pi.

Bl Math Functions

Example

The following example uses the Tan function to return the tangent of an angle.

Dim MyAngle, MyCotangent
MyAngle = 1.3 ' Define angle in radians.

MyCotangent = 1 / Tan(MyAngle) ' Calculate cotangent.

I Reliance 4 - Scripts

2.9 Miscellaneous Functions

=l
=l
=l
=l
=l
=l
=l
=l
=l
=l
=l

W

W

W

W

W

W

W

W

Eval Function
GetObject Function
GetRef Function

InputBox Function

LoadPicture Function

MsgBox Function

RGB Function

ScriptEngine Function

ScriptEngineBuildVersion Function

ScriptEngineMajorVersion Function

ScriptEngineMinorVersion Function

2.9.1 Eval Function

Evaluates an expression and returns the result.

Syntax

[Result =] Eval(Expression)

The Eval function syntax has these parts:

Part

Result

Expression

Description

Optional. Variable to which return value
assignment is made. If Result is not
specified, consider using the Execute
statement instead.

Required. String containing any legal
VBScript expression.

Miscellaneous Functions 127

Reliance 4 - Scripts N

Miscellaneous Functions

Remarks

In VBScript, x =y can be interpreted two ways. The first is as an assignment statement,
where the value of y is assigned to x. The second interpretation is as an expression that
tests if x and y have the same value. If they do, Result is True; if they are not, Result is
False. The Eval method always uses the second interpretation, whereas the Execute

statement always uses the first.

Bl Miscellaneous Functions

Example

The following example illustrates the use of the Eval function.

Sub GuessANumber
Dim Guess, RndNum
RndNum = Int((100) * Rnd(1l) + 1)
Guess = CInt(InputBox("Enter your guess:", , 0))
Do
If Eval("Guess = RndNum") Then
MsgBox "Congratulations! You guessed 1it!"

Exit Sub
Else
Guess = CInt(InputBox("Sorry! Try again.", , 0))
End If
Loop Until Guess = 0
End Sub

2.9.2 GetObject Function

Returns a reference to an Automation object from a file.

Syntax

GetObject([PathName][, Class])

The GetObject function syntax has these parts:

Part Description

I Reliance 4 - Scripts

Miscellaneous Functions 129

PathName Optional; String. Full path and name of the
file containing the object to retrieve. If
PathName is omitted, Class is required.

Class Optional; String. Class of the object.

The Class argument uses the syntax AppName.ObjectType and has these parts:

Part Description
AppName Required; String. Name of the application
providing the object.
ObjectType Required; String. Type or class of object to
create.
Remarks

Use the GetObject function to access an Automation object from a file and assign the
object to an object variable. Use the Set statement to assign the object returned by
GetObject to the object variable. For Example:

Dim CADObject
Set CADObject = GetObject("C: \CAD\SCHEMA. CAD")

When this code is executed, the application associated with the specified pathname is
started and the object in the specified file is activated. If PathName is a zero-length
string ("), GetObject returns a new object instance of the specified type. If the
PathName argument is omitted, GetObject returns a currently active object of the
specified type. If no object of the specified type exists, an error occurs.

Some applications allow you to activate part of a file. Add an exclamation point (!) to the
end of the file name and follow it with a string that identifies the part of the file you want
to activate. For information on how to create this string, see the documentation for the
application that created the object.

For example, in a drawing application you might have multiple layers to a drawing stored
in a file. You could use the following code to activate a layer within a drawing called
p'ebj "K*a:

Set LayerObject = GetObject("C: \CAD\SCHEMA. CAD! Layer3")

Reliance 4 - Scripts N

Miscellaneous Functions

If you don't specify the object's class, Automation determines the application to start and
the object to activate, based on the file name you provide. Some files, however, may
support more than one class of object. For example, a drawing might support three
different types of objects: an Application object, a Drawing object, and a Toolbar object,
all of which are part of the same file. To specify which object in a file you want to
activate, use the optional Class argument. For Example:

Dim MyObject
Set MyObject = GetObject("C: \DRAWINGS\SAMPLE. DRW", "FIGMENT.DRAWING")

In the preceding example, cfdj bkq is the name of a drawing application and ao*t fkd is
one of the object types it supports. Once an object is activated, you reference it in code
using the object variable you defined. In the preceding example, you access properties
and methods of the new object using the object variable j o AxA. For Example:

MyObject. Line 9, 90
MyObject. InsertText 9, 100, "Hello, world."
MyObject. SaveAs "C: \DRAWINGS\SAMPLE. DRW"

NOTE

Use the GetObject function when there is a current instance of the object or if you want
to create the object with a file already loaded. If there is no current instance, and you
don't want the object started with a file loaded, use the CreateObject function.

If an object has registered itself as a single-instance object, only one instance of the
object is created, no matter how many times CreateObject is executed. With a single-
instance object, GetObject always returns the same instance when called with the zero-
length string ("") syntax, and it causes an error if the PathName argument is omitted.

Bl Miscellaneous Functions

2.9.3 GetRef Function

Returns a reference to a procedure that can be bound to an event.

I Reliance 4 - Scripts

Miscellaneous Functions 131

Syntax

Set Object.EventName = GetRef(ProcName)

The GetRef function syntax has these parts:
Part Description

Object Required. Name of the object with which
EventName is associated.

EventName Required. Name of the event to which the
function is to be bound.

ProcName Required. String containing the name of the
Sub or Function procedure being associated
with the EventName.

Remarks

The GetRef function allows you to connect a VBScript procedure (Function or Sub) to any
available event on your DHTML (Dynamic HTML) pages. The DHTML object model
provides information about what events are available for its various objects.

In other scripting and programming languages, the functionality provided by GetRef is
referred to as a function pointer, that is, it points to the address of a procedure to be
executed when the specified event occurs.

|l Miscellaneous Functions

Example

The following example illustrates the use of the GetRef function.

<SCRIPT LANGUAGE="VBScript">

Function GetRefTest()
Dim Splash
Splash = "GetRefTest Version 1.0" & vbCrLf
Splash = Splash & Chr(169) & " GEOVAP - Reliance "
MsgBox Splash

End Function

Set Window. Onload = GetRef("GetRefTest")

</SCRIPT>

Reliance 4 - Scripts N

Miscellaneous Functions

2.9.4 InputBox Function

Displays a prompt in a dialog box, waits for the user to input text or click a button, and returns
the contents of the text box.

Syntax

InputBox(Prompt|[, Title][, Default][, XPos][, YPos][, HelpFile, Context])

The InputBox function syntax has these parts:
Part Description

Prompt String expression displayed as the message in the dialog box.
The maximum length of Prompt is approximately 1024
characters, depending on the width of the characters used. If
Prompt consists of more than one line, you can separate the
lines using a carriage return character (Chr(13)), a linefeed
character (Chr(10)), or carriage return-linefeed character
combination (Chr(13) & Chr(10)) between each line.

Title String expression displayed in the title bar of the dialog box. If
you omit Title, the application name is placed in the title bar.

Default String expression displayed in the text box as the default
response if no other input is provided. If you omit Default, the
text box is displayed empty.

XPos Numeric expression that specifies, in twips, the horizontal
distance of the left edge of the dialog box from the left edge of
the screen. If XPos is omitted, the dialog box is horizontally
centered.

YPos Numeric expression that specifies, in twips, the vertical distance
of the upper edge of the dialog box from the top of the screen. If
YPos is omitted, the dialog box is vertically positioned
approximately one-third of the way down the screen.

HelpFile String expression that identifies the Help file to use to provide
context-sensitive Help for the dialog box. If HelpFile is provided,
Context must also be provided.

I Reliance 4 - Scripts

Miscellaneous Functions 133

Context Numeric expression that identifies the Help context number
assigned by the Help author to the appropriate Help topic. If
Context is provided, HelpFile must also be provided.

Remarks

When both HelpFile and Context are supplied, a Help button is automatically added to
the dialog box.

If the user clicks OK or presses Enter, the InputBox function returns whatever is in the
text box. If the user clicks Cancel, the function returns a zero-length string ("").

Bl Miscellaneous Functions

Example

The following example uses the InputBox function to display an input box and assign the
string to the variable Input.

Dim Input
Input = InputBox("Enter your name")
MsgBox ("You entered: " & Input)

2.9.5 LoadPicture Function

Returns a picture object. Available only on 32-bit platforms.
Syntax

LoadPicture(PictureName)
The PictureName argument is a string expression that indicates the name of the picture
file to be loaded.
Remarks

Graphics formats recognized by LoadPicture include bitmap (.bmp) files, icon (.ico) files,
run-length encoded (.rle) files, metafile (.wmf) files, enhanced metafiles (.emf), GIF (.gif)
files, and JPEG (.jpg) files.

Bl Miscellaneous Functions

Reliance 4 - Scripts N

Miscellaneous Functions

2.9.6 MsgBox Function

Displays a message in a dialog box, waits for the user to click a button, and returns a value
indicating which button the user clicked.

Syntax

MsgBox(Prompt[, Buttons][, Title][, HelpFile, Context])

The MsgBox function syntax has these parts:
Part Description

Prompt String expression displayed as the message in the dialog box.
The maximum length of Prompt is approximately 1024
characters, depending on the width of the characters used. If
Prompt consists of more than one line, you can separate the
lines using a carriage return character (Chr(13)), a linefeed
character (Chr(10)), or carriage return-linefeed character
combination (Chr(13) & Chr(10)) between each line.

Buttons Numeric expression that is the sum of values specifying the
number and type of buttons to display, the icon style to use, the
identity of the default button, and the modality of the message
box. See Settings section for values. If omitted, the default value
for Buttons is O.

Title String expression displayed in the title bar of the dialog box. If
you omit Title, the application name is placed in the title bar.

HelpFile String expression that identifies the Help file to use to provide
context-sensitive Help for the dialog box. If HelpFile is provided,
Context must also be provided. Not available on 16-bit
platforms.

Context Numeric expression that identifies the Help context number
assigned by the Help author to the appropriate Help topic. If
Context is provided, HelpFile must also be provided. Not
available on 16-bit platforms.

I Reliance 4 - Scripts

Miscellaneous Functions 135

Settings

The Buttons argument settings are:

Constant Value Description
vbOKOnly 0 Display OK button only.
vbOKCancel 1 Display OK and Cancel buttons.
vbAbortRetrylgnore 2 Display Abort, Retry, and Ignore
buttons.
vbYesNoCancel 3 Display Yes, No, and Cancel buttons.
vbYesNo 4 Display Yes and No buttons.
vbRetryCancel 5 Display Retry and Cancel buttons.
vbCritical 16 Display Critical Message icon.
vbQuestion 32 Display Warning Query icon.
vbExclamation 48 Display Warning Message icon.
vbinformation 64 Display Information Message icon.
vbDefaultButton1 0 First button is default.
vbDefaultButton2 256 Second button is default.
vbDefaultButton3 512 Third button is default.
vbDefaultButton4 768 Fourth button is default.
vbApplicationModal 0 Application modal; the user must
respond to the message box before
continuing work in the current
application.
vbSystemModal 4096 System modal; all applications are

suspended until the user responds to
the message box.

Reliance 4 - Scripts N

Miscellaneous Functions

The first group of values (0-5) describes the number and type of buttons displayed in the
dialog box; the second group (16, 32, 48, 64) describes the icon style; the third group (O,
256, 512, 768) determines which button is the default; and the fourth group (0, 4096)
determines the modality of the message box. When adding numbers to create a final
value for the argument Buttons, use only one number from each group.

Return Values

The MsgBox function has the following return values:

Constant Value Button
vbOK 1 OK
vbCancel 2 Cancel
vbAbort 3 Abort
vbRetry 4 Retry
vbignore 5 Ignore
vbYes 6 Yes
vbNo 7 No
Remarks

When both HelpFile and Context are provided, the user can press F1 to view the Help
topic corresponding to the context.

If the dialog box displays a Cancel button, pressing the Esc key has the same effect as
clicking Cancel. If the dialog box contains a Help button, context-sensitive Help is
provided for the dialog box. However, no value is returned until one of the other buttons
is clicked.

Bl Miscellaneous Functions

Example

The following example uses the MsgBox function to display a message box and return a
value describing which button was clicked.

Dim MyVar

I Reliance 4 - Scripts

Miscellaneous Functions 137

' MyVar contains either 1 or 2, depending on which button is clicked.
MyVar = MsgBox("Hello World!", 65, "MsgBox Example")

2.9.7 RGB Function

Returns a whole number representing an RGB color value.
Syntax

RGB(Red, Green, Blue)
The RGB function has these parts:

Part Description

Red Required. Number in the range 0-255
representing the red component of the color.

Green Required. Number in the range 0-255
representing the green component of the color.

Blue Required. Number in the range 0-255
representing the blue component of the color.

Remarks

Application methods and properties that accept a color specification expect that
specification to be a number representing an RGB color value. An RGB color value
specifies the relative intensity of red, green, and blue to cause a specific color to be
displayed.

The value for any argument to RGB that exceeds 255 is assumed to be 255.

The low-order byte contains the value for red, the middle byte contains the value for
green, and the high-order byte contains the value for blue.

For applications that require the byte order to be reversed, the following function will
provide the same information with the bytes reversed.

Function RevRGB(red, green, blue)
RevRGB= CLng(blue + (green * 256) + (red * 65536))
End Function

|l Miscellaneous Functions

Reliance 4 - Scripts N

Miscellaneous Functions

2.9.8 ScriptEngine Function

Returns a string representing the scripting language in use.
Syntax
ScriptEngine
Return Values
The ScriptEngine function can return any of the following strings:
String Description

VBScript Indicates that Microsoft® Visual Basic® Scripting
Edition is the current scripting engine.

JScript Indicates that Microsoft JScript® is the current
scripting engine.

VBA Indicates that Microsoft Visual Basic for
Applications is the current scripting engine.

Bl Miscellaneous Functions

Example

The following example uses the ScriptEngine function to return a string describing the
scripting language in use.

Function GetScriptEnginelInfo

Dim s

s ="" " Build string with necessary info.
s = ScriptEngine & " Version "

s = s & ScriptEngineMajorVersion & "."

s = s & ScriptEngineMinorVersion & "."

s = s & ScriptEngineBuildVersion

GetScriptEngineInfo = s ' Return the results.

End Function

I Reliance 4 - Scripts

Miscellaneous Functions 139

2.9.9 ScriptEngineBuildVersion Function

Returns the build version number of the scripting engine in use.
Syntax
ScriptEngineBuildVersion

Remarks

The return value corresponds directly to the version information contained in the DLL for
the scripting language in use.

|l Miscellaneous Functions

Example

The following example uses the ScriptEngineBuildVersion function to return the build
version number of the scripting engine.

Function GetScriptEngineInfo

Dim s

s ="" " Build string with necessary info.
s = ScriptEngine & " Version "

s = s & ScriptEngineMajorVersion & "."

s = s & ScriptEngineMinorVersion & "."

s = s & ScriptEngineBuildVersion

GetScriptEngineInfo = s ' Return the results.
End Function

2.9.10 ScriptEngineMajorVersion Function

Returns the major version number of the scripting engine in use.
Syntax
ScriptEngineMajorVersion

Remarks

The return value corresponds directly to the version information contained in the DLL for
the scripting language in use.

Reliance 4 - Scripts N

Miscellaneous Functions

|l Miscellaneous Functions

Example

The following example uses the ScriptEngineMajorVersion function to return the version
number of the scripting engine.

Function GetScriptEngineInfo

Dim s

s ="" " Build string with necessary info.
s = ScriptEngine & " Version "

s = s & ScriptEngineMajorVersion & "."

s = s & ScriptEngineMinorVersion & "."

s = s & ScriptEngineBuildVersion

GetScriptEngineInfo = s ' Return the results.

End Function

2.9.11 ScriptEngineMinorVersion Function

Returns the minor version number of the scripting engine in use.
Syntax
ScriptEngineMinorVersion

Remarks

The return value corresponds directly to the version information contained in the DLL for
the scripting language in use.

Bl Miscellaneous Functions

Example

The following example uses the ScriptEngineMinorVersion function to return the minor
version number of the scripting engine.

Function GetScriptEnginelInfo

Dim s
s ="" ' Build string with necessary info.
s = ScriptEngine & " Version "

I Reliance 4 - Scripts

Miscellaneous Functions 141

s = s & ScriptEngineMajorVersion &

s = s & ScriptEngineMinorVersion &

s s & ScriptEngineBuildVersion
GetScriptEngineInfo = s ' Return the results.

End Function

Reliance 4 - Scripts N

142 VBScript Statements

2.10 VBScript Statements

2| call Statement

2| Const Statement

»| Dim Statement

| Do...Loop Statement

>| Erase Statement

2| Execute Statement

2| Exit Statement

2| For Each...Next Statement
2| For...Next Statement

2| Function Statement

2| If...Then...Else Statement
2| On Error Statement

22| Option Explicit Statement
2| Private Statement

2| Public Statement

2| Randomize Statement
»| ReDim Statement

2| Rem Statement

>| Select Case Statement
2| Set Statement

2| Stop Statement

2| Sub Statement

2| While...WEnd Statement
2| With Statement

I Reliance 4 - Scripts

2.10.1 Call Statement

Transfers control to a Sub or Function procedure.
Syntax

[Call] Name [ArgumentList]

The Call statement syntax has these parts:

Part Description

Call Optional keyword. If specified, you must
enclose ArgumentList in parentheses. For
Example:

Call MyProc(0)
Name Required. Name of the procedure to call.

ArgumentList Optional. Comma-delimited list of variables,
arrays, or expressions to pass to the
procedure.

Remarks

You are not required to use the Call keyword when calling a procedure. However, if you
use the Call keyword to call a procedure that requires arguments, ArgumentList must be
enclosed in parentheses. If you omit the Call keyword, you also must omit the
parentheses around ArgumentList. If you use either Call syntax to call any intrinsic or
user-defined function, the function's return value is discarded.

Bl vBScript Statements

Example

Call MyFunction("Hello World")

Function MyFunction(text)
MsgBox text

End Function

Reliance 4 - Scripts N

144 VBScript Statements

2.10.2 Const Statement

Declares constants for use in place of literal values.

Syntax

[Public | Private] Const ConstName = Expression

The Const statement syntax has these parts:

Part

Public

Private

ConstName

Expression

Remarks

Constants are public by default. Within procedures, constants are always private; their
visibility can't be changed. Within a script, the default visibility of a script-level constant

Description

Optional. Keyword used at a script level to
declare constants that are available to all
procedures in all scripts. Not allowed in
procedures.

Optional. Keyword used at a script level to
declare constants that are available only
within the script where the declaration is
made. Not allowed in procedures.

Required. Name of the constant; follows
standard variable naming conventions.

Required. Literal or other constant, or any
combination that includes all arithmetic or
logical operators except Is.

can be changed using the Private keyword.

To combine several constant declarations on the same line, separate each constant
assignment with a comma. When constant declarations are combined in this way, the

Public or Private keyword, if used, applies to all of them.

I Reliance 4 - Scripts

VBScript Statements

You can't use variables, user-defined functions, or intrinsic VBScript functions (such as
Chr) in constant declarations. By definition, they can't be constants. You also can't create
a constant from any expression that involves an operator, that is, only simple constants
are allowed. Constants declared in a Sub or Function procedure are local to that
procedure. A constant declared outside a procedure is defined throughout the script in
which it is declared. You can use constants anywhere you can use an expression.

NOTE

Constants can make your scripts self-documenting and easy to modify. Unlike variables,
constants can't be inadvertently changed while your script is running.

Bl VBScript Statements

Example

The following code illustrates the use of the Const statement.

Const MyVar = 459 ' Constants are Public by default.
' Declare Private constant.

Private Const MyString = "HELP"

" Declare multiple constants on same line.

Const MyStr = "Hello", MyNumber = 3.4567

2.10.3 Dim Statement

Declares variables and allocates storage space.
Syntax

Dim VarName[([Subscripts])][, VarName[([Subscripts])]]...
The Dim statement syntax has these parts:

Part Description

VarName Name of the variable; follows standard
variable naming conventions.

Reliance 4 - Scripts N

146 VBScript Statements

Subscripts Dimensions of an array variable; up to 60
multiple dimensions may be declared. The
Subscripts argument uses the following
syntax:
upperbound|, upperbound]...

The lower bound of an array is always zero.

Remarks

Variables declared with Dim at the script level (globally) are available to all procedures in
all scripts within the same thread (similar to Public statement). At the procedure level,
variables are available only within the procedure.

You can also use the Dim statement with empty parentheses to declare a dynamic array.
After declaring a dynamic array, use the ReDim statement within a procedure to define
the number of dimensions and elements in the array. If you try to redeclare a dimension
for an array variable whose size was explicitly specified in a Dim statement, an error
occurs.

TIP

When you use the Dim statement in a procedure, you generally put the Dim statement at
the beginning of the procedure.

Bl Array Functions
Bl vBScript Statements

Example

The following examples illustrate the use of the Dim statement.

Dim Names(9) " Declare an array with 10 elements.
Dim Names() " Declare a dynamic array.

Dim MyVar, MyNum ' Declare two variables.

2.10.4 Do...Loop Statement

Repeats a block of statements while a condition is True or until a condition becomes True.

I Reliance 4 - Scripts

Syntax
Do [{While | Until} Condition]
[Statements]
[Exit Do]
[Statements]
Loop
Or, you can use this syntax:
Do
[Statements]
[Exit Do]
[Statements]
Loop [{While | Until} Condition]

The Do...Loop statement syntax has these parts:
Part Description

Condition Numeric or string expression that is True or
False. If Condition is Null, Condition is
treated as False.

Statements One or more statements that are repeated
while or until Condition is True.

Remarks

The Exit Do can only be used within a Do...Loop control structure to provide an alternate
way to exit a Do...Loop. Any number of Exit Do statements may be placed anywhere in
the Do...Loop. Often used with the evaluation of some condition (for example, If...Then),
Exit Do transfers control to the statement immediately following the Loop.

When used within nested Do...Loop statements, Exit Do transfers control to the loop that
is nested one level above the loop where it occurs.

Bl VBScript Statements

Reliance 4 - Scripts N

148 VBScript Statements

Example

The following examples illustrate use of the Do...Loop statement.

Do Until DefResp = vbNo
' Generate a random integer between 1 and 6.
MyNum = Int (6 * Rnd + 1)
DefResp = MsgBox (MyNum & " Do you want another number?", vbYesNo)
Loop
Dim Check, Counter

Check = True

Counter = 0 ' Initialize variables.
Do " Outer loop.
Do While Counter < 20 " Inner loop.
Counter = Counter + 1 ' Increment Counter
If Counter = 10 Then ' If condition is True...
Check = False ' set value of flag to False.
Exit Do ' Exit inner loop.
End If
Loop
Loop Until Check = False ' Exit outer loop immediately.

2.10.5 Erase Statement

Reinitializes the elements of fixed-size arrays and deallocates dynamic-array storage space.
Syntax

Erase Array

The Array argument is the name of the array variable to be erased.

Remarks

It is important to know whether an array is fixed-size (ordinary) or dynamic because Erase
behaves differently depending on the type of array. Erase recovers no memory for fixed-
size arrays. Erase sets the elements of a fixed array as follows:

Type of array Effect of Erase on fixed-array elements
Fixed numeric array |Sets each element to zero.

Fixed string array Sets each element to zero-length ("").

I Reliance 4 - Scripts

Array of objects Sets each element to the special value
Nothing.

Erase frees the memory used by dynamic arrays. Before your program can refer to the
dynamic array again, it must redeclare the array variable's dimensions using a ReDim
statement.

Bl Array Functions

Bl vBScript Statements

Example

The following example illustrates the use of the Erase statement.

Dim NumArray(9)

Dim DynamicArray()

ReDim DynamicArray(9) ' Allocate storage space.
Erase NumArray ' Each element is reinitialized.
Erase DynamicArray ' Free memory used by array.

2.10.6 Execute Statement

Executes one or more specified statements.
Syntax

Execute Statement

The required Statement argument is a string expression containing one or more
statements for execution. Include multiple statements in the Statement argument, using
colons or embedded line breaks to separate them.

Remarks

In VBScript, x = y can be interpreted two ways. The first is as an assignment statement,
where the value of y is assigned to x. The second interpretation is as an expression that
tests if x and y have the same value. If they do, Result is True; if they are not, Result is
False. The Execute statement always uses the first interpretation, whereas the Eval
method always uses the second.

Reliance 4 - Scripts N

150 VBScript Statements

The context in which the Execute statement is invoked determines what objects and
variables are available to the code being run. In-scope objects and variables are
available to code running in an Execute statement. However, it is important to
understand that if you execute code that creates a procedure, that procedure does not
inherit the scope of the procedure in which it occurred.

Like any procedure, the new procedure's scope is global, and it inherits everything in the
global scope. Unlike any other procedure, its context is not global scope, so it can only be
executed in the context of the procedure where the Execute statement occurred.
However, if the same Execute statement is invoked outside of a procedure (i.e., in global
scope), not only does it inherit everything in global scope, but it can also be called from
anywhere, since its context is global.

5l VBScript Statements

Example

S =
S =
S =

The following example shows how the Execute statement can be rewritten so you don't
have to enclose the entire procedure in the quotation marks.

"Sub Proc2" & vbCrLf
S & " Print X" & vbCrLf
S & "End Sub"

Execute S

2.10.7 Exit Statement

Exits

a block of Do...Loop, For Each...Next, For...Next, Function, or Sub code.

Syntax

Exit Do

Exit For

Exit Function

Exit Sub

The Exit statement syntax has these forms:

Statement Description

I Reliance 4 - Scripts

VBScript Statements

Exit Do Provides a way to exit a Do...Loop statement. It can be
used only inside a Do...Loop statement. Exit Do transfers
control to the statement following the Loop statement.
When used within nested Do...Loop statements, Exit Do
transfers control to the loop that is one nested level
above the loop where it occurs.

Exit For Provides a way to exit a For loop. It can be used only in a
For...Next or For Each...Next loop. Exit For transfers
control to the statement following the Next statement.
When used within nested For loops, Exit For transfers
control to the loop that is one nested level above the loop
where it occurs.

Exit Function Immediately exits the Function procedure in which it
appears. Execution continues with the statement
following the statement that called the Function.

Exit Sub Immediately exits the Sub procedure in which it appears.
Execution continues with the statement following the
statement that called the Sub.

Bl VBScript Statements

Example

The following example illustrates the use of the Exit statement.

Sub RandomLoop
Dim I, MyNum

Do ' Set up infinite loop.
For I = 1 To 1000 " Loop 1000 times.
MyNum = Int(Rnd * 100) ' Generate random numbers.
Select Case MyNum ' Evaluate random number.

Case 17: MsgBox "Case 17"

Exit For ' If 17, exit For... Next.
Case 29: MsgBox "Case 29"
Exit Do " If 29, exit Do...Loop.
Case 54: MsgBox "Case 54"
Exit Sub ' If 54, exit Sub procedure.
End Select

Next

Reliance 4 - Scripts N

152 VBScript Statements

Loop
End Sub

2.10.8 For Each...Next Statement

Repeats a group of statements for each element in an array or collection.
Syntax
For Each Element In Group
[Statements]
[Exit For]
[Statements]
Next [Element]
The For Each...Next statement syntax has these parts:

Part Description

Element Variable used to iterate through the elements of the
collection or array. For collections, Element can only be
a Variant variable, a generic Object variable, or any
specific Automation object variable. For arrays, Element
can only be a Variant variable.

Group Name of an object collection or array.

Statements One or more statements that are executed on each
item in Group.

Remarks

The For Each block is entered if there is at least one element in Group. Once the loop
has been entered, all the statements in the loop are executed for the first element in
Group. As long as there are more elements in Group, the statements in the loop continue
to execute for each element. When there are no more elements in Group, the loop is
exited and execution continues with the statement following the Next statement.

I Reliance 4 - Scripts

VBScript Statements

The Exit For can only be used within a For Each...Next or For...Next control structure to
provide an alternate way to exit. Any number of Exit For statements may be placed
anywhere in the loop. The Exit For is often used with the evaluation of some condition
(for example, If...Then), and transfers control to the statement immediately following
Next.

You can nest For Each...Next loops by placing one For Each...Next loop within another.
However, each loop Element must be unique.
NOTE

If you omit Element in a Next statement, execution continues as if you had included it. If
a Next statement is encountered before its corresponding For statement, an error
occurs.

Bl vBScript Statements

Example

The following example illustrates use of the For Each...Next statement.

Function ShowFolderList(folderspec)
Dim fso, f, f1, fc, s
Set fso = CreateObject("Scripting. FileSystemObject")
Set f = fso. GetFolder(folderspec)
Set fc = f.Files
For Each fl In fc
s = s & fl.name
s = s & "
"
Next ShowFolderList = s
End Function

2.10.9 For...Next Statement

Repeats a group of statements a specified number of times.

Syntax
For Counter = Start To End [Step Step]
[Statements]

[Exit For]

Reliance 4 - Scripts N

154 VBScript Statements

[Statements]
Next

The For...Next statement syntax has these parts:

Part Description

Counter Numeric variable used as a loop counter. The variable
can't be an array element or an element of a user-
defined type.

Start Initial value of Counter.

End Final value of Counter.

Step Amount Counter is changed each time through the loop.

If not specified, Step defaults to one.

Statements One or more statements between For and Next that are
executed the specified number of times.

Remarks

The Step argument can be either positive or negative. The value of the Step argument
determines loop processing as follows:

Value Loop executes if
Positive or O Counter <= End
Negative Counter >= End

Once the loop starts and all statements in the loop have executed, Step is added to
Counter. At this point, either the statements in the loop execute again (based on the
same test that caused the loop to execute initially), or the loop is exited and execution
continues with the statement following the Next statement.

TIP

Changing the value of Counter while inside a loop can make it more difficult to read and
debug your code.

I Reliance 4 - Scripts

VBScript Statements

The Exit For can only be used within a For Each...Next or For...Next control structure to
provide an alternate way to exit. Any number of Exit For statements may be placed
anywhere in the loop. The Exit For is often used with the evaluation of some condition

(for example, If...Then), and transfers control to the statement immediately following
Next.

You can nest For...Next loops by placing one For...Next loop within another. Give each
loop a unique variable name as its Counter. The following construction is correct.

For I =1 To 10
For J 1 To 10
For K =1 To 10

[

Next
Next
Next

Bl vBScript Statements

2.10.10 Function Statement

Declares the name, arguments, and code that form the body of a Function procedure.
Syntax
[Public | Private] Function Name [(ArgList)]
[Statements]
[Name = Expression]
[Exit Function]
[Statements]

[Name = Expression]
End Function

The Function statement syntax has these parts:

Part Description

Reliance 4 - Scripts N

156 VBScript Statements

Public Indicates that the Function procedure is accessible to all other
procedures in all scripts.

Private Indicates that the Function procedure is accessible only to
other procedures in the script where it is declared or if the
function is a member of a class, and that the Function
procedure is accessible only to other procedures in that class.

Name Name of the Function; follows standard variable naming
conventions.

ArglList List of variables representing arguments that are passed to the
Function procedure when it is called. Multiple variables are
separated by commas.

Statements Any group of statements to be executed within the body of the
Function procedure.

Expression Return value of the Function.

The ArgList argument has the following syntax and parts:

[ByVal | ByRef] VarName[()]

Part Description

ByVal Indicates that the argument is passed by value.

ByRef Indicates that the argument is passed by
reference.

VarName |Name of the variable representing the argument;
follows standard variable naming conventions.

Remarks

If not explicitly specified using either Public or Private, Function procedures are public by
default, that is, they are visible to all other procedures in your script. The value of local
variables in a Function is not preserved between calls to the procedure.

You can't define a Function procedure inside any other procedure (e.g. Sub or Property
Get).

I Reliance 4 - Scripts

VBScript Statements

The Exit Function statement causes an immediate exit from a Function procedure.
Program execution continues with the statement that follows the statement that called
the Function procedure. Any number of Exit Function statements can appear anywhere
in a Function procedure.

Like a Sub procedure, a Function procedure is a separate procedure that can take
arguments, perform a series of statements, and change the values of its arguments.
However, unlike a Sub procedure, you can use a Function procedure on the right side of
an expression in the same way you use any intrinsic function, such as Sqr, Cos, or Chr,
when you want to use the value returned by the function.

You call a Function procedure using the function name, followed by the argument list in
parentheses, in an expression. See the Call statement for specific information on how to
call Function procedures.

CAUTION

Function procedures can be recursive, that is, they can call themselves to perform a
given task. However, recursion can lead to stack overflow.

To return a value from a function, assign the value to the function name. Any number of
such assignments can appear anywhere within the procedure. If no value is assigned to
Name, the procedure returns a default value: a numeric function returns O and a string
function returns a zero-length string (""). A function that returns an object reference
returns Nothing if no object reference is assigned to Name (using Set) within the
Function.

Variables used in Function procedures fall into two categories: those that are explicitly
declared within the procedure and those that are not. Variables that are explicitly
declared in a procedure (using Dim or the equivalent) are always local to the procedure.
Variables that are used but not explicitly declared in a procedure are also local unless
they are explicitly declared at some higher level outside the procedure.

CAUTION

A procedure can use a variable that is not explicitly declared in the procedure, but a
naming conflict can occur if anything you have defined at the script level has the same
name. If your procedure refers to an undeclared variable that has the same name as
another procedure, constant, or variable, it is assumed that your procedure is referring to
that script-level name. To avoid this kind of conflict, use an Option Explicit statement to
force explicit declaration of variables.

Reliance 4 - Scripts N

158 VBScript Statements

CAUTION

VBScript may rearrange arithmetic expressions to increase internal efficiency. Avoid
using a Function procedure in an arithmetic expression when the function changes the
value of variables in the same expression.

Bl vBScript Statements

2.10.11 If...Then...Else Statement

Conditionally executes a group of statements, depending on the value of an expression.
Syntax

If Condition Then Statements [Else ElseStatements]

Or, you can use the block form syntax:
If Condition Then
[Statements]
[Elself Condition-n Then
[ElselfStatements]]...
[Else
[ElseStatements]]

End If

The If...Then...Else statement syntax has these parts:
Part Description

Condition One or more of the following two types of
expressions:

A numeric or string expression that
evaluates to True or False. If Condition is
Null, Condition is treated as False.

I Reliance 4 - Scripts

An expression of the form TypeOf
ObjectName Is Objecttype. The
ObjectName is any object reference and
Objecttype is any valid object type. The
expression is True if ObjectName is of the
object type specified by Objecttype;
otherwise it is False.

Statements One or more statements separated by
colons; executed if Condition is True.

Condition-n Same as Condition.

ElselfStatements One or more statements executed if the
associated Condition-n is True.

ElseStatements One or more statements executed if no
previous Condition or Condition-n
expression is True.

Remarks

You can use the single-line form (first syntax) for short, simple tests. However, the block
form (second syntax) provides more structure and flexibility than the single-line form and
is usually easier to read, maintain, and debug.

NOTE

With the single-line syntax, it is possible to have multiple statements executed as the
result of an If...Then decision, but they must all be on the same line and separated by
colons, as in the following statement.

If A>10 Then A=A+1: B=B+A: C=C+ B

When executing a block If (second syntax), Condition is tested. If Condition is True, the
statements following Then are executed. If Condition is False, each Elself (if any) is
evaluated in turn. When a True condition is found, the statements following the
associated Then are executed. If none of the Elself statements are True (or there are no
Elself clauses), the statements following Else are executed. After executing the
statements following Then or Else, execution continues with the statement following End
If.

Reliance 4 - Scripts N

160 VBScript Statements

The Else and Elself clauses are both optional. You can have as many Elself statements
as you want in a block If, but none can appear after the Else clause. Block If statements
can be nested; that is, contained within one another.

What follows the Then keyword is examined to determine whether or not a statement is a
block If. If anything other than a comment appears after Then on the same line, the
statement is treated as a single-line If statement.

A block If statement must be the first statement on a line. The block If must end with an
End If statement.

Bl vBScript Statements

2.10.12 On Error Statement

Enables error-handling.
Syntax
On Error Resume Next

Remarks

If you don't use an On Error Resume Next statement, any run-time error that occurs is
fatal; that is, an error message is displayed and execution stops.

On Error Resume Next causes execution to continue with the statement immediately
following the statement that caused the run-time error. The procedure call is considered
one statement. This means that if an error occurs inside called procedure (and this
procedure doesn't contain the On Error Resume Next statement), statements that follow
error inside the procedure are not executed, but the script continues with the statement
immediately following the procedure call.

This allows execution to continue despite a run-time error. You can then build the error-
handling routine inline within the procedure. An On Error Resume Next statement
becomes inactive when another procedure is called, so you should execute an On Error
Resume Next statement in each called routine if you want inline error handling within
that routine.

Bl vBScript Statements

I Reliance 4 - Scripts

Example

VBScript Statements

The following example illustrates use of the On Error Resume Next statement.

On Error Resume Next

Err. Raise 6 ' Raise an overflow error.
MsgBox ("Error # " & CStr(Err.Number) & " " & Err.Description)
Err.Clear ' Clear the error.

2.10.13 Option Explicit Statement

Forces explicit declaration of all variables in a script.

Syntax

Option Explicit

Remarks

If used, the Option Explicit statement must appear in a script before any other

statements.

When you use the Option Explicit statement, you must explicitly declare all variables
using the Dim, Private, Public, or ReDim statements. If you attempt to use an undeclared

variable name, an error occurs.

TIP

Use Option Explicit to avoid incorrectly typing the name of an existing variable or to
avoid confusion in code where the scope of the variable is not clear.

Bl vBScript Statements

Example

The following example illustrates use of the Option Explicit statement.

Option Explicit '

Dim MyVar !
MyInt = 10 !
MyVar = 10 !

Force explicit variable declaration.
Declare variable.
Undeclared variable generates error.

Declared variable does not generate error.

Reliance 4 - Scripts N

162 VBScript Statements

2.10.14 Private Statement

Declares private variables and allocates storage space. Declares, in a Class block, a private
variable.

Syntax

Private VarName[([Subscripts])][, VarName[([Subscripts])]]...

The Private statement syntax has these parts:
Part Description

VarName Name of the variable; follows standard variable
naming conventions.

Subscripts Dimensions of an array variable; up to 60
multiple dimensions may be declared. The
Subscripts argument uses the following syntax:

upper{, upper]...

The lower bound of an array is always zero.

Remarks

A variable declared with the Private statement at a script level (globally) is available in all
scripts within the same thread (similar to the Public statement). The Private statement
can still be meaningfully used in a declaration of objects (with the Class statement).

A variable that refers to an object must be assigned an existing object using the Set
statement before it can be used. Until it is assigned an object, the declared object
variable is initialized as Empty.

You can also use the Private statement with empty parentheses to declare a dynamic
array. After declaring a dynamic array, use the ReDim statement within a procedure to
define the number of dimensions and elements in the array. If you try to redeclare a
dimension for an array variable whose size was explicitly specified in a Private, Public, or
Dim statement, an error occurs.

Bl Array Functions

I Reliance 4 - Scripts

Bl vBScript Statements

Example

The following example illustrates use of the Private statement.

Private MyNumber ' Private Variant variable.
Private MyArray(9) ' Private array variable.
' Multiple Private declarations of Variant variables.

Private MyNumber, MyVar, YourNumber

2.10.15 Public Statement

Declares public variables and allocates storage space. Declares, in a Class block, a private
variable.

Syntax

Public VarName[([Subscripts])][, VarName[([Subscripts])]]...

The Public statement syntax has these parts:
Part Description

VarName Name of the variable; follows standard
variable naming conventions.

Subscripts Dimensions of an array variable; up to 60
multiple dimensions may be declared. The
Subscripts argument uses the following
syntax:

upper[, upper]...

The lower bound of an array is always zero.

Remarks
Public statement variables are available to all procedures in all scripts.

A variable that refers to an object must be assigned an existing object using the Set
statement before it can be used. Until it is assigned an object, the declared object
variable is initialized as Empty.

Reliance 4 - Scripts N

164 VBScript Statements

You can also use the Public statement with empty parentheses to declare a dynamic
array. After declaring a dynamic array, use the ReDim statement within a procedure to
define the number of dimensions and elements in the array. If you try to redeclare a
dimension for an array variable whose size was explicitly specified in a Private, Public, or
Dim statement, an error occurs.

Bl Array Functions
Bl vBScript Statements

Example

The following example illustrates the use of the Public statement.

Public MyNumber ' Public Variant variable.

Public MyArray(9) ' Public array variable.

' Multiple Public declarations of Variant variables.

Public MyNumber, MyVar, YourNumber

2.10.16 Randomize Statement

Initializes the random-number generator.
Syntax

Randomize [Number]

The Number argument can be any valid numeric expression.

Remarks

Randomize uses Number to initialize the Rnd function's random-number generator,
giving it a new seed value. If you omit Number, the value returned by the system timer is
used as the new seed value.

If Randomize is not used, the Rnd function (with no arguments) uses the same number
as a seed the first time it is called, and thereafter uses the last generated number as a
seed value.

I Reliance 4 - Scripts

VBScript Statements

NOTE

To repeat sequences of random numbers, call Rnd with a negative argument
immediately before using Randomize with a numeric argument. Using Randomize with
the same value for Number does not repeat the previous sequence.

Bl vBScript Statements

Example

The following example illustrates use of the Randomize statement.

Dim MyValue, Response

Randomize ' Initialize random-number generator.

Do Until Response = vbNo

MyValue = Int((6 * Rnd) + 1) ' Generate random value between 1 and 6.
MsgBox MyValue
Response = MsgBox ("Roll again? ", vbYesNo)

Loop

2.10.17 ReDim Statement

Declares dynamic-array variables, and allocates or reallocates storage space at procedure
level.

Syntax
ReDim [Preserve] VarName(Subscripts)[, VarName(Subscripts)]...
The ReDim statement syntax has these parts:
Part Description

Preserve Preserves the data in an existing array when
you change the size of the last dimension.

VarName Name of the variable; follows standard
variable naming conventions.

Reliance 4 - Scripts N

166 VBScript Statements

Subscripts Dimensions of an array variable; up to 60
multiple dimensions may be declared. The
Subscripts argument uses the following
syntax:

upper|, upper]...

The lower bound of an array is always zero.

Remarks

The ReDim statement is used to size or resize a dynamic array that has already been
formally declared using a Private, Public, or Dim statement with empty parentheses
(without dimension subscripts). You can use the ReDim statement repeatedly to change
the number of elements and dimensions in an array.

If you use the Preserve keyword, you can resize only the last array dimension, and you
can't change the number of dimensions at all. For example, if your array has only one
dimension, you can resize that dimension because it is the last and only dimension.
However, if your array has two or more dimensions, you can change the size of only the
last dimension and still preserve the contents of the array.

The following example shows how you can increase the size of the last dimension of a
dynamic array without erasing any existing data contained in the array.

ReDim X(10, 10, 10)

[

ReDim Preserve X(10, 10, 15)

CAUTION

If you make an array smaller than it was originally, data in the eliminated elements is
lost.

When variables are initialized, a numeric variable is initialized to O and a string variable is
initialized to a zero-length string (""). A variable that refers to an object must be assigned an
existing object using the Set statement before it can be used. Until it is assigned an object,
the declared object variable has the special value Nothing.

Bl Array Functions

Bl vBScript Statements

I Reliance 4 - Scripts

2.10.18 Rem Statement

Includes explanatory remarks in a program.
Syntax

Rem Comment

or
"Comment
The Comment argument is the text of any comment you want to include. After the Rem
keyword, a space is required before Comment.
Remarks

As shown in the syntax section, you can use an apostrophe (') instead of the Rem
keyword. If the Rem keyword follows other statements on a line, it must be separated
from the statements by a colon. However, when you use an apostrophe, the colon is not
required after other statements.

Bl vBScript Statements

Example

The following example illustrates the use of the Rem statement.

Dim MyStrl, MyStr2
MyStrl = "Hello" : Rem Comment after a statement separated by a colon
MyStr2 = "Goodbye" ' This is also a comment; no colon is needed

Rem Comment on a line with no code; no colon is needed.

2.10.19 Select Case Statement

Executes one of several groups of statements, depending on the value of an expression.

Reliance 4 - Scripts N

168 VBScript Statements

Syntax
Select Case TestExpression
[Case ExpressionList-n
[Statements-n]]...
[Case Else ExpressionList-n
[ElseStatements-n]]
End Select
The Select Case statement syntax has these parts:
Part Description

TestExpression Any numeric or string expression.

ExpressionList-n Required if Case appears. Delimited list of
one or more expressions.

Statements-n One or more statements executed if
TestExpression matches any part of
ExpressionList-n.

ElseStatements-n |One or more statements executed if
TestExpression doesn't match any of the
Case clauses.

Remarks

If TestExpression matches any Case ExpressionList expression, the statements following
that Case clause are executed up to the next Case clause, or for the last clause, up to
End Select. Control then passes to the statement following End Select. If TestExpression
matches an ExpressionList expression in more than one Case clause, only the
statements following the first match are executed.

I Reliance 4 - Scripts

VBScript Statements

The Case Else clause is used to indicate the ElseStatements to be executed if no match
is found between the TestExpression and an ExpressionlList in any of the other Case
selections. Although not required, it is a good idea to have a Case Else statement in your
Select Case block to handle unforeseen TestExpression values. If no Case
ExpressionList matches TestExpression and there is no Case Else statement, execution
continues at the statement following End Select.

Select Case statements can be nested. Each nested Select Case statement must have
a matching End Select statement.

Bl vBScript Statements

Example

The following example illustrates the use of the Select Case statement.

Dim Color, MyVar
Sub ChangeBackground (Color)
MyVar = lcase (Color)
Select Case MyVar
Case "red"
document. bgColor = "red"
Case ""green"
document. bgColor = "green"
Case "blue"
document. bgColor = "blue"
Case Else
MsgBox "pick another color"
End Select
End Sub

2.10.20 Set Statement

Assigns an object reference to a variable or property, or associates a procedure reference
with an event.

Reliance 4 - Scripts N

170 VBScript Statements

Syntax 1

Set ObjectVar = {ObjectExpression | New ClassName | Nothing]

Syntax 2

Set Object.EventName = GetRef(ProcName)

The Set statement syntax has these parts:

Part

ObjectVar

ObjectExpression

New

ClassName

Nothing

Object

EventName

ProcName

I Reliance 4 - Scripts

Description

Required. Name of the variable or property; follows
standard variable naming conventions.

Optional. Expression consisting of the name of an
object, another declared variable of the same object
type, or a function or method that returns an object
of the same object type.

Keyword used to create a new instance of a class. If
ObjectVar contained a reference to an object, that
reference is released when the new one is assigned.
The New keyword can only be used to create an
instance of a class.

Optional. Name of the class being created. A class
and its members are defined using the Class
statement.

Optional. Discontinues association of ObjectVar with
any specific object or class. Assigning ObjectVar to
Nothing releases all the system and memory
resources associated with the previously referenced
object when no other variable refers to it.

Required. Name of the object with which
EventName is associated.

Required. Name of the event to which the function
is to be bound.

Required. String containing the name of the Sub or
Function being associated with the EventName.

Remarks

To be valid, ObjectVar must be an object type consistent with the object being assigned
to it.

The Dim, Private, Public, or ReDim statements only declare a variable that refers to an
object. No actual object is referred to until you use the Set statement to assign a specific
object.

Generally, when you use Set to assign an object reference to a variable, no copy of the
object is created for that variable. Instead, a reference to the object is created. More
than one object variable can refer to the same object. Because these variables are
references to (rather than copies of) the object, any change in the object is reflected in
all variables that refer to it.

Using the New keyword allows you to concurrently create an instance of a class and
assign it to an object reference variable. The variable to which the instance of the class is
being assighed must already have been declared with the Dim (or equivalent) statement.

Refer to the documentation for the GetRef function for information on using Set to
associate a procedure with an event.

Bl vBScript Statements

Example

The following example illustrates the use of the Set statement.

Function ShowFreeSpace(drvPath)
Dim fso, d, s
Set fso = CreateObject("Scripting. FileSystemObject")
Set d = fso. GetDrive(fso. GetDriveName(drvPath))
s = "Drive " & UCase(drvPath) & " - "
s = s & d.VolumeName & "
"

s = s & "Free Space: " & FormatNumber(d. FreeSpace / 1024, 0)
s = s & " Kbytes"
ShowFreeSpace = s

End Function

Reliance 4 - Scripts N

172 VBScript Statements

2.10.21 Stop Statement
Interrupts the code execution and launches an external tool for debugging scripts (Just-In-
Time debugger) if debugging is enabled.
Syntax
Stop

Remarks

A Just-In-Time debugger must be installed (e.g. Microsoft Script Debugger or the tool
contained in Microsoft Visual Studio).

Script debugging must be enabled in the Windows operating system. This can be done by
activating the Enable script debugging with external tool (Just-In-Time debugger) option
(Reliance Design > Tools > Environment Options).

Bl vBScript Statements

2.10.22 Sub Statement

Declares the name, arguments, and code that form the body of a Sub procedure.
Syntax
[Public | Private] Sub Name [(ArgList)]
[Statements]
[Exit Sub]
[Statements]

End Sub

The Sub statement syntax has these parts:

Part Description

I Reliance 4 - Scripts

Public

Private

Name

ArglList

Statements

Indicates that the Sub procedure is
accessible to all other procedures in all
scripts.

Indicates that the Sub procedure is
accessible only to other procedures in the
script where it is declared.

Name of the Sub; follows standard variable
naming conventions.

List of variables representing arguments that
are passed to the Sub procedure when it is
called. Multiple variables are separated by
commas.

Any group of statements to be executed
within the body of the Sub procedure.

The ArgList argument has the following syntax and parts:

[ByVal | ByRef] VarName[()]

Part
ByVval
ByRef

VarName

Remarks

Description

Indicates that the argument is passed by value.

Indicates that the argument is passed by

reference.

Name of the variable representing the argument;

follows standard variable naming conventions.

If not explicitly specified using either Public or Private, Sub procedures are public by
default, that is, they are visible to all other procedures in your script. The value of local
variables in a Sub procedure is not preserved between calls to the procedure.

You can't define a Sub procedure inside any other procedure (e.g. Function or Property

Get).

Reliance 4 - Scripts N

174 VBScript Statements

The Exit Sub statement causes an immediate exit from a Sub procedure. Program
execution continues with the statement that follows the statement that called the Sub
procedure. Any number of Exit Sub statements can appear anywhere in a Sub procedure.

Like a Function procedure, a Sub procedure is a separate procedure that can take
arguments, perform a series of statements, and change the value of its arguments.
However, unlike a Function procedure, which returns a value, a Sub procedure can't be
used in an expression.

You call a Sub procedure using the procedure name followed by the argument list. See
the Call statement for specific information on how to call Sub procedures.

CAUTION

Sub procedures can be recursive, that is, they can call themselves to perform a given
task. However, recursion can lead to stack overflow.

Variables used in Sub procedures fall into two categories: those that are explicitly declared
within the procedure and those that are not. Variables that are explicitly declared in a
procedure (using Dim or the equivalent) are always local to the procedure. Variables that are
used but not explicitly declared in a procedure are also local, unless they are explicitly
declared at some higher level outside the procedure.

CAUTION

A procedure can use a variable that is not explicitly declared in the procedure, but a
naming conflict can occur if anything you have defined at the script level has the same
name. If your procedure refers to an undeclared variable that has the same name as
another procedure, constant or variable, it is assumed that your procedure is referring to
that script-level name. To avoid this kind of conflict, use an Option Explicit statement to
force explicit declaration of variables.

Bl vBScript Statements

2.10.23 While...WEnd Statement

Executes a series of statements as long as a given condition is True.

I Reliance 4 - Scripts

Syntax
While Condition
[Statements]

WEnd
The While...WEnd statement syntax has these parts:

Part Description

Condition Numeric or string expression that evaluates
to True or False. If Condition is Null,
Condition is treated as False.

Statements One or more statements executed while
condition is True.

Remarks

If Condition is True, all statements in Statements are executed until the WEnd statement
is encountered. Control then returns to the While statement and Condition is again
checked. If Condition is still True, the process is repeated. If it is not True, execution
resumes with the statement following the WEnd statement.

While...WEnd loops can be nested to any level. Each WEnd matches the most recent
While.

TIP

The Do...Loop statement provides a more structured and flexible way to perform looping.

Bl vBScript Statements

Example

The following example illustrates use of the While...WEnd statement.

Dim Counter

Counter = 0 ' Initialize variable.
While Counter < 20 ' Test value of Counter.
Counter = Counter + 1 ' Increment Counter.

Reliance 4 - Scripts N

176 VBScript Statements

Alert Counter
WEnd ' End While loop when Counter > 10.

2.10.24 With Statement

Executes a series of statements on a single object.
Syntax
With Object
Statements

End With

The With statement syntax has these parts:
Part Description

Object Required. Name of an object or a function
that returns an object.

Statements Required. One or more statements to be
executed on Object.

Remarks

The With statement allows you to perform a series of statements on a specified object
without requalifying the name of the object. For example, to change a number of
different properties on a single object, place the property assignment statements within
the With control structure, referring to the object once instead of referring to it with each
property assignment. The following example illustrates use of the With statement to
assign values to several properties of the same object.

With MyLabel

. Height = 2000

. Width = 2000

. Caption = "This is MyLabel"
End With

While property manipulation is an important aspect of With functionality, it is not the only
use. Any legal code can be used within a With block.

I Reliance 4 - Scripts

VBScript Statements

NOTE

Once a With block is entered, Object can't be changed. As a result, you can't use a single
With statement to affect a number of different objects.

You can nest With statements by placing one With block within another. However, because
members of outer With blocks are masked within the inner With blocks, you must provide a
fully qualified object reference in an inner With block to any member of an object in an outer
With block.

IMPORTANT

Do not jump into or out of With blocks. If statements in a With block are executed, but either
the With or End With statement is not executed, you may get errors or unpredictable
behavior.

Bl vBScript Statements

Reliance 4 - Scripts N

178 VBScript Constants

2.11 VBScript Constants

VBScript definuje konstanty pro zjednoduseni programovani. Nasledujici konstanty mohou byt
pouzity kdekoli v kddu misto skutecnych hodnot:

2| Color Constants

2| Comparison Constants
2| Date and Time Constants
2| Date Format Constants
2| Miscellaneous Constants
2| MsgBox Constants

2| String Constants

2| Tristate Constants

2| varType Constants

2.11.1 Color Constants

Since these constants are built into VBScript, you don't have to define them before using
them. Use them anywhere in your code to represent the values shown for each.

Constant Value Description
vbBlack &h00 Black
vbRed &hFF Red
vbGreen &hFFOO Green

vbYellow &hFFFF Yellow
vbBlue &hFFOO00 Blue
vbMagenta &hFFOOFF |Magenta
vbCyan &hFFFFOO |Cyan
vbWhite &hFFFFFF \White

Bl vBScript Constants

I Reliance 4 - Scripts

VBScript Constants

2.11.2 Comparison Constants

Since these constants are built into VBScript, you don't have to define them before using
them. Use them anywhere in your code to represent the values shown for each.

Constant Value Description
vbBinaryCompare O Perform a binary comparison.
vbTextCompare 1 Perform a textual comparison.

Bl vBScript Constants

2.11.3 Date and Time Constants

Since these constants are built into VBScript, you don't have to define them before using
them. Use them anywhere in your code to represent the values shown for each.

Constant Value Description

vbSunday 1 Sunday

vbMonday 2 Monday

vbTuesday 3 Tuesday

vbWednesday 4 Wednesday

vbThursday 5 Thursday

vbFriday 6 Friday

vbSaturday 7 Saturday

vbUseSystem 0 Use the date format contained
in the regional settings for your
computer.

vbUseSystemDayOfWeek 0 Use the day of the week

specified in your system
settings for the first day of the
week.

Reliance 4 - Scripts N

180 VBScript Constants

vbFirstlanli 1 Use the week in which January
1 occurs (default).

vbFirstFourDays 2 Use the first week that has at
least four days in the new year.

vbFirstFullWeek 3 Use the first full week of the
year.

Bl vBScript Constants

2.11.4 Date Format Constants

Since these constants are built into VBScript, you don't have to define them before using
them. Use them anywhere in your code to represent the values shown for each.

Constant Value Description

vbGeneralDate 0 Display a date and/or time. For real
numbers, display a date and time. If there
is no fractional part, display only a date. If
there is no integer part, display time only.
Date and time display is determined by
your system settings.

vbLongDate 1 Display a date using the long date format
specified in your computer's regional
settings.

vbShortDate 2 Display a date using the short date format
specified in your computer's regional
settings.

vbLongTime 3 Display a time using the long time format
specified in your computer's regional
settings.

vbShortTime 4 Display a time using the short time format
specified in your computer's regional
settings.

I Reliance 4 - Scripts

VBScript Constants 181

Bl VBScript Constants

2.11.5 Miscellaneous Constants

Since this constant is built into VBScript, you don't have to define it before using it. Use it
anywhere in your code to represent the values shown.

Constant Value Description

vbObjectError -2147221504 User-defined error numbers should be
greater than this value.

Bl VBScript Constants

Example

Err. Raise Number = vbObjectError + 1000

2.11.6 MsgBox Constants

The following constants are used with the MsgBox function to identify what buttons and icons
appear on a message box and which button is the default. In addition, the modality of the
MsgBox can be specified. Since these constants are built into VBScript, you don't have to
define them before using them. Use them anywhere in your code to represent the values
shown for each.

Constant Value |Description

vbOKOnly 0 Display OK button only.

vbOKCancel 1 Display OK and Cancel
buttons.

vbAbortRetrylgnore 2 Display Abort, Retry, and
Ignore buttons.

vbYesNoCancel 3 Display Yes, No, and Cancel
buttons.

vbYesNo 4 Display Yes and No buttons.

Reliance 4 - Scripts N

182 VBScript Constants

vbRetryCancel 5 Display Retry and Cancel
buttons.

vbCritical 16 Display Critical Message icon.

vbQuestion 32 Display Warning Query icon.

vbExclamation 48 Display Warning Message
icon.

vbinformation 64 Display Information Message
icon.

vbDefaultButtonl1 0 First button is default.

vbDefaultButton2 256 Second button is default.

vbDefaultButton3 512 Third button is default.

vbDefaultButton4 768 |Fourth button is default.

vbApplicationModal 0 Application modal; the user

must respond to the message
box before continuing work in
the current application.

vbSystemModal 4096 |System modal; all
applications are suspended
until the user responds to the
message box.

The following constants are used with the MsgBox function to identify which button a user has
selected. These constants are only available when your project has an explicit reference to
the appropriate type library containing these constant definitions. For VBScript, you must
explicitly declare these constants in your code.

Constant Value |Description

vbOK 1 OK button was clicked.
vbCancel 2 Cancel button was clicked.
vbAbort 3 Abort button was clicked.

I Reliance 4 - Scripts

VBScript Constants 183

vbRetry 4 Retry button was clicked.
vbignore 5 Ignore button was clicked.
vbYes 6 Yes button was clicked.
vbNo 7 No button was clicked.

&l vBScript Constants

2.11.7 String Constants

Since these constants are built into VBScript, you don't have to define them before using
them. Use them anywhere in your code to represent the values shown for each.

Constant Value Description

vbCr Chr(13) Carriage return.

vbCrLf Chr(13) & Chr(10) Carriage return-linefeed
combination.

vbFormFeed Chr(12) Form feed; not useful in Microsoft
Windows.

vbLf Chr(10) Line feed.

vbNewLine Chr(13) & Chr(10) or|Platform-specific newline

Chr(10) character; whatever is appropriate

for the platform.

vbNullChar Chr(0) Character having the value 0.

vbNullString String having value O |Not the same as a zero-length
string (""); used for calling external
procedures.

vbTab Chr(9) Horizontal tab.

vbVerticalTab Chr(11) Vertical tab; not useful in Microsoft
Windows.

&l vBScript Constants

Reliance 4 - Scripts N

184 VBScript Constants

2.11.8 Tristate Constants

Since these constants are built into VBScript, you don't have to define them before using
them. Use them anywhere in your code to represent the values shown for each.

Constant Value

vbUseDefault -2

vbTrue -1

vbFalse 0

ll VBScript Constants

Description

Use default from computer's
regional settings.

True

False

2.11.9 VarType Constants

These constants are only available when your project has an explicit reference to the
appropriate type library containing these constant definitions. For VBScript, you must explicitly
declare these constants in your code.

Constant
vbEmpty
vbNull
vbinteger
vbLong
vbSingle
vbSingle
vbCurrency
vbDate

vbString

I Reliance 4 - Scripts

Value

0

0 N O o A WO N

Description
Uninitialized (default).
Contains no valid data.
Integer subtype.

Long subtype.

Single subtype.

Double subtype.
Currency subtype.
Date subtype.

String subtype.

VBScript Constants 185

vbObject 9 Object.

vbError 10 Error subtype.

vbBoolean 11 Boolean subtype.

vbVariant 12 Variant (used only for arrays of
variants).

vbDataObject 13 Data access object.

vbDecimal 14 Decimal subtype.

vbByte 17 Byte subtype.

vbArray 8192 |Array.

Bl vBScript Constants

Reliance 4 - Scripts N

186 VBScript Operators

2.12 VBScript Operators

2| Addition Operator (+)

22 And Operator

2| Assignment Operator (=)

2| Concatenation Operator (&)
2 Division Operator (/)

2| Eqv Operator

22| Exponentiation Operator ()
22| Imp Operator

2 Integer Division Operator (\)
2| Is Operator

22l Mod Operator

2| Multiplication Operator (*)
22| Not Operator

2| Or Operator

22| Subtraction Operator (-)

2| Xor Operator

2.12.1 Addition Operator (+)

Sums two numbers.
Syntax

Result = Expression1 + Expression2

The + operator syntax has these parts:

Part Description
Result Any numeric variable.
Expressionl Any expression.

I Reliance 4 - Scripts

VBScript Operators 187

Expression2 Any expression.

Remarks

Although you can also use the + operator to concatenate two character strings, you
should use the & operator for concatenation to eliminate ambiguity and provide self-
documenting code.

When you use the + operator, you may not be able to determine whether addition or
string concatenation will occur.

The underlying subtype of the expressions determines the behavior of the + operator in
the following way:

If Then
Both expressions are numeric Add.
Both expressions are strings Concatenate.

One expression is numeric and the other is a Add.
string

If one or both expressions are Null expressions, Result is Null. If both expressions are
Empty, Result is an Integer subtype. However, if only one expression is Empty, the other
expression is returned unchanged as Result.

Bl vBScript Operators

2.12.2 And Operator

Performs a logical conjunction on two expressions.
Syntax

Result = Expression1 And Expression2
The And operator syntax has these parts:

Part Description

Result Any numeric variable.

Reliance 4 - Scripts N

188 VBScript Operators

Expressionl Any expression.
Expression2 Any expression.
Remarks

If, and only if, both expressions evaluate to True, Result is True. If either expression
evaluates to False, Result is False. The following table illustrates how Result is
determined:

If Expressionl is |And Expression2 is The Result is

True True True
True False False
True Null Null
False True False
False False False
False Null False
Null True Null
Null False False
Null Null Null

The And operator also performs a bitwise comparison of identically positioned bits in two
numeric expressions and sets the corresponding bit in Result according to the following

table:
If bit in Expressionl is And bit in Expression2 js The Result is
0 0 0
0 1 0
1 0 0
1 1 1

I Reliance 4 - Scripts

VBScript Operators 189

Bl vBScript Operators

2.12.3 Assignment Operator

Assigns a value to a variable or property.
Syntax

Variable = Value

The = operator syntax has these parts:

Part Description
Variable Any variable or any writable property.
Value Any numeric or string literal, constant, or
expression.
Remarks

The name on the left side of the equal sign can be a simple scalar variable or an element
of an array. Properties on the left side of the equal sign can only be those properties that
are writable at run time.

Bl vBScript Operators

2.12.4 Concatenation Operator (&)

Forces string concatenation of two expressions.
Syntax

Result = Expressionl & Expression2

The & operator syntax has these parts:

Part Description
Result Any variable.
Expressionl Any expression.

Reliance 4 - Scripts N

190 VBScript Operators

Expression2 Any expression.

Remarks

Whenever an Expression is not a string, it is converted to a String subtype. If both
expressions are Null, Result is also Null. However, if only one Expression is Null, that
expression is treated as a zero-length string ("") when concatenated with the other
expression. Any expression that is Empty is also treated as a zero-length string.

Bl vBScript Operators

2.12.5 Division Operator (/)

Divides two numbers and returns a floating-point result.
Syntax

Result = Numberl / Number2

The / operator syntax has these parts:

Part Description

Result Any numeric variable.

Numberl Any numeric expression.

Number2 Any numeric expression.
Remarks

If one or both expressions are Null expressions, Result is Null. Any expression that is
Empty is treated as O.

Bl vBScript Operators

2.12.6 Eqv Operator

Performs a logical equivalence on two expressions.

I Reliance 4 - Scripts

Syntax

Result = Expression1 Eqv Expression2

The Eqv operator syntax has these parts:

Part Description

Result Any numeric variable.

Expressionl Any expression.

Expression2 Any expression.
Remarks

VBScript Operators 191

If either expression is Null, Result is also Null. When neither expression is Null, Result is
determined according to the following table:

If Expressionl is
True

True

False

False

And Expression2 s
True

False

True

False

The Result is
True

False

False

True

The Eqv operator performs a bitwise comparison of identically positioned bits in two numeric
expressions and sets the corresponding bit in Result according to the following table:

If bit in Expressionl is

0]
0]
1
1

Bl vBScript Operators

And bit in Expression2 js

0

1
0]
1

1

0]
0]
1

The Result is

Reliance 4 - Scripts N

192 VBScript Operators

2.12.7 Exponentiation Operator (")

Raises a number to the power of an exponent.
Syntax

Result = Number ™ Exponent

The ™ operator syntax has these parts:

Part Description

Result Any numeric variable.

Number Any numeric expression.

Exponent Any numeric expression.
Remarks

Number can be negative only if Exponent is an integer value. When more than one
exponentiation is performed in a single expression, the ™ operator is evaluated as it is
encountered from left to right.

If either Number or Exponent is a Null expression, Result is also Null.

L] VBScript Operators

2.12.8 Imp Operator

Performs a logical implication on two expressions.

Syntax
Result = Expression1 Imp Expression2

The Imp operator syntax has these parts:

Part Description
Result Any numeric variable.
Expressionl Any expression.

I Reliance 4 - Scripts

Expression2

Remarks

Any expression.

The following table illustrates how Result is determined:

If Expressionl is |And Expression2 is The Result is

True
True
True
False
False
False
Null
Null
Null

True
False
Null
True
False
Null
True
False

Null

True
False
Null
True
True
True
True
Null
Null

VBScript Operators 193

The Imp operator performs a bitwise comparison of identically positioned bits in two numeric
expressions and sets the corresponding bit in Result according to the following table:

If bit in Expressionl is

Bl vBScript Operators

0

0]
1
1

And bit in Expression2 js

0

1
0]
1

The Result is

1

1
0]
1

Reliance 4 - Scripts N

194 VBScript Operators

2.12.9 Integer Division Operator (\)

Divides two numbers and returns an integer result.

Syntax
Result = Numberl \ Number2

The \ operator syntax has these parts:

Part Description

Result Any numeric variable.

Numberl Any numeric expression.

Number2 Any numeric expression.
Remarks

Before division is performed, numeric expressions are rounded to Byte, Integer, or Long
subtype expressions.

If any expression is Null, Result is also Null. Any expression that is Empty is treated as O.

Bl vBScript Operators

2.12.10 Is Operator

Compares two object reference variables.
Syntax

Result = Object1 Is Object2

The Is operator syntax has these parts:

Part Description

Result Any numeric variable.
Object1 Any object name.
Object2 Any object name.

I Reliance 4 - Scripts

VBScript Operators 195

Remarks

If Objectl and Object2 both refer to the same object, Result is True; if they do not, Result
is False. Two variables can be made to refer to the same object in several ways.

In the following example, A has been set to refer to the same object as B.

Set A =B

The following example makes A and B refer to the same object as C.

Set A =2C

Set B = C

Bl vBScript Operators

2.12.11 Mod Operator

Divides two numbers and returns only the remainder.

Syntax
Result = Numberl Mod Number2

The Mod operator syntax has these parts:

Part Description

Result Any numeric variable.

Numberl Any numeric expression.

Number2 Any numeric expression.
Remarks

The modulus, or remainder, operator divides Numberl by Number2 (rounding floating-
point numbers to integers) and returns only the remainder as Result. For example, in the
following expression, A (which is Result) equals 5.

A =19 Mod 6.7

Reliance 4 - Scripts N

196 VBScript Operators

If any expression is Null, Result is also Null. Any expression that is Empty is treated as O.

Bl vBScript Operators

2.12.12 Multiplication Operator (*)

Multiplies two humbers.
Syntax

Result = Numberl * Number2

The * operator syntax has these parts:

Part Description

Result Any numeric variable.

Numberl Any numeric expression.

Number2 Any numeric expression.
Remarks

If one or both expressions are Null expressions, Result is Null. If an expression is Empty,
it is treated as if it were O.

Bl vBScript Operators

2.12.13 Negation Operator (-)

Finds the difference between two numbers or indicates the negative value of a numeric
expression.

Syntax 1
Result = Numberl - Number2

Syntax 2

-Number

The - operator syntax has these parts:

I Reliance 4 - Scripts

Part Description

Result Any numeric variable.

Number Any numeric expression.

Numberl Any numeric expression.

Number2 Any numeric expression.
Remarks

VBScript Operators 197

In Syntax 1, the - operator is the arithmetic subtraction operator used to find the
difference between two numbers. In Syntax 2, the - operator is used as the unary

negation operator to indicate the negative value of an expression.

If one or both expressions are Null expressions, Result is Null. If an expression is Empty,

it is treated as if it were O.

Bl vBScript Operators

2.12.14 Not Operator

Performs logical negation on an expression.

Syntax
Result = Not Expression

The Not operator syntax has these parts:

Part Description

Result Any numeric variable.

Expression Any expression.
Remarks

The following table illustrates how Result is determined:

If Expressionlis The Result is

Reliance 4 - Scripts N

198 VBScript Operators

True False
False True
Null Null

In addition, the Not operator inverts the bit values of any variable and sets the corresponding
bit in Result according to the following table:

Bit in Expression Bit in Result
0 1
1 0

&l vBScript Operators

2.12.15 Or Operator

Performs a logical disjunction on two expressions.

Syntax
Result = Expression1 Or Expression2

The Or operator syntax has these parts:

Part Description

Result Any numeric variable.

Expressionl Any expression.

Expression2 Any expression.
Remarks

If either or both expressions evaluate to True, Result is True. The following table illustrates
how Result is determined:

If Expressionlis |And Expression2 is The Result is

I Reliance 4 - Scripts

True
True
True
False
False
False
Null
Null

Null

True
False
Null
True
False
Null
True
False

Null

True
True
True
True
False
Null
True
Null
Null

VBScript Operators 199

The Or operator also performs a bitwise comparison of identically positioned bits in two
numeric expressions and sets the corresponding bit in Result according to the following table:

If bit in Expressionl is

Bl vBScript Operators

0

0
1
1

And bit in Expression2 js

0

1
0]
1

2.12.16 Subtraction Operator (-)

The Result is

0

1
1
1

Finds the difference between two numbers or indicates the negative value of a numeric

expression.

Syntax 1

Result = Numberl - Number2

Reliance 4 - Scripts N

m VBScript Operators

Syntax 2

-Number

The - operator syntax has these parts:

Part Description

Result Any numeric variable.

Number Any numeric expression.

Numberl Any numeric expression.

Number2 Any numeric expression.
Remarks

In Syntax 1, the - operator is the arithmetic subtraction operator used to find the
difference between two numbers. In Syntax 2, the - operator is used as the unary
negation operator to indicate the negative value of an expression.

If one or both expressions are Null expressions, Result is Null. If an expression is Empty,
it is treated as if it were O.

Bl vBScript Operators

2.12.17 Xor Operator

Performs a logical exclusion on two expressions.

Syntax
Result = Expression1 Xor Expression2

The Xor operator syntax has these parts:

Part Description

Result Any numeric variable.
Expressionl Any expression.
Expression2 Any expression.

I Reliance 4 - Scripts

VBScript Operators 201

Remarks

If one, and only one, of the expressions evaluates to True, Result is True. However, if either
expression is Null, Result is also Null. When neither expression is Null, Result is determined
according to the following table:

If Expressionl is |And Expression2 is The Result is

True True False
True False True
False True True
False False False

The Xor operator also performs a bitwise comparison of identically positioned bits in two
numeric expressions and sets the corresponding bit in Result according to the following table:

If bit in Expressionl s And bit in Expression2 is The Result is
0 0 0
0 1 1
1 0 1
1 1 0

Bl vBScript Operators

Reliance 4 - Scripts N

m Reliance-defined Objects

I Reliance 4 - Scripts

Reliance-defined Objects m

3 Reliance-defined Objects

3.1 Reliance-defined Objects

Reliance expands VBScript by several objects designed for accessing the runtime
environment.

Each object implements methods and/or properties intended for a specific set of operations:
2| RAIm Object - for operations on alarms defined in a visualization project

2| RDb Object - for operations on databases defined in a visualization project

W

2| RDev Object - for operations on devices defined in a visualization project

W

2| RError Object - for accessing information on the result of any of the above operations

W

2| RInet Object - for E-mail operations

W

2 RModem Object - for GSM modem operations

W

2| RScr Object - for operations on scripts defined in a visualization project

W

2| RSys Object - for miscellaneous operations

W

2| TTable-type Objects - for operations on database tables, either current or archive,
belonging to databases defined in a visualization project

2| RTag Object - for operations on tags defined in a visualization project
2| RUser Object - for operations on users defined in a visualization project

2| RWS Object - for accessing the Web service of Reliance data servers

These objects, with the exception of TTable-type objects, are created and initialized
automatically during starting a visualization project. When using these objects, follow the
rules for working with properties and methods of objects.

Reliance 4 - Scripts N

m Execution of Scripts in the Runtime Environment

3.2 Execution of Scripts in the Runtime Environment

Scripts to be executed are placed in a script queue to a position that depends on their priority.
The scripts queued for execution are sequentially processed in the background without
affecting the user interface of the runtime environment. If a syntax error occurs in a script,
execution of the script is terminated. If an error other than syntax occurs in a script, execution
of the script is terminated based on the Terminate script on error option (Reliance Design >
Project > Options > Scripts > Other). Information on any error that may occur when accessing
properties and calling methods of Reliance-defined objects is stored in the RError object and
can be accessed through its properties after every such property access or method call.

I Reliance 4 - Scripts

Processing of Data Passed to Scripts from the Runtime Environment m

3.3 Processing of Data Passed to Scripts from the Runtime Environment

A parameter can be passed to a script, for example, when running the script by clicking a
visual component. Using the value of the parameter in the script's code it is possible to
determine which event (e.g. which component was clicked) triggered the script. A script can
retrieve the values of parameters by reading properties of a special data object returned by a
call to the RScr.GetCurrentScriptData or RScr.GetCurrentScriptDataEx in the script's code.

Reliance 4 - Scripts N

m Working with Global Constants, Variables, Procedures and Functions

3.4 Working with Global Constants, Variables, Procedures and Functions

A script containing the declaration of a global constant, variable, procedure or function must
be executed before any other script that references the constant or variable, or calls the
procedure or function.

TIP

It is advisable to place the declarations of global constants, variables, procedures or
functions to a single script and activate its Run on thread initialization property (Reliance
Design > Managers > Script Manager > script properties > the Advanced page). This
way, it is guaranteed that the script will execute before other scripts.

I Reliance 4 - Scripts

Tips for Writing Scripts

3.5 Tips for Writing Scripts

To prevent errors due to typing mistakes, it is recommended to use the Option Explicit
statement in all scripts. Thus, if a script references an undeclared variable (e.g. due to a
typing mistake), a syntax error occurs.

The MsgBox and InputBox functions should only be used for debugging purposes. Each of
these functions displays a dialog box and stops execution of the script from which it has been
called. The script does not continue execution until the dialog box is closed by the user. No
other scripts in the thread can be processed either since only one script can execute per
thread. Another reason for avoiding using these functions is that the dialog box may appear in
the background of the program where it cannot be seen by the user, thus stopping processing
of scripts. When using the MsgBox function, this behavior can be prevented by passing the
vsSystemModal constant as the second parameter to the function. For example, MsgBox
"Message text", vbSystemModal. As a result, the message box will stay on top of
other windows.

Reliance 4 - Scripts N

m RAIm Object

3.6 RAIm Object

The RAIm object implements methods for operations on alarms.

Methods:

2| RAIm.AckAlarm Procedure

2| RAIm.AckAllAlarms Procedure

2| RAIm.CreateAlarm Procedure

2| RAIm.CurrentAlarms Procedure

22| RAIm.CurrentAlarmsByDevice Procedure
=| RAIm.DbAlarms Procedure

2| RAIm.DbAlarmsByDevice Procedure

2| RAIm.DbAlarmsByFilter Procedure

2| RAIm.DisableDeviceAlarms Procedure

2| RAIm.EnableDeviceAlarms Procedure

Other:
2| Alarm Type Constants
22| Alarm Triggering Condition Constants

3.6.1 RAIm.AckAlarm Procedure

RAIm.AckAlarm acknowledges an alarm.
Syntax
RAIm.AckAlarm DevName, AimName: String

Argument Description

DevName The name of the device that the alarm belongs
to.

AlImName The name of the alarm.

I Reliance 4 - Scripts

RAIm Object m

5l RAIm Object

Example

" Acknowledge the alarm PumpFailure from the device PLCI.
RAIm AckAlarm "PLC1", "PumpFailure"

3.6.2 RAIm.AckAllAlarms Procedure

RAIm.AckAllAlarms acknowledges all unacknowledged alarms.
Syntax

RAIm.AckAllAlarms

5l RAIm Object

Example

If RTag. GetTagValue("System", "AckAlarms") Then

" Acknowledge all alarms depending on the value

r

of the tag AckAlarms from the device System
RAIm AckAllAlarms
End If

3.6.3 RAIm.CreateAlarm Procedure

RAIm.CreateAlarm generates an alarm using specified parameters.

Syntax

RAIm.CreateAlarm Type: Byte; Text, Comment: String; StartTime: DateTime; Save,
Show, Print, Ack, ActivateWnd: Bool; AckRights: Integer; StartSound: String; StartScript,
AckScript: Variant; RelatedWnd: String

Argument Description
AlarmType Alarm type (Alarm Type Constants).
Text The text of the alarm.

Reliance 4 - Scripts N

m RAIm Object

Comment The comment for the alarm.

StartTime Date and time when the alarm was generated.

Save Determines whether to log the alarm to the alarm
database.

Show Determines whether to display the alarm in the list of
current alarms.

Print Determines whether to print the alarm online.

Ack Determines whether it is required that the alarm be
acknowledged by the user (operator).

ActivateWnd Determines whether to activate the list of current
alarms (makes sense only if Show = True).

AckRights The access rights required for acknowledging the
alarm (makes sense only if Ack = True).

StartSound The file name of a sound to be played after the alarm
is generated.

StartScript The name or ID of a script to be executed after the
alarm is generated.

AckScript The name or ID of a script to be executed after the
alarm is acknowledged (makes sense only if Ack =
True).

RelatedWnd The name of the window related to the alarm.

Remarks

An alarm generated by calling the method is processed in the same way as internal
messages (i.e. messages defined not in a visualization project via the Device Manager
but in the program code of the runtime software). It is not associated with a tag and
cannot be transferred to another computer through a network connection.

5l RAIm Object

I Reliance 4 - Scripts

RAIm Object kil

Example

Dim fso, drv, freesp
" Create the Scripting. FileSystemObject object and assign it to the variable fso.
Set fso = CreateObject("Scripting. FileSystemObject")
' Create an object representing the C: drive and assign it to the variable drv.
Set drv = fso. GetDrive(fso. GetDriveName("C:\"))
freesp = drv.FreeSpace / 1024 ' Get free space in kB.
' If the C: drive has less than 50000 kB of free space, create an alarm
If (freesp < 50000) Then
RAIm CreateAlarm 0, "Insufficient free space on the C: drive.", "", Now, True, True,

False, True, True, O, "", , , ""

End If
Set fso = Nothing " Free the object referenced by fso.
Set drv = Nothing " Free the object referenced by drv.

3.6.4 RAIm.CurrentAlarms Procedure

RAIm.CurrentAlarms displays a window containing a list of current (i.e. active and/or
unacknowledged) alarms.

Syntax

RAIm.CurrentAlarms

5l RAIm Object

Example

If RTag. GetTagValue("System", "ShowAlarms") Then
' Display the list of current alarms depending on the value

' of the tag ShowAlarms from the device System.

RAlm CurrentAlarms

End If

Reliance 4 - Scripts N

m RAIm Object

3.6.5 RAIm.CurrentAlarmsByDevice Procedure

RAIm.CurrentAlarmsByDevice displays a window containing a list of current (i.e. active and/
or unacknowledged) alarms belonging to a specified device.

Syntax

RAIm.CurrentAlarmsByDevice Device: Variant
Argument Description

Device The name or ID of the device.

5l RAIm Object

Example

" Display the list of current alarms belonging to the device PLCI.
RAIm CurrentAlarmsByDevice "PLCL"

3.6.6 RAIm.DbAlarms Procedure

RAIm.DbAlarms displays a window containing a list of alarms stored in the alarm database
(historical alarms).

Syntax

RAIm.DbAlarms Unused: Integer
Argument Description

Unused The value is no longer used.

Remarks

If the window contained a list of alarms restricted by a filter before calling the method,
the filter is canceled.

5l RAIm Object

I Reliance 4 - Scripts

RAIm Object m

Example

" Display the list of historical alarms.
RAIm DbAlarms O

3.6.7 RAIm.DbAlarmsByDevice Procedure

RAIm.DbAlarmsByDevice displays a window containing a list of alarms stored in the alarm
database (historical alarms), restricted to alarms belonging to a specified device.

Syntax

RAIm.DbAlarmsByDevice Unused: Integer; Device: Variant

Argument Description

Unused The value is no longer used.

Device The name or ID of the device.
Remarks

If the window contained a list of alarms restricted by a filter before calling the method,
the filter is canceled.

5l RAIm Object

Example

' Display the list of historical alarms belonging to the device PLCI.
RAIm DbAlarmsByDevice 0, "PLCL"

Reliance 4 - Scripts N

m RAIm Object

3.6.8 RAIm.DbAlarmsByFilter Procedure

RAIm.DbAlarmsByFilter displays a window containing a list of alarms stored in the alarm
database (historical alarms), restricted by a specified filter.

Syntax

RAIm.DbAlarmsByFilter Unused: Integer; FilterName: String
Argument Description
Unused The value is no longer used.

FilterName | The name of the filter.

Remarks

If the window contained a list of alarms restricted by a filter before calling the method,
the filter is canceled and the specified filter is applied. To define filters for the alarm
database, use the Filter Editor in the runtime software. The filters get stored to the profile
(user profile in a visualization project, not in the operating system) of the user currently
logged on to the runtime software. If the filter specified by FilterName is not found in the
profile of the currently logged on user, the search is performed in the Default profile. If
the filter is not found, the window will not be displayed.

5l RAIm Object

Example

" Display the 1list of historical alarms restricted by the filter PLC1 or PLC2
" (displays only alarms belonging to the device PLC1 or PLCZ2).
RAIm DbAlarmsByFilter 0, "PLCI or PLC2"

3.6.9 RAIm.DisableDeviceAlarms Procedure

RAIm.DisableDeviceAlarms disables all alarms, of a specified type, belonging to a specified
device.

I Reliance 4 - Scripts

RAIm Object m

Syntax

RAIm.DisableDeviceAlarms AlarmType: Byte; Device: Variant

Argument Description

AlarmType Alarm type (Alarm Type Constants).

Device The name or ID of the device.
Remarks

Alarms, which have been disabled, can be enabled again by calling the RAImM.
EnableDeviceAlarms method.

5l RAIm Object

Example

' Disable all alarms belonging to the device PLCI.
RAlm DisableDeviceAlarms -1, "PLC1"

3.6.10 RAIm.EnableDeviceAlarms Procedure

RAIm.EnableDeviceAlarms enables all alarms, of a specified type, belonging to a specified
device.

Syntax

RAIm.EnableDeviceAlarms AlarmType: Byte; Device: Variant

Argument Description

AlarmType Alarm type (Alarm Type Constants).

Device The name or ID of the device.
Remarks

Alarms, which have been enabled, can be disabled again by calling the RAImM.
DisableDeviceAlarms method.

Reliance 4 - Scripts N

m RAIm Object

5l RAIm Object

Example

' Enable all alarms belonging to the device PLCI.
RAlm EnableDeviceAlarms -1, "PLC1"

3.6.11 Alarm Type Constants

Value Meaning
0 Alert.
1 Command.
2 System message.

-1 Includes all the above types.

5l RAIm Object

3.6.12 Alarm Triggering Condition Constants

Conditions that can trigger an alarm.

I Reliance 4 - Scripts

Value
10
11
12
20
21
30
31
32
33
40

5l RAIm Object

Meaning

A change in the value of a tag (any change).

A change in the value of a tag (increment).
A change in the value of a tag (decrement).
The leading edge of a digital-type tag.

The trailing edge of a digital-type tag.
Exceeding the upper critical limit.
Exceeding the upper warning limit.

Falling below the lower warning limit.
Falling below the lower critical limit.

The value of a tag within the range.

RAIm Object 217

Reliance 4 - Scripts N

m RDb Object

3.7 RDb Object

The RDb object implements methods for operations on databases defined in a visualization
project. The methods enable you to access historical data stored in the databases. You can
also work with individual database tables through a TTable-type object returned by the RDb.
CreateTableObject method.

Methods:

2| RDb.AppendRecord Procedure
22| RDb.CreateTableObject Function
22| RDb.GetTagHistValue Function
22| RDb.GetTagStatistics Procedure

3.7.1 RDb.AppendRecord Procedure

RDb.AppendRecord appends a new record to a specified database.
Syntax

RDb.AppendRecord Database: Variant
Argument Description

Database The name or ID of the database.

Remarks

In order for the method to work, the database's Sampling property must have a value of
Script controlled.

5l RDb Object

Example

Const c ArraylLen = 5
" Number of array-type tag elements
Dim ArrayIndex

' Index of array-type tag elements

I Reliance 4 - Scripts

For ArrayIndex = 0 to c Arraylen - 1

RTag. SetTagValue "System", "TimeStamp", RTag. GetTagElementValue('"PLCLl",
"TimeStampiArr", ArrayIndex)

RTag. SetTagValue "System", "Pressurel", RTag. GetTagElementValue("PLC1l",
"Pressurel Arr", ArrayIndex)

RTag. SetTagValue "System", "Pressure2", RTag.GetTagElementValue("PLCLl",
"PressureZ Arr", ArraylIndex)

RDb. AppendRecord "Pressures"
Next

3.7.2 RDb.CreateTableObject Function

RDb.CreateTableObject creates a new TTable-type object, which can be used for working
with databases tables, and returns a reference to the object.
Syntax

RDb. CreateTableObject: TTable

Return values

The method returns a reference to the newly created TTable-type object.

Remarks

When using a TTable-type object, follow the rules for working with properties and
methods of objects. When assigning the return value of RDb.CreateTableObject to a
variable, the Set statement must be used. When you no longer need the TTable-type
object, you should free it by assigning the constant Nothing to the variable using the
Set statement.

5l RDb Object

Example

Dim Table
Set Table = RDb. CreateTableObject ' Create a TTable-type object.

[

Name of the database, as defined in a visualization project.

Table. DatabaseName = "Water"
If Table. OpenTable Then ' If the current table can be opened.
Table. Append " Append a new record

' Save current system date to the new record.

Table. DateFieldValue = Date
T

Save current system time to the new record.

Table. TimeFieldValue = Time

Reliance 4 - Scripts N

m RDb Object

' Save the value of the tag WaterTemperature from the device PLC1 to the new record.

Table. SetFieldValue "PLCl", "WaterTemperature", RTag. GetTagValue("PLC1l",
"WaterTemperature")
Table. Post ' Write the new record to the table.
Table. CloseTable ' Close the table.
End If
Set Table = Nothing " Free the TTable-type object.

3.7.3 RDb.GetTagHistValue Function

RDb.GetTagHistValue returns a tag's historical value with time stamp (date and time) nearest
to a specified date and time.

Syntax

RDb.GetTagHistValue(DevName, TagName, DbName: String; ValTime, Tolerance:
DateTime; ByRef RecTime: DateTime; ByRef Error: Variant): Variant

Argument Description

DevName The name of the device that the tag belongs to.
TagName The name of the tag.

DbName The name of the database.

ValTime Required time stamp of the value.

Tolerance Time stamp tolerance.

RecTime Time stamp of the database record found.

Error Error code (The List of Error Codes Returned by
Methods and Properties of Reliance-defined
Objects).

Return values

If the call succeeds, the method returns the tag's historical value with time stamp
nearest to the specified date and time.

If the call fails, the method returns Empty.

I Reliance 4 - Scripts

RDb Object

Remarks

The method searches in both current and archive files. The method attempts to find a
record with time stamp nearest to the specified date and time in the range from (ValTime
- Tolerance) to (ValTime + Tolerance). After calling the method, it is recommended to
check the value of the Error argument to find out about the result of the operation.

5l RDb Object

Example
Dim Value, ValTime, Tolerance, RecTime, Error, Text
ValTime = Date + TimeSerial(6, 0, 0) ' Today, 6 a.m
Tolerance = TimeSerial(0, 5, 0) ' Time stamp tolerance +/- 5 minutes

[

Get the historical value of the tag WaterTemperature

' from the device PLC1 stored in the database Water

Value = RDb. GetTagHistValue("PLCl", "WaterTemperature", "Water", ValTime, Tolerance,
RecTime, Error)

If Error = 0 Then

Text = "The value at: " + CStr(RecTime) + " was: " + CStr(Value) + "."
Else

Text = "Error (code " + CStr(Error) + ")."
End If

' Store information on the result of the operation

[

to the tag DisplayResult from the device System
RTag. SetTagValue "System", "DisplayResult", Text

3.7.4 RDb.GetTagStatistics Procedure

RDb.GetTagStatistics retrieves statistical information about a tag in a specified time range
from a database.

Syntax

RDb.GetTagStatistics(DevName, TagName, DbName: String; From, Till: DateTime;
ByRef Min, Max, Sum, Ave, Count, Error: Variant)

Argument Description
DevName The name of the device that the tag belongs to.
TagName The name of the tag.

DbName The name of the database.

221

Reliance 4 - Scripts N

B3 o o

From The lower bound of the time range.

Till The upper bound of the time range.

Min The minimum value of the tag in the time range.

Max The maximum value of the tag in the time range.

Sum The sum of the values of the tag in the time
range.

Ave The average value of the tag in the time range.

Count The number of database records in the time
range.

Error Error code (The List of Error Codes Returned by
Methods and Properties of Reliance-defined
Objects).

Remarks

The method searches in both current and archive databases. The method attempts to
find and process the records with time stamp in the range specified by the From and Till
arguments. After calling the method, it is recommended to check the value of the Error
argument to find out about the result of the operation.

5l RDb Object

Example
Dim Value, From, Till, AMin, AMax, ASum, AAve, ACount, Error, Text
From = Date + TimeSerial(6, 0, 0) ' From: today, 6 a.m
Till = Date + TimeSerial(7, 0, 0) ' Till: today, 7 a.m

[

Retrieve statistical information about the tag WaterTemperature
" from the device PLC1 stored in the database Water

Value = RDb. GetTagStatistics("PLCl", "WaterTemperature", "Water", From, Till, AMin,
AMax, ASum, AAve, ACount, Error)

If Error = 0 Then

Text = "Minimum: " 4+ CStr(AMin) + " Maximum: " + CStr(AMax) + " Sum: " + CStr(ASum)
+ " Average: " + CStr(AAve) + " Record count: " + CStr(ACount) + "."
Else

Text = "Error (code " + CStr(Error) + ")."
End If

I Reliance 4 - Scripts

RDb Object m

' Store information on the result of the operation
' to the tag DisplayResult from the device System
RTag. SetTagValue "System", "DisplayResult", Text

Reliance 4 - Scripts N

m RDev Object

3.8 RDev Object

The RDev object implements methods for working with devices.

Methods:

| RDev.ConnectToCommDriver Procedure

2| RDev.SendCustomData Procedure

22| RDev.ReceiveCustomDataReply Procedure

3.8.1 RDev.ConnectToCommDriver Procedure

RDev.ConnectToCommDriver connects the runtime software to a specified communication

driver.

Syntax

RDev.ConnectToCommbDriver ProgID: String; Computer: Variant

Argument

ProgID

Computer

Remarks

This method is sometimes used to reconnect the runtime software to a communication
driver (e.g. if the driver was terminated and could not be restarted automatically by the
runtime software).

5l RDev Object

I Reliance 4 - Scripts

Description

A unique identifier of the communication
driver.

The name or ID (as defined in a
visualization project) of the computer
hosting the communication driver. A special
value of " means the local computer (i.e.
the computer on which the runtime
software is running).

Example

[

RDev. ConnectToCommDriver "TECO. DA2"™, ""

3.8.2 RDev.SendCustomData Procedure

Sends custom data to a device(s) via a specified communication driver.

Syntax

RDev Object m

Connect the runtime software to Teco OPC Server on the local computer

RDev.SendCustomData Prog/D: String, Computer: Variant, Params: Variant, Data:

Variant
Argument

ProgID

Computer

Params

Data

Remarks

Description

A unique identifier (as registered in the
Windows registry) of the communication
driver's COM interface.

The name or ID (as defined in a
visualization project) of the computer
hosting the communication driver. A special
value of "" means the local computer (i.e.
the computer on which the runtime
software is running).

Communication parameters.

Data to be send.

This method is sometimes used to send data from scripts.

5l RDev Object

Example

dim Params

r

The first parameter represents a target where the communication packet should be

sent to. 1 - to a communication channel, 2 - to a device. (only code 2 - device - 1is

supported)

Reliance 4 - Scripts N

m RDev Object

' The second parameter represents the channel's or device's ID depending on the value

of the lst parameter. In this example, it is the device's ID.

Params = array(2,2)

" Send the user-defined communication packet to the Sauter device.

RDev. SendCustomData "R DrvSauter.dll","", Params, "POO101N/"

3.8.3 RDev.RDev.ReceiveCustomDataReply Procedure

Receives a reply (if any) to custom data sent to a device(s) via a specified communication
driver.

Syntax

RDev.ReceiveCustomDataReply ProgID: String, Computer: Variant, Params: Variant,
ByRef DataReply: Variant

Argument Description

ProgID A unique identifier (as registered in the
Windows registry) of the communication
driver's COM interface.

Computer The name or ID (as defined in a
visualization project) of the computer
hosting the communication driver. A special
value of "" means the local computer (i.e.
the computer on which the runtime
software is running).

Params Communication parameters.
DataReply Reply to a data, parameter passed by
reference.
Remarks

This method is sometimes used to receive reply to a data.

5l RDev Object

I Reliance 4 - Scripts

RDev Object 227

Example

dim Params, Data

' The first parameter represents a source from which the communication packet should
be received. 1 - from a communication channel, 2 - from a device. (only code 2 -
device - is supported)

' The second parameter represents the channel's or device's ID depending on the value

of the 1st parameter. In this example, it is the device's ID.
Params = array(2,2)

' Receive a reply to the user-defined communication packet sent to the Sauter device.

RDev. ReceiveCustomDataReply "R DrvSauter.dll","", Params, Data

Reliance 4 - Scripts I

m RError Object

3.9 RError Object

The RError object provides information on the result of the most recent call to a method or
access to a property of any Reliance-defined object with the exception of the RError object
itself.

Properties:
22| RError.Code Property
22| RError.Description Property

Other:
2| The List of Error Codes Returned by Methods and Properties of Reliance-defined Objects

3.9.1 RError.Code Property

RError.Code returns the error code of the most recent call to a method or access to a
property of any Reliance-defined object with the exception of the RError object itself.

Syntax

RError. Code: Integer
Remarks
The property is read-only.
Value Meaning

0 The most recent method call or property access
was successful.

>0 The code of the error (The List of Error Codes
Returned by Methods and Properties of Reliance-
defined Objects).

5l RError Object

I Reliance 4 - Scripts

RError Object m

Example

If RError. Code > 0 Then

' Store the error description

" to the tag DisplayResult from the device System

RTag. SetTagValue "System", "DisplayResult'", RError.Description
End If

3.9.2 RError.Description Property

RError.Description returns the error description of the most recent call to a method or access
to a property of any Reliance-defined object with the exception of the RError object itself.
Syntax

RError. Description: String

Remarks

The property is read-only. The List of Error Codes Returned by Methods and Properties of
Reliance-defined Objects.

5l RError Object

Example

If RError. Code > 0 Then

' Store the error description

" to the tag DisplayResult from the device System

RTag. SetTagValue "System", "DisplayResult", RError.Description
End If

3.9.3 The List of Reliance-defined Objects Error Codes

Error codes common to all objects

Code (RError. Description (RError. Explanation

Code) Description)
0 Success. The call to a method or access to a
property was successful (i.e. no error
occurred).

Reliance 4 - Scripts N

m RError Object

100

101

102

500

5l RError Object

Unknown error.

Unexpected error.

An unknown error occurred (i.e. an error
in a block of code where an error is
expected but there is no way to find out
exactly what error occurred).

An unexpected error occurred (i.e. an
error in a block of code where an error is
not expected, e.g. when calling the RDb.
GetTagHistValue method).

Service is notThe service provided by the method

supported.

Device not found.

Tag not found.

Database not found.

called is not supported.

The device was not found. The hame of
the device was not correctly specified or
the device is not accessible to the
computer on which the script was
executed.

The tag was not found. The name of the
tag was not correctly specified.

The database was not found. The name of
the database was not correctly specified
or the database is not accessible to the
computer on which the script was
executed.

Cannot create|The directory cannot be created.

directory.

Error codes specific to TTable-type objects

Code (RError.Description

Code)

I Reliance 4 - Scripts

Description)

(RError. Explanation

RError Object 231

10001 Tag not included inThe database defined in a visualization
database definition. |project does not contain a field linked
to the tag (i.e. the tag is not configured

to be logged to the database).

10002 Missing database The DatabaseName property is blank

name. (e.g. because it has not been assigned
a value).
10003 Missing archive The ArchiveName property is blank (e.g.
name. because it has not been assigned a
value).

10010 Table does not exist. |The database table does not exist.

10011 Table already exists. The database table already exists.

10012 Table not active. The database table is not open.

10013 Table not in edit orThe database table is not in edit or
insert mode. insert mode.

10014 Table is busy. The database table is currently being

accessed by another program.
10015 Cannot open table. |The database table cannot be opened.

10016 TTable object does |The TTable object does not allow for
working with tables in SQL databases.
not support
working with SQL

databases.

10030 Field not found in/The database field was not found in the
table. database table although the tag is
configured to be logged to the

database.

10031 Invalid field value. The returned value of the database
field is invalid (when reading the value
of the field).

Reliance 4 - Scripts N

m RError Object

10032 Invalid value for field. The value to be assigned to the
database field is invalid (when writing
the value of the field).

5l TTable-type Objects

Error codes specific to the RTag object

Code (RError.Description (RError. Explanation
Code) Description)

11001 Invalid tag value. The returned value of the tag is invalid
(e.g. because the value has not yet been
returned by the communication driver).

11002 Incorrect tag type. |The tag is of an incorrect data type (e.g.
the value of an array-type tag cannot be
returned by calling the RTag.
GetTagValue method).

11003 Cannot send|The tag cannot be written (e.g. because
commands. a visualization project runs in a view-only
version of the runtime software).

11004 Cannot assign value The tag cannot be assigned the specified

to tag. value because the data type of the value
is not assignment compatible with the
data type of the tag.
11005 Array-type tag The method called requires an array-type
required. tag.

11006 Non-array-type tagThe method called requires a non-array-
required. type tag.

11007 Incompatible tagThe data types of the tags are not
types. compatible (e.g. when calling the RTag.
MoveTagValue method).

11008 Unsupported tag The method called does not support the
type. data type of the tag.

I Reliance 4 - Scripts

RError Object m

11009 Cannot determineThe value of the tag cannot be
tag value. determined.

11010 Array index out of|The specified index into the array-type

bounds. tag is out of bounds (e.g. when calling
the RTag.MoveTagElementValues
method).

11011 Element count out ofThe specified number of elements
bounds. exceeds the size of the array-type tag (e.
g. when calling the RTag.

MoveTagElementValues method).

11012 Zero elements toThe specified number of elements to
move. move is zero (when calling the RTag.
MoveTagElementValues method).

11013 Device driver notThe device's communication driver is not
available. available (e.g. is not running).

11014 Device currently not/A connection to the device is currently
connected. not established (e.g. because a
connection to the server computer has

not been established).

5l RTag Object

Error codes specific to the RSys object

Code (RError.Description (RError. Explanation
Code) Description)

12001 Window not found. The project window was not found.
The name of the window was not
correctly specified or the window is
not accessible to the computer on
which the script was executed (e.g.
when calling the RSys.
ActivateWindow method).

Reliance 4 - Scripts N

m RError Object

12002
12003

12010
12011

12012

12013

5l RSys Object

Program file name The file name of the program to be run
cannot be empty. cannot be blank (e.g. when calling the
RSys.ExecApp method).

Sound file name cannotThe file name of the sound to be
be empty. played cannot be blank (e.g. when
calling the RSys.PlaySound method).

File does not exist. The file does not exist.

Source file does notThe source file does not exist (e.g.
exist. when calling the RSys.CopyFile
method).

Destination file already The destination file already exists.
exists.

Cannot copy a file tolThe names of the source and
itself. destination files are identical. The
operation cannot be performed.

Error codes specific to the RDb object

Code (RError.Description (RError. Explanation
Code) Description)

13001 Database does notNone of the tables of the database

exist. exist (neither current nor archive).

13002 Tag not stored inThe tag was not found in any of the

database. tables belonging to the database
(the tag is not configured to be
logged to the database).

13003 Incorrect tag type. The tag is of an incorrect data type
(e.g. a string-type tag when calling
the R.GetTagStatistics method).

13004 Cannot open database. |None of the tables of the database

I Reliance 4 - Scripts

could be opened.

RError Object m

13005 No data available. There are no records in the database
in the specified time range.

5l RDb Object

Error codes specific to the RScr object

Code (RError.Description (RError. Explanation

Code) Description)
14001 Script not found. The script was not found. The name
of the script was not correctly
specified.

5l RScr Object

Error codes specific to the RUser object

Code (RError.Description (RError. Explanation

Code) Description)
15001 User not found. The user was not found. The name of
the user was not correctly specified.
15002 No user logged on. No user is currently logged on to the

runtime software.

15003 Invalid access rights. The specified set of access rights is
invalid, since one or more rights have
invalid names.

5l RUser Object

Error codes specific to the RAIm object

Code (RError.Description (RError. Explanation
Code) Description)

Reliance 4 - Scripts N

m RError Object

16001 Invalid alarm type. |The specified alarm type is invalid,
since it is not within the range O to 2.

5l RAIm Object

Error codes specific to the RInet object

Code (RError.Description (RError.Explanation
Code) Description)

17001 Error initializing SMTP./An error occurred while initializing the
SMTP routines (routines for sending E-
mail messages).

17002 Incomplete SMTP The SMTP configuration is incomplete

configuration. (some properties have not been
specified).
17003 Error connecting toAn error occurred while connecting to
SMTP server. the SMTP (E-mail) server.
17004 Error sending E-mail. |An error occurred while sending the E-

mail message.

5l RiInet Object

Error codes specific to the RModem object

Code (RError.Description (RError. Explanation
Code) Description)

18001 SMS driver notThe GSM SMS driver has not been
initialized. initialized.

18002 Error sending SMS. An error occurred while sending the
SMS message.

18003 Error dialing phone/An error occurred while dialing the
number. phone number.

I Reliance 4 - Scripts

RError Object 237

18004 SMS not found. The SMS message was not found by
the GSM SMS driver.
18005 Error sending AT/An error occurred while sending the
command. AT command.

5l RModem Object

Reliance 4 - Scripts N

m RiInet Object

3.10 Rinet Object

The RInet object implements methods for sending E-mail messages. In order for the methods
to be operational, you have to correctly configure computer properties related to sending E-
mail messages (configure the SMTP server, Port humber, Connection timeout and Sender
address properties on the E-mail page in the Project Structure Manager).

Methods:
2| RInet.SendMail Function

3.10.1 RInet.SendMail Function

RInet.SendMail sends an E-mail message.
Syntax

RInet.SendMail(DestAddress, Subject, Text, FileName: String): Boolean
Argument Description

DestAddress The list of recipients (E-mail addresses)
separated by a semicolon.

Subject The subject of the message.
Text The text of the message.
FileName The list of attachments (file names)

separated by a semicolon.

Return values

Value Meaning

True The message was sent.

False An error occurred while sending the message
(information on the error is logged to the alarm
database).

I Reliance 4 - Scripts

Rinet Object m

Remarks

If you want to send an E-mail message with no attachments, pass an empty string ("") as
the last argument.

5l RiInet Object

Example

" Send two files to the address reliance@hotmail. com.

If RInet. SendMail("reliance@hotmail. com", "Data files", "Data files Datal. txt and
DataZ2. txt.", "C:\Data\Datal. txt; C:\Data\Data2. txt") Then

' Store information on the result of the operation

" to the tag DisplayResult from the device System

RTag. SetTagValue "System", "DisplayResult", "The message was sent."
End If

Reliance 4 - Scripts N

m RModem Object

3.11 RModem Object

The RModem object implements methods for sending and receiving SMS messages through
a GSM modem connected to the computer. In order for the methods to be operational, you
have to correctly configure computer properties related to GSM modems (activate the Start
SMS driver property and configure the GSM device type, Communication options and SMS
service center number properties on the SMS page in the Project Structure Manager).

Methods:

»| RModem.GSMGetSMSStatus Function
2| RModem.GSMSendSMS Function

2| RModem.GSMSendSMSEXx Function

Other:
2| The List of Error Codes (CMS) According to the GSM 07.05 Standard

3.11.1 RModem.GSMSendATCommand Function

RModem.GSMSendATCommand sends a specified AT command to the GSM SMS driver.
Syntax

RModem.GSMSendATCommand(Command: String): Boolean
Argument Description

Command AT command

Return values

Value Meaning

True The AT command was placed in a queue by the
GSM SMS driver.

False An error occurred.

I Reliance 4 - Scripts

RModem Object 241

Remarks

The method passes the AT command to the GSM SMS driver which places it in an
internal queue. The AT command is passed to the GSM modem when all previous
requests in the queue are processed.

5l RModem Object

Example

Dim SCNumber, ATCommand

' The service centre number is stored in the tag SCNumber from the device System.
SCNumber = RTag. GetTagValue("System", "SCNumber")

ATCommand = "AT+CSCA=""" & SCNumber & """"

If RModem GSMSendATCommand(ATCommand) Then

End If

3.11.2 RModem.GSMGetSMSStatus Function

RModem.GSMGetSMSStatus returns the status of a SMS message previously sent by calling
the RModem.GSMSendSMSEx method.
Syntax

RModem.GSMGetSMSStatus(/D: Integer; ByRef Text, PhoneNumber, Status,
ErrorCode: Variant): Boolean

Argument Description

ID The unique identifier of the message returned by the
RModem.GSMSendSMSEx method.

Text The text of the message.

PhoneNumber The phone number of the message's recipient.

Status The status of the message (see the following table).
ErrorCode The code of an error which might occur while sending

the message (The List of Error Codes (CMS) According
to the GSM 07.05 Standard).

Reliance 4 - Scripts N

m RModem Object

Value Meaning
0 The message is waiting in the queue.
1 The message was successfully sent.
2 An error occurred while sending the message. The code of the

error is returned in the ErrorCode argument.

3 The status of the message is not available.

Return values

Value Meaning
True The status of the message is available.
False The status of the message is not available.

5l RModem Object

Example

Dim PhoneNumber, Text, Status, ErrCode, ID

' The identifier of the most recently sent message 1is stored
' in the tag LastSMSID from the device System.

ID = RTag. GetTagValue("System", "LastSMSID")

" Retrieve the status of the message.

RModem. GSMGetSMSStatus ID, Text, PhoneNumber, Status, ErrCode
' Store the status of the message to the

' tag LastSMSStatus from the device System.

RTag. SetTagValue "System", "LastSMSStatus'", Status

' Store the error code of the message to the

' tag LastSMSErrCode from the device System

RTag. SetTagValue "System", "LastSMSErrCode", ErrCode

I Reliance 4 - Scripts

RModem Object m

3.11.3 RModem.GSMSendSMS Function

RModem.GSMSendSMS sends a SMS message to a specified phone number by passing it to
the GSM SMS driver.

Syntax

RModem.GSMSendSMS(PhoneNumber, Text: String): Boolean

Argument Description

PhoneNumber The phone number of the message's
recipient.

Text The text of the message.

Return values
Value Meaning

True The message was encoded and placed in a
queue by the GSM SMS driver.

False An error occurred.

Remarks

The method passes the message to the GSM SMS driver which places it in an internal
gueue. However, there is no way to find out whether the message was actually sent. If
you want to retrieve the result of sending the message, use the RModem.
GSMSendSMSEx method instead.

5l RModem Object

Example

Dim PhoneNumber, Text

' The phone number 1s stored in the tag Number from the device System.
PhoneNumber = RTag. GetTagValue("System", "Number")

' The text of the message 1s stored in the tag Text from the device System
Text = RTag. GetTagValue("System", "Text")

Reliance 4 - Scripts N

m RModem Object

If RModem GSMSendSMS(PhoneNumber, Text) Then
End If

3.11.4 RModem.GSMSendSMSEXx Function

RModem.GSMSendSMSEXx sends a SMS message to a specified phone number by passing it
to the GSM SMS driver and returns a unique identifier for the message.

Syntax
RModem.GSMSendSMSEx(PhoneNumber, Text: String; ByRef /D: Integer): Boolean

Argument Description

PhoneNumber The phone number of the message's
recipient.

Text The text of the message.

ID The identifier of the message.

Return values
Value Meaning

True The message was encoded and placed in a
queue by the GSM SMS driver.

False An error occurred.

Remarks

The method passes the message to the GSM SMS driver which places it in an internal
queue and returns a unique identifier (a number unique within an instance of the driver)
for the message. The identifier can later be used to retrieve the status of the message by
passing it to theRModem.GSMGetSMSStatus method. Information on the status of
sending a message is stored in the driver for a time period determined by the driver's
settings (the default time period is 24 hours).

5l RModem Object

I Reliance 4 - Scripts

RModem Object m

Example

Dim PhoneNumber, Text, ID
' The phone number 1s stored in the tag Number from the device System.
PhoneNumber = RTag. GetTagValue("System", "Number")
' The text of the message 1s stored in the tag Text from the device System
Text = RTag. GetTagValue("System", "Text")
If RModem GSMSendSMSEx(PhoneNumber, Text, ID) Then
' Store the value of ID so that it can later be passed
" to the RModem. GSMGetSMSStatus method.
RTag. SetTagValue "System", "LastSMSID", ID
End If

3.11.5 The List of Error Codes (CMS) According to GSM 07.05 Standard

Code Meaning
1 Unassigned (unallocated) number.
8 Operator determined barring.
10 Call barred.
21 Short message transfer rejected.
27 Destination out of service.
28 Unidentified subscriber.
29 Facility rejected.
30 Unknown subscriber.
38 Network out of order.
41 Temporary failure.
42 Congestion.
47 Resources unavailable, unspecified.
50 Requested facility not subscribed.

69 Requested facility not implemented.

Reliance 4 - Scripts N

m RModem Object

81
95
96
97
98

99

111
127
128
129
130
143
144
145
159
160
161
175
176
192
193
194
195

Invalid short message transfer reference value.
Invalid message, unspecified.
Invalid mandatory information.

Message type non-existent or not implemented.

Message not compatible with short message

protocol state.

Information element non-existent or
implemented.

Protocol error, unspecified.
Interworking, unspecified.

Telematic interworking not supported.
Short message Type O not supported.
Cannot replace short message.
Unspecified TP-PID error.

Data coding scheme (alphabet) not supported.
Message class not supported.
Unspecified TP-DCS error.

Command cannot be actioned.
Command unsupported.

Unspecified TP-Command error.

TPDU not supported.

SC busy.

No SC subscription.

SC system failure.

Invalid SME address.

I Reliance 4 - Scripts

not

196
197
198
199
208
209
210
211
212
213
255
300
301
302
303
304
305
310
311
312
313
314
315
316
317

Destination SME barred.
SM Rejected-Duplicate SM.
TP-VPF not supported.
TP-VP not supported.

DO SIM SMS storage full.

No SMS storage capability in SIM.

Error in MS.

Memory Capacity Exceeded.
SIM Application Toolkit Busy.
SIM data download error.
Unspecified error cause.

ME failure.

SMS service of ME reserved.
Operation not allowed.
Operation not supported.
Invalid PDU mode parameter.
Invalid text mode parameter.
SIM not inserted.

SIM PIN required.

PH-SIM PIN required.

SIM failure.

SIM busy.

SIM wrong.

SIM PUK required.

SIM PIN2 required.

RModem Object 247

Reliance 4 - Scripts N

m RModem Object

318
320
321
322
330
331
332
340
500
512
513
514
515
516
517
518
519
520
521

SIM PUK2 required.
Memory failure.

Invalid memory index.
Memory full.

SMSC address unknown.
No network service.
Network timeout.

NO +CNMA ACK EXPECTED.
Unknown error.

User abort.

Unable to store.

Invalid status.

Invalid character in address string.
Invalid length.

Invalid character in pdu.
Invalid parameter.

Invalid length or character.
Invalid character in text.

Timer expired.

5l RModem Object

I Reliance 4 - Scripts

RScr Object m

3.12 RScr Object

The RScr object implements methods for operations on scripts defined in a visualization
project.

The methods enable you to enable/disable scripts, retrieve parameters passed to a script and
retrieve information on scripts.

Methods:
2| RScr.DisableScript Procedure

W

| RScr.EnableScript Procedure

W

2| RScr.ExecScript Procedure

W

| RScr.GetCurrentScriptData Function
2| RScr.GetCurrentScriptDataEx Function

W

W

»| RScr.GetScriptinfo Function
2| RScr.GetScriptText Function

W

Events:

=] Basic Events

2| Events Triggered by a Component
2| Events Triggered by an Alarm

2| Events Triggered by a SMS Message

3.12.1 RScr.DisableScript Procedure

RScr.DisableScript disables a script.
Syntax

RScr.DisableScript Script: Variant
Argument Description

Script The name or ID of the script.

Reliance 4 - Scripts N

m RScr Object

Remarks

Calling this method disables the script only for the time a visualization project is running.
After terminating the project, the information is lost. When the project is started next
time, the script is again in its initial state, i.e. either enabled or disabled, depending on
the value of the Enable execution property (Reliance Design > Managers > Script
Manager > script properties > the Basic page).

5l RSer Object

Example

If RSys. GetComputerName = "PCl" Then
' Disable the script Scriptl if the current script
' 1s executing on the computer PCI.
RScr. DisableScript "Scriptl"
Else
" Enable the script Scriptl.
RScr. EnableScript "Scriptl”
End If

3.12.2 RScr.EnableScript Procedure

RScr.EnableScript enables a script.

Syntax

RScr.EnableScript Script: Variant
Argument Description

Script The name or ID of the script.

Remarks

Calling this method disables the script only for the time a visualization project is running.
After terminating the project, the information is lost. When the project is started next
time, the script is again in its initial state, i.e. either enabled or disabled, depending on
the value of the Enable execution property (Reliance Design > Managers > Script

Manager > script properties > the Basic page).

I Reliance 4 - Scripts

5l RScr Object

Example

If RSys. GetComputerName = "PCl1l" Then
" Disable the script Scriptl if the current script

' 1is executing on the computer PCIl.

RScr. DisableScript "Scriptl"

Else

" Enable the script Scriptl.

RScr. EnableScript "Scriptl"

End If

3.12.3 RScr.ExecScript Procedure

RScr.ExecScript places a script in a queue of scripts to be executed.

Syntax

RScr.ExecScript Script: Variant; PriorExec: Boolean

Argument
Script

PriorExec

Value

True

False

Description
The name or ID of the script.

Determines whether to execute the script prior to
other scripts (see the following table).

Meaning

The script is placed in the prior script queue to a
position that depends on the script's priority (
Reliance Design > Managers > Script Manager >
script properties > the Advanced page). Placing
the script in the prior script queue ensures that
the script is executed prior to all scripts placed in
the standard script queue.

The script is placed in the standard script queue
to a position that depends on the script's priority.

RScr Object 251

Reliance 4 - Scripts N

m RScr Object

Remarks

The script is placed in the appropriate script queue and can be executed only after the
current script finishes execution. To execute a script's code immediately, use the Execute
statement in combination with the RScr.GetScriptText method.

5l RSer Object

Example

' Place the script Scriptl in the prior script queue.

RScr. ExecScript "Scriptl", True

3.12.4 RScr.GetCurrentScriptData Function

RScr.GetCurrentScriptData returns data passed as a parameter to the current script.
Syntax

RScr.GetCurrentScriptData(ByRef Data: Variant): Boolean
Argument Description

Data The data passed to the current script.

Return values
Value Meaning

True The Data argument has been assigned the value
of the data passed to the current script.

False The Data argument has not been assigned a
value, since no data has been passed to the
current script.

Remarks

If the current script has been triggered by an alarm (i.e. start, end, or acknowledgment),
the method retrieves the text of the alarm.

I Reliance 4 - Scripts

RScr Object m

This method is obsolete and is provided only for backward compatibility. For new
applications, use the RScr.GetCurrentScriptDataEx method.

5l RSer Object

Example

' This script is intended to be triggered when an alarm is generated.
Dim Data
' If the Data argument has been assigned a value.
If RScr. GetCurrentScriptData(Data) Then
' Send an E-mail containing the text of the alarm

If RInet. SendMail("reliance@hotmail. com", "Alarm generated", Data, "") Then

End If
End If

3.12.5 RScr.GetCurrentScriptDataEx Function

RScr.GetCurrentScriptDataEx returns data passed as a parameter to the current script.

Syntax

RScr.GetCurrentScriptDataEx(ByRef Data: Variant): Boolean
Argument Description

Data The data passed to the current script.

Return values
Value Meaning

True The Data argument has been assigned the value
of the data passed to the current script.

False The Data argument has not been assigned a
value, since no data has been passed to the
current script.

Reliance 4 - Scripts N

m RScr Object

Remarks

If the method returns True, the Data argument references an object with the following

properties:

Property Type
SenderName String
StrParl String
StrPar2 String
StrPar3 String
StrPar4 String
StrPar5 String
StrPar6 String
StrPar7 String
StrPar8 String
DoublePar1 Double
DoublePar2 Double
DateParl DateTime
DatePar2 DateTime
DatePar3 DateTime
DatePar4 DateTime
IntParl Integer
IntPar2 Integer
IntPar3 Integer
IntPar4 Integer
ByteParl Byte
BytePar2 Byte

I Reliance 4 - Scripts

RScr Object m

BytePar3 Byte

BytePar4 Byte

BoolParl Boolean
BoolPar2 Boolean
BoolPar3 Boolean
BoolPar4 Boolean
BoolPar5 Boolean

The meaning of individual properties depends on the event that triggered the script:
Basic Events

Events Triggered by a Component

Events Triggered by an Alarm

Events Triggered by a SMS Message

Events Triggered by a Thin Client Request

5l RSer Object

Example 1

' This script is intended to be triggered by clicking a component.

Dim Data
" If the Data argument has been assigned a value.
If RScr. GetCurrentScriptDataEx(Data) Then
' If the user clicked a component that runs this script
' with the parameter equal to 3.
If Data.IntParl = 3 Then
End If
End If

Example 2

[

This script is intended to be triggered when an alarm is generated.
Dim Data

[

If the Data argument has been assigned a value.

Reliance 4 - Scripts N

m RScr Object

If RScr. GetCurrentScriptDataEx(Data)

Then

If RInet. SendMail("reliance@Rhotmail. com",
'.v.
End If
End If

Example 3

T
Dim Data
T

' we can to access individual properties.

If Rscr. GetCurrentScriptDataEx(Data) Then
"Rec Data",

"Rec Text",

RTag. SetTagValue "System",
RTag. SetTagValue "System",
RTag. SetTagValue "System",

"Rec Number",
SMS service center

"Rec SCTime",

The time assigned by the
RTag. SetTagValue "System",
r
RTag. SetTagValue "System",
End If

"Rec Time",

Priklad 4

Dim Data

" we can to access individual properties.

If Rscr. GetCurrentScriptDataEx(Data) Then
" Request Type: Timeout = 0, Connect = 1,
Logout = 4
Select Case Data. IntParl
Case 0
RTag. SetTagValue "System", "Request Type",
Case 1
RTag. SetTagValue "System", "Request Type",
Case 2
RTag. SetTagValue "System", "Request Type",
Case 3
RTag. SetTagValue "System", "Request Type",
Case 4
RTag. SetTagValue "System", "Request Type",

End Select
" Thin Client Type: Reliance Web Client = 0,
Select Case Data. IntPar?2

I Reliance 4 - Scripts

"Alarm generated",

If the Data argument has been assigned a value

Data. StrParl
Data. StrPar?2 !
Data. StrPar3

If the Data argument has been assigned a value

Disconnect = 2, User Logon =

Send an E-mail containing the text of the alarm

Data. StrParl,

llll)

This script is intended to be triggered by receiving a SMS message.

Data.
Text.

Number.

Data. StrPar4
The time of receiving the message by the GSM SMS driver
CStr(Data. DateParl)

This script is intended to be triggered by thin client request.

"Disconnect (Expired Session)"

"Connect"

"Disconnect"

"User Logon"

"User Logout"

Reliance Mobile Client = 1

3, User

Then

RScr Object 257

Case 0
RTag. SetTagValue "System", "Client Type", "Reliance Web Client"
Case 1
RTag. SetTagValue "System", "Client Type", "Reliance Mobile Client"
Case 2
RTag. SetTagValue "System", "Client Type", "Reliance Smart Client"
End Select
RTag. SetTagValue "System", "Session Name", Data.StrParl " Unique Session
Identifier.
RTag. SetTagValue "System", "IP", Data.StrPar2 ' Client IP Address.
RTag. SetTagValue "System", "Software Version", Data.StrPar3 ' Client Version.
RTag. SetTagValue "System", "Computer Name", Data.StrPar4 " Computer Name
(Configuration).
RTag. SetTagValue "System", "User Name", Data.StrParb5 ' User Name.
RTag. SetTagValue "System", "User Agent", Data.StrPar6 ' Information on Web
browser (User-Agent header). Only for Reliance Smart Client.
End If

3.12.6 RScr.GetScriptinfo Function

RScr.GetScriptinfo returns information on a script.

Syntax

RScr.GetScriptinfo(Script: Variant; ByRef Enabled, LastExecStartTime,
LastExecEndTime, LastForcedTerminTime, ForcedTerminCou, ExecErrorCount: Variant):

Boolean

Argument Description

Script The name or ID of the script.

Enabled Determines whether the script is enabled.

LastExecStartTime The date and time that the script last started
execution.

LastExecEndTime The date and time that the script last finished
execution.

LastForcedTerminTime The date and time that the script was last
forcibly terminated.

ForcedTerminCount The number of forcible terminations of the
script during the time a visualization project is
running.

Reliance 4 - Scripts N

m RScr Object

ExecErrorCount The number of errors (other than syntax errors)
while executing the script during the time a
visualization project is running.

Return values
Value Meaning

True The script was found and the returned
information is valid.

False The script was not found and the returned
information is not valid.

5l RSer Object

Example

Dim Enabled, LastExecStartTime, LastExecEndTime, LastForcedTerminTime,
ForcedTerminCount, ExecErrorCount
" If the script Scriptl was found

If RScr. GetScriptInfo("Scriptl", Enabled, LastExecStartTime, LastExecEndTime,
LastForcedTerminTime, ForcedTerminCount, ExecErrorCount) Then

If Not Enabled Then ' If the script is not enabled.
RScr. EnableScript "Scriptl" ' Enable the script.
End If
End If

3.12.7 RScr.GetScriptText Function

RScr.GetScriptText returns the text (program code) of a script.
Syntax

RScr.GetScriptText(Script: Variant): String
Argument Description

Script The name or ID of the script.

I Reliance 4 - Scripts

RScr Object m

Remarks

This method can be used in combination with the Execute statement to execute a script's
code immediately.

5l RScr Object

Example

Dim ScriptCode

" Place the script ScriptZ2 in the prior script queue.

RScr. ExecScript "Script2", True
ScriptCode = RScr. GetScriptText("Scriptl")

[

Retrieve the text (program code) of the script Scriptl

' and execute it using the Execute statement.

" Thus, Scriptl executes sooner than ScriptZ2.
Execute ScriptCode

3.12.8 Basic Events

Basic events include the following events:

e clicking or double-clicking a window

¢ |oading, activating, deactivating, closing, and freeing a window

e starting, interrupting, and restoring communication to a device (e.g. PLC)

¢ starting and terminating communication on a network connection between instances of the
runtime software

¢ receiving data for a data table from a data server

When a script is triggered by a basic event, an integer parameter configured for the event is
passed to the script. In addition, the complete hame of the object (window, device, server
connection, data table) that triggered the event is passed to the script.

The meaning of the properties of the object returned by the RScr.GetCurrentScriptDataEx
method:

Property Meaning

SenderName |The complete name of the object that triggered
the event.

Reliance 4 - Scripts N

m RScr Object

IntParl The integer parameter passed to the script.
3.12.9 Events Triggered by a Component

When a script is triggered by clicking or double-clicking a component, information on the
component is passed to the script.

The meaning of the properties of the object returned by the RScr.GetCurrentScriptDataEx
method:

Property Meaning

SenderName |[The complete name of the component, i.e.
window name/component name (e.g. Windowl/
Button1)

IntPar1 User defined parameter (integer parameter as
with basic events)

StrParl The name of the component.

StrPar2 The name of the window containing the
component.

StrPar3 The complete name of the tag (i.e. device name/

tag name) referenced by the container through
which the component is inserted into a window
as part of a window template.

StrPar4 The complete name of the component's main tag
(i.e. device name/tag name).

StrPar5 Unique session identifier (only if the script is run
from a thin client).

IntPar2 The ID of the window containing the component.

I Reliance 4 - Scripts

RScr Object 261

Remarks

The separator of the window and component name in the SenderName property depends
on a setting in the Project Options dialog (Project > Objects). The same applies to the
separator used in the StrPar3 and StrPar4 properties.

3.12.10 Events Triggered by an SMS Message

When a script is triggered by receiving a SMS message, information on the message is passed
to the script.

The meaning of the properties of the object returned by the RScr.GetCurrentScriptDataEx
method:

Property Meaning

SenderName The name of the logical computer (based on the
project) on which the project is running.

StrParl Data in the PDU format (before decoding).
StrPar2 The text of the message.

StrPar3 The phone number of the sender.

StrPar4 The time (in text form) assigned by the SMS

service center.

DateParl The time of receiving the message by the GSM
SMS driver.

3.12.11 Events Triggered by an Alarm

When a script is triggered by an alarm (i.e. start, end, or acknowledgment), information on the
alarm is passed to the script.

The meaning of the properties of the object returned by the RScr.GetCurrentScriptDataEx
method:

Property Meaning

Reliance 4 - Scripts N

m RScr Object

SenderName
StrParl

StrPar2
StrPar3
StrPar4
StrPar5
StrPar6
StrPar7
StrPar8
IntParl
IntPar2
IntPar3
IntPar4
ByteParl

BytePar2

BytePar3
BoolPar1

BoolPar2
BoolPar3

BoolPar4
BoolPar5

I Reliance 4 - Scripts

The complete name of the alarm, i.e. device name/alarm
name (e.g. Modbus1/MotorFault)

Date and time (in local time) when this instance of the alarm
was generated followed by the text of the alarm.

The name of the device to which the alarm belongs.
The name of the tag related to the alarm.

The name of the alarm.

The alias of the device to which the alarm belongs.
The compound alias of the tag related to the alarm.
The alias of the alarm.

The text of the alarm.

The ID of the alarm.

The ID of the device to which the alarm belongs.
The ID of the tag related to the alarm.

The access rights required for acknowledging the alarm.
Alarm type (Alarm Type Constants).

The occurrence that generated the alarm (Alarm Triggering
Condition Constants).

The priority of the alarm.

Determines whether to display the alarm in the list of current
alarms.

Determines whether to log the alarm to the alarm database.

Determines whether it is required that the alarm be
acknowledged by the user (operator).

Determines whether this instance of the alarm is active.

Determines whether this instance of the alarm has been
acknowledged.

RScr Object m

DatePar1 Date and time (in UTC) when this instance of the alarm was
generated.
DatePar2 Date and time (in UTC) when the most recent instance of the

alarm was generated.

DatePar3 Date and time (in UTC) when this instance of the alarm
ended.
DatePar4 Date and time (in UTC) when this instance of the alarm was

acknowledged.

Remarks

The separator of the device and tag name in the SenderName property depends on a
setting in the Project Options dialog (Project > Objects).

3.12.12 Events Triggered by a Thin Client Request

When a script is triggered by a thin client request, information on the request is passed to the
script.

The meaning of the properties of the object returned by the RScr.GetCurrentScriptDataEx
method:

Property Meaning

SenderName The name of the logical computer (based on the project) on
which the project is running.

StrParl Unique session identifier.

StrPar2 Client IP address.

StrPar3 Client version.

StrPar4 Computer (configuration) name.

StrPar5 User name.

StrPar6 Information on Web browser (User-Agent header). Only for

Reliance Smart Client.

Reliance 4 - Scripts N

m RScr Object

IntParl Request type: Timeout = 0, Connect = 1, Disconnect = 2,
User Log-on = 3, User Log-off =4

IntPar2 Thin client type: Reliance Web Client = 0, Reliance Mobile
Client = 1, Reliance Smart Client = 2

IntPar3 Computer (configuration) Id.

IntPar4 User Id.

I Reliance 4 - Scripts

RSys Object m

3.13 RSys Object

The RSys object implements methods that can be divided into two groups:

e Methods for miscellaneous runtime environment operations that are not related to any of
the other Reliance-defined objects (e.g. RSys.ActivateWindow, RSys.CloseWindow, RSys.
SetMainWindowTitle, etc.).

* Methods for miscellaneous operations related to the operating system (e.g. RSys.Now,
RSys.SetLocalTime) and its objects, such as directories and files (e.g. RSys.DirExists,
RSys.FileExists, etc.).

Methods:

W

2| RSys.ActivateWindow Procedure

W

2| RSys.CloseWindow Procedure
2| RSys.ConvertTimeToDST Function

W

| RSys.CopyFile Function
2| RSys.CreateDir Function

W

| RSys.DateTimeTolnt64Time Function
22| RSys.DeleteFile Function

W

W

2| RSys.DirExists Function
22| RSys.ExecApp Procedure

W

2| RSys.ExitRuntimeModule Procedure
2| RSys.FileExists Function

W

W

2| RSys.GetComputerName Function
22| RSys.GetProjectDir Function

W

W

2| RSys.Int64TimeToDateTime Function
2| RSys.LocalDateTimeToUTCDateTime Function

W

2| RSys.LogMessage Procedure
22| RSys.Now Function

W

2| RSys.PlaySound Procedure

W

2| RSys.PrintCustomReport Procedure

Reliance 4 - Scripts N

m RSys Object

2| RSys.RelativePathToPath Function
2| RSys.PathToRelativePath Function
22| RSys.PrintDbReport Procedure

2| RSys.PrintDbTrend Procedure

22| RSys.PrintTagDbTrend Procedure

2| RSys.RemoveDir Function

22| RSys.RenameFile Function

2| RSys.ReplaceCZChars Function

2| RSys.RestartProject Procedure

2| RSys.RestartWindows Procedure

2| RSys.SaveCustomReport Procedure
2| RSys.SetLocalTime Function

22| RSys.SetMainWindowTitle Procedure
2| RSys.ShowCustomReport Procedure
22| RSys.ShowDbReport Procedure

2| RSys.ShowDbTrend Procedure

22| RSys.ShowTagDbTrend Procedure

2| RSys.ShutDownWindows Procedure
22| RSys.SetProgramLanguage Procedure
| RSys.SetProjectLanguage Procedure
22| RSys.Sleep Procedure

2| RSys.UTCDateTimeToLocalDateTime Function

I Reliance 4 - Scripts

RSys Object 267

3.13.1 RSys.ActivateWindow Procedure

RSys.ActivateWindow activates a project window.
Syntax

RSys.ActivateWindow Window: Variant
Argument Description

Window The name or ID of the window.

5l Rsys Object

Example

RSys. ActivateWindow "MainWindow" ' Activate the window MainWindow

3.13.2 RSys.CloseWindow Procedure

RSys.CloseWindow closes a project window.
Syntax

RSys.CloseWindow Window: Variant
Argument Description

Window The name or ID of the window.

Remarks

The specified window must be a Dialog window.

5l RSys Object

Example

RSys. CloseWindow "Settings" ' Close the window Settings.

Reliance 4 - Scripts N

m RSys Object

3.13.3 RSys.ConvertTimeToDST Function

RSys.ConvertTimeToDST converts a specified date and time value to daylight saving time.
Syntax

RSys.ConvertTimeToDST(Value: DateTime): DateTime
Argument Description

Value The date and time value to be converted.

Return values

The method returns a date and time value converted to daylight saving time.

Remarks

This method can be useful when processing data time-stamped in standard time. In
order for the method to work, the start and end time of the daylight saving time period
must be configured through the TimeConv.ini file located in a visualization project's root
directory. If the specified time stamp is within the period, the return value is equal to the
time stamp plus one hour. If the specified time stamp is not within the period or the
period has not been specified, the return value is equal to the time stamp.

5l RSys Object

Example

Dim DeviceTime, ComputerTime

[

Store the current date and time retrieved from PLC1 in the variable DeviceTime.
DeviceTime = RTag. GetTagValue("PLC1", "Time")

' Convert DeviceTime to daylight saving time and store the result in the variable
ComputerTime.

ComputerTime = RSys. ConvertTimeToDST(DeviceTime)

' Change the current date and time to the value stored in the variable ComputerTime

If RSys. SetlLocalTime(ComputerTime) Then

r

End If

I Reliance 4 - Scripts

RSys Object m

3.13.4 RSys.CopyFile Function

RSys.CopyFile copies a source file to a destination file.

Syntax

RSys.CopyFile(SourceFile, DestFile: String; FaillfExists: Boolean): Boolean

Argument
SourceFile
DestFile

FaillfExists

Value
True

False

Return values
Value
True

False

Remarks

Description
The full name of the source file.
The full name of the destination file.

Determines how this operation is to proceed if a
file of the same name as that specified by
DestFile already exists (see the following table).

Meaning
The method does nothing and fails.

The method tries to overwrite the destination file.

Meaning
The file was copied.

The file was not copied.

The return value is False in these cases:

e The source file does not exist.

e The names of the source and destination files are identical.

* The name of the destination file is not valid, since it does not follow the rules for naming

files.

Reliance 4 - Scripts N

270 RSys Object

® The destination file already exists and FaillfExists = True.

® The destination file already exists, FaillfExists = False, but the runtime software was denied
access to the destination file.

e There is not sufficient space available on the destination drive to copy the file.

5l RSys Object

Example

" If the file "C:\Data\Data. txt" exists.
If RSys.FileExists("C:\Data\Data. txt") Then
" Copy the file to the directory " C:\ Backup'

overwriting any file that might exist with the same name.
If RSys. CopyFile("C:\Data\Data. txt", "C:\Backup\Data. txt", False) Then

'
End If
" Delete the file " C:\ Data\Data.001".
RSys. DeleteFile "C:\Data\Data. 001"
" Rename the file " C:\Data\Data.txt" to "C:\Data\Data.001".
If RSys. RenameFile("C: \Data\Data. txt", "C:\Data\Data.001") Then
End If

End If

3.13.5 RSys.CreateDir Function

RSys.CreateDir creates a specified directory.
Syntax

RSys.CreateDir(DirName: String): Boolean
Argument Description

DirName The full path to the directory.

Return values

Value Meaning

I Reliance 4 - Scripts

RSys Object 271

True The directory has been created.
False The directory has not been created.
Remarks

By a single call to this method, you can create an entire directory structure. A trailing
backslash at the end of the specified path is accepted, but not required.

The return value is False in these cases:
* The specified path is not valid, since it does not follow the rules for naming directories.

® The runtime software was denied access when trying to create the directory.

5l RSys Object

Example

" If the directory " C:\Data" does not exist.
If not RSys. DirExists("C:\Data") Then
If RSys. CreateDir("C:\Data") Then ' Create the directory.

End If
End If

3.13.6 RSys.DateTimeToIlnt64Time Function

RSys.DateTimeTolnt64Time converts a specified date and time value from the DateTime
format to the Int64Time format (used by Reliance as the native date and time format).

Date and time in the Int64Time format is a value stored as Int64, i.e. a 64-bit integer value (in
Reliance projects, the Int64 type is represented by the Largeint type). The Int64Time format
is based on the FILETIME format (well-known from the Windows API) which is used by file
systems to store file timestamps. It represents the number of 100-nanosecond intervals since
January 1, 1601. Reliance uses the Int64Time format, for example, to store the timestamps
of historical data (if it is logged into an SQL-based database) and alarm/event timestamps.

Reliance 4 - Scripts N

272 RSys Object

Syntax

RSys.DateTimeTolnt64Time(Value: DateTime): Int64
Argument Description

Value The date and time value to be converted.

Return values

The method returns a date and time value in the Int64Time format.

5l RSys Object

Example

Dim DateTimeValue, Int64TimeValue

r

Get the value of the tag DateTimeValue from the device System
DateTimeValue = RTag. GetTagValue("System", "DateTimeValue")

" Convert the date and time value to the Int64Time format.

Int64TimeValue = RSys. DateTimeToInt64Time(DateTimeValue)

r

Store the result in the tag Int64TimeValue from the device System
RTag. SetTagValue "System", "Int64TimeValue", Int64TimeValue

3.13.7 RSys.DeleteFile Function

RSys.DeleteFile deletes a specified file.
Syntax

RSys.DeleteFile(FileName: String): Boolean
Argument Description

FileName The full name of the file.

Return values

Value Meaning

I Reliance 4 - Scripts

True The file has been deleted.
False The file has not been deleted.
Remarks

The return value is False in these cases:
e The file does not exist.

® The runtime software was denied access to the file.

5l RSys Object

Example

" If the file " C:\Data\Data. txt" exists.
If RSys.FileExists("C:\Data\Data. txt") Then
" Copy the file to the directory " C:\ Backup'
' overwriting any file that might exist with the same name.
If RSys. CopyFile("C:\Data\Data. txt", "C:\Backup\Data.txt", False)
End If
" Delete the file " C:\Data\Data.001".
RSys. DeleteFile "C:\Data\Data. 001"
" Rename the file " C:\ Data\ Data. txt" to "C:\Data\Data.001".
If RSys. RenameFile("C: \Data\Data. txt", "C:\Data\Data.001") Then
! e o o
End If
End If

3.13.8 RSys.DirExists Function

RSys.DirExists determines whether a specified directory exists.
Syntax

RSys.DirExists(DirName: String): Boolean
Argument Description

DirName The full path to the directory.

RSys Object 273

Then

Reliance 4 - Scripts N

274 RSys Object

Return values

Value Meaning

True The directory exists.

False The directory does not exist.
Remarks

A trailing backslash at the end of the specified path is accepted, but not required.

5l RSys Object

Example

' If the directory " C:\Data" does not exist.
If not RSys.DirExists("C:\Data") Then
If RSys. CreateDir("C:\Data") Then ' Create the directory.

End If
End If

3.13.9 RSys.ExecApp Procedure

RSys.ExecApp runs a specified application or an application associated with the extension of
a specified filename.

Syntax

RSys.ExecApp FileName, Params: String
Argument Description

FileName The full name of the application's executable file
or of the file to be opened by an application
associated with the extension of the name.

Params The parameters to be passed to the application.

I Reliance 4 - Scripts

RSys Object 275

Remarks

The Params argument can be an empty string if no parameters are to be passed to the
application.

5l RSys Object

Example

" Open the file " C:\Data\Data. txt" by the program

' " C:\WinNT\ System32\ Notepad. exe" .

RSys. ExecApp "C: \WinNT\System32\Notepad. exe", "C:\Data\Data. txt"
" Open the file " C:\Data\Data. txt" by the program

' associated with the .txt extension (e.g. Notepad).
RSys. ExecApp "C:\Data\Data. txt", ""

" Open the file " C:\Docs\Data.doc" by the program

associated with the .doc extension (e.g. Microsoft Word).
RSys. ExecApp "C: \Docs\Data. doc", ""

3.13.10 RSys.ExitRuntimeModule Procedure

RSys.ExitRuntimeModule terminates the runtime software.
Syntax
RSys.ExitRuntimeModule

Remarks

The method does not check if the user currently logged on to the runtime software (if
any) has sufficientAccess rights for terminating a visualization project. If it is desired to
check the access rights, use methods of the RUser object.

5l RSys Object

Example

Dim UserName

' If there is a user logged on to the runtime software.
If RUser. GetLoggedOnUserName(UserName) Then

' If the user has the Servicing access right.
If RUser. CheckUserAccessRights(UserName, "S") Then

RSys. ShutDownWindows " Shut down the operating system.

Reliance 4 - Scripts N

276 RSys Object

Else
RSys. ExitRuntimeModule ' Otherwise terminate the runtime software.
End If
End If

3.13.11 RSys.FileExists Function

RSys.FileExists determines whether a specified file exists.
Syntax

RSys.FileExists(FileName: String): Boolean
Argument Description

FileName The full name of the file.

Return values

Value Meaning
True The file exists.
False The file does not exist.

5l RSys Object

Example

" If the file " C:\Data\Data. txt" exists.
If RSys.FileExists("C:\Data\Data. txt") Then
" Copy the file to the directory " C:\ Backup'
" overwriting any file that might exist with the same name.
If RSys. CopyFile("C:\Data\Data. txt™, "C:\Backup\Data. txt", False) Then
End If
" Delete the file " C:\Data\Data.001".
RSys. DeleteFile "C:\Data\Data. 001"
" Rename the file " C:\ Data\ Data. txt" to "C:\Data\Data.001".
If RSys. RenameFile("C: \Data\Data. txt", "C:\Data\Data.001") Then
'...
End If
End If

I Reliance 4 - Scripts

RSys Object 277

3.13.12 RSys.GetComputerName Function

RSys.GetComputerName returns the name of a logical computer, defined in a visualization
project, on which the project is running.
Syntax

RSys.GetComputerName: String

Return values

The method returns the name of a logical computer, defined in a visualization project, on
which the project is running.

5l RSys Object

Example

' If a visualization project 1is running on the computer PCI.
If RSys. GetComputerName = "PCl" Then

" Disable the script Scriptl.

RScr. DisableScript "Scriptl"
End If

3.13.13 RSys.GetProjectDir Function

RSys.GetProjectDir returns the full path to a directory where the current visualization project
is located.

Syntax
RSys.GetProjectDir: String

Return values

The method returns the full path to the directory where the current visualization project is
located.

Remarks

The returned path always contains a trailing backslash.

Reliance 4 - Scripts N

278 RSys Object

5l RSys Object

Example
Dim PrjDir
PrjDir = RSys. GetProjectDir
" Run the application " Reports.exe" located
' in a visualization project's Apps directory.

RSys. ExecApp PrjDir + "Main\Apps\Reports.exe", ""

3.13.14 RSys.Int64TimeToDateTime Function

RSys.Int64TimeToDateTime converts a specified date and time value from the Int64Time
format (used by Reliance as the native date and time format) to the DateTime format.

Date and time in the Int64Time format is a value stored as Int64, i.e. a 64-bit integer value (in
Reliance projects, the Int64 type is represented by the Largeint type). The Int64Time format
is based on the FILETIME format (well-known from the Windows API) which is used by file
systems to store file timestamps. It represents the number of 100-nanosecond intervals since
January 1, 1601. Reliance uses the Int64Time format, for example, to store the timestamps
of historical data (if it is logged into an SQL-based database) and alarm/event timestamps.

Syntax

RSys.Int64TimeToDateTime(Value: Int64): DateTime
Argument Description

Value The date and time value to be converted.

Return values

The method returns a date and time value in the DateTime format.

Remarks

This method can be useful e.g. when processing historical data logged by Reliance into a
table in Microsoft SQL Server. For example, you could export certain records from the
table to a file in the CSV format.

5l RSys Object

I Reliance 4 - Scripts

RSys Object 279

Example

Dim DateTimeValue, Int64TimeValue

' Get the value of the tag Inté64TimeValue from the device System.
Int64TimeValue = RTag. GetTagValue("System", "Int64TimeValue")

" Convert the date and time value to the DateTime format.
DateTimeValue = RSys. Int64TimeToDateTime(Int64TimeValue)

' Store the result in the tag DateTimeValue from the device System.

RTag. SetTagValue "System", "DateTimeValue", DateTimeValue

3.13.15 RSys.LocalDateTimeToUTCDateTime Function

RSys.LocalDateTimeToUTCDateTime converts a specified date and time value from the local
time to UTC.

The local time is dependent on the operating system settings (the time zone, automatically
adjusting to daylight saving time).

UTC stands for Coordinated Universal Time. It is the primary time standard by which the world
regulates clocks and time. The UTC time is based on atomic clocks and is very close to
Greenwich Mean Time (GMT). Time zones around the world are expressed as positive or
negative offsets from UTC.

Syntax
RSys.LocalDateTimeToUTCDateTime(Value: DateTime): DateTime

Argument Description

Value The date and time value to be converted.

Return values

The method returns a date and time value in the DateTime format.

5l RSys Object

Example

Dim UTCDateTimeValue, LocalDateTimeValue

Get the value of the tag LocalDateTimeValue from the device System.
LocalDateTimeValue = RTag. GetTagValue("System", "LocalDateTimeValue")

Reliance 4 - Scripts N

m RSys Object

" Convert the date and time value to UTC.

UTCDateTimeValue = RSys. LocalDateTimeToUTCDateTime(LocalDateTimeValue)
' Store the result in the tag UTCDateTimeValue from the device System.
RTag. SetTagValue "System", "UTCDateTimeValue'", UTCDateTimeValue

3.13.16 RSys.LogMessage Procedure

Logs a defined text to a log file of a runtime software.
Syntaxe
RSys.LogMessage Text: String

Argument Description

Text Defines a text that should be logged to a log file.

Remarks

All log files are stored in the <Reliance4>\Logs directory. The filename is based on
the name of a runtime program executable and on a date. For example, a log file of the
Reliance 4 Control Server program that was created on 2009-12-1 will be
R CtlSrv 2009 12 01.log.

5l Object RSys

Example

dim Counter

Counter = RTag. GetTagValue("System", "Counter")

RSys. LogMessage "System/Counter = " + CStr(Counter)

I Reliance 4 - Scripts

RSys Object 281

3.13.17 RSys.Now Function

RSys.Now returns the current local date and time.
Syntax
RSys.Now: DateTime

Return values

The method returns the current local date and time.

Remarks

The return value is the current system date and time, expressed in Coordinated Universal
Time (UTC) format, converted to the currently active time zone's corresponding local date
and time.

5l RSys Object

Example

Dim NewTime
' Store the current date and time incremented by 1 hour in a variable
NewTime = RSys. Now + TimeSerial(1l, 0, O0)
" Change the current date and time to the value stored in the variable.
If RSys. SetlLocalTime(NewTime) Then

'

End If

3.13.18 RSys.PlaySound Procedure

RSys.PlaySound plays a sound stored in a specified file.
Syntax

RSys.PlaySound FileName: String
Argument Description

FileName The name of the file that contains the sound to
be played.

Reliance 4 - Scripts N

m RSys Object

Remarks

The file containing the sound must be located in a visualization project's MMedia
directory (the FileName argument must not contain a path) or in its subdirectory (the
FileName argument must contain a relative path to the subdirectory).

5l RSys Object

Example

Dim ID
' If the value of the tag WaterTemperature
' from the device PLC1 is greater than 90.
If RTag. GetTagValue("PLCl", "WaterTemperature") > 90 Then
" Play the sound " Beep. wav" located
' in a visualization project's MMedia directory.
RSys. PlaySound "Beep. wav"
' Send a SMS message informing the recipient of the event.
If RModem GSMSendSMSEx("+420123456789", "Water temperature has exceeded the upper
limit.", ID) Then
! e o o
End If
End If

3.13.19 RSys.PrintCustomReport Procedure

RSys.PrintCustomReport prints a custom report defined in a visualization project to the
default printer.

Syntax

RSys.PrintCustomReport Report: Variant
Argument Description

Report The name or ID of the custom report.

5l RSys Object

I Reliance 4 - Scripts

RSys Object m

Example

" Print the custom report " Reportl".
RSys. PrintCustomReport "Reportl"

3.13.20 RSys.PrintDbReport Procedure

RSys.PrintDbReport prints a historical report defined in a visualization project to the default
printer.

Syntax

RSys.PrintDbReport Report: Variant
Argument Description

Report The name or ID of the historical report.
5l Rsys Object

Example

" Print the historical report " Reportl".
RSys. PrintDbReport "Reportl"

3.13.21 RSys.PrintDbTrend Procedure

RSys.PrintDbTrend prints a historical trend defined in a visualization project to the default
printer.

Syntax

RSys.PrintDbTrend Trend: Variant
Argument Description

Trend The name or ID of the historical trend.

5l RSys Object

Reliance 4 - Scripts N

m RSys Object

Example

" Print the historical trend " Trendl".
RSys. PrintDbTrend "Trendl"

3.13.22 RSys.PrintTagDbTrend Procedure

RSys.PrintTagDbTrend prints the historical trend of a specified tag to the default printer. The
trend is not one the trends defined through the Trend Manager. If the tag's data is logged into
multiple data tables, the trend data is loaded from the table that has the shortest sampling
interval.

Syntax

RSys.PrintTagDbTrend DevName, TagName: String

Argument Description

DevName The name of the device that the tag
belongs to.

TagName The name of the tag.

5l RSys Object

Example

' Print the trend of the tag WaterTemperature from the device PLCI.
RSys. PrintTagDbTrend "PLCl", "WaterTemperature"

3.13.23 RSys.PathToRelativePath Function

Converts a specified absolute path to the corresponding relative path.
Syntaxe
RSys.PathToRelativePath(Path:String) String

Argument | Description

Path Absolute path to be converted.

I Reliance 4 - Scripts

Remarks

RSys Object m

In the context of Reliance, a relative path means a directory path defined using an
environment variable, e.g. the path $(Reliance) \Utils\. Available environment
variables are listed in the following table.

Variable
$(Reliance)\

$(Components)\

$(Drivers)\

$(Project)\
$(CustomReports)\
$(SettingsProfiles)\
$(SettingsComponents)\
$(SettingsRecipes)\
$(HistoryAlarmsEvents)\
$(HistoryData)\
$(HistoryPostmort)\

$(HistoryWindowRecords)
\

$(UserDocuments)\

$(ApplicationData)\

Reliance environment variables

Value

<Reliance4>\ directory, i.e. the directory of Reliance 4 program files

<Reliance4>\Components\ directory, i.e. the directory of Reliance 4 components (graphical
objects)

<Reliance4>\Drivers\ directory, i.e. the directory of Reliance 4 communication drivers

<Project>\ directory, i.e. the directory of the current visualization project

<Project>\Main\CustomReports\ directory

<Project>\Settings\Profiles\ directory

<Project>\Settings\Components\ directory

<Project>\Settings\Recipes\ directory

<Project>\History\AlarmsEvents\ directory

<Project>\History\Data\ directory

<Project>\History\Postmort\ directory

<Project>\History\WindowRecords\ directory

%USERPROFILE%\Dokumenty\ directory, i.e. the user data directory

%PROGRAMDATA%\ directory, i.e. the program data directory

5l Object RSys

Example

' Convert a path to the corresponding relative path and store it in a tag named
" RelativePath'

RTag. SetTagValue "System",
"System", "Path"))

"RelativePath", RSys.PathToRelativePath(RTag. GetTagValue(

Reliance 4 - Scripts N

m RSys Object

3.13.24 RSys.RelativePathToPath Function

Converts a specified relative path to the corresponding relative path.
Syntaxe
RSys.RelativePathToPath(RelativePath:String) String

Argument | Description

RelativePa | Relative path to be converted.

th

Remarks

In the context of Reliance, a relative path means a directory path defined using an
environment variable, e.g. the path $(Reliance) \Utils\. Available environment
variables are listed in the following table.

Reliance environment variables

Variable Value

$(Reliance)\ <Reliance4>\ directory, i.e. the directory of Reliance 4 program files

$(Components)\ <Reliance4>\Components\ directory, i.e. the directory of Reliance 4 components (graphical
objects)

$(Drivers)\ <Reliance4>\Drivers\ directory, i.e. the directory of Reliance 4 communication drivers

$(Project)\ <Project>\ directory, i.e. the directory of the current visualization project

$(CustomReports)\ <Project>\Main\CustomReports\ directory

$(SettingsProfiles)\ <Project>\Settings\Profiles\ directory

$(SettingsComponents)\ <Project>\Settings\Components\ directory
$(SettingsRecipes)\ <Project>\Settings\Recipes\ directory
$(HistoryAlarmsEvents)\ <Project>\History\AlarmsEvents\ directory

$(HistoryData)\ <Project>\History\Data\ directory

I Reliance 4 - Scripts

RSys Object 287

$(HistoryPostmort)\ <Project>\History\Postmort\ directory

$(HistoryWindowRecords) | <Project>\History\WindowRecords\ directory

\
$(UserDocuments)\ %USERPROFILE%\Dokumenty\ directory, i.e. the user data directory
$(ApplicationData)\ %PROGRAMDATA%\ directory, i.e. the program data directory

5l Object RSys

Example

' Convert a relative path to the corresponding absolute path and store it in a tag
named " PatHh'

RTag. SetTagValue "System", "Path", RSys.RelativePathToPath(RTag. GetTagValue("System",
"RelativePath"))

3.13.25 RSys.RemoveDir Function

RSys.RemoveDir removes (i.e. deletes) a specified directory.
Syntax

RSys.RemoveDir(DirName: String): Boolean
Argument Description

DirName The full path to the directory.

Return values

Value Meaning

True The directory has been removed.

False The directory has not been removed.
Remarks

A trailing backslash at the end of the specified path is accepted, but not required.

The return value is False in these cases:

Reliance 4 - Scripts N

288 RSys Object

® The directory does not exist.
® The directory is not empty.

® The runtime software was denied access when trying to remove the directory.

5l RSys Object

Example

If RSys. RemoveDir("C:\Data") Then

[

End If

3.13.26 RSys.RenameFile Function

RSys.RenameFile renames a specified file.
Syntax

RSys.RenameFile(O/ldName, NewName: String): Boolean
Argument Description
OldName The original full name of the file.

NewName The new full name for the file.

Return values

Value Meaning

True The file has been renamed.

False The file has not been renamed.
Remarks

The return value is False in these cases:

¢ The original file does not exist.

I Reliance 4 - Scripts

RSys Object m

® The path to the new file does not exist.

® The runtime software was denied access to the file.

5l Rsys Object

Example

" If the file " C:\Data\Data. txt" exists.
If RSys.FileExists("C:\Data\Data. txt") Then
" Copy the file to the directory " C:\ Backup'
" overwriting any file that might exist with the same name.
If RSys. CopyFile("C:\Data\Data. txt™, "C:\Backup\Data. txt", False) Then

End If

' Delete the file " C:\Data\ Data.001".

RSys. DeleteFile "C:\Data\Data. 001"

" Rename the file " C:\ Data\ Data. txt" to "C:\Data\Data.001".

If RSys. RenameFile("C:\Data\Data. txt", "C:\Data\Data.001") Then

End If
End If

3.13.27 RSys.ReplaceCZChars Function

RSys.ReplaceCZChars converts a specified text string by replacing characters containing
Czech diacritical marks with corresponding characters of the English alphabet and returns the
resulting string.

Syntax

RSys.ReplaceCZChars(Text: String): String
Argument Description

Text The text string to be converted.

Return values

The method returns a text string with no characters containing Czech diacritical marks.

Reliance 4 - Scripts N

m RSys Object

Remarks

This method can be useful when sending SMS messages through a call to the RModem.
GSMSendSMS and RModem.GSMSendSMSEx methods, which do not support characters
containing diacritical marks.

5l RSys Object

Example

Dim ID

" If the value of the tag WaterTemperature

' from the device PLC1l is greater than 90.

If RTag. GetTagValue("PLCl", "WaterTemperature") > 90 Then
" Play the sound " Beep. wav" located
' in a visualization project's MMedia directory.
RSys. PlaySound "Beep. wav"
' Send a SMS message informing the recipient of the event.
' The recipient should receive the following Czech message:
' Teplota vody prekrocila horni mez

If RModem GSMSendSMSEx("+420123456789", RSys. ReplaceCZChars("Teplota vody prekrocila
horni mez."), ID) Then

End If
End If

3.13.28 RSys.RestartProject Procedure

Terminates the project and starts it again using the settings defined for a specified computer.
The runtime software is not terminated during this operation (it keeps running).

I Reliance 4 - Scripts

RSys Object 291

Syntax
RSys.RestartProject Computer: Variant
Argument Description

Computer The name or ID (as defined in the project)
of the computer whose settings should be
used when starting the project. A special
value of "™ means the computer on which
the project is currently running (whose
settings are currently being used).

Remarks

Restarting the project (on the same computer) can be useful, for example, to perform the
automatic project update. The update is performed while the project starts if the
respective option is active.

Terminating the project and starting it again using the settings defined for another
computer can be used, for example, when a different way of communication to I/0
devices should be used (e.g. directly with communication drivers instead of
communication through a data server).

The method does not check if the user currently logged on to the runtime software (if
any) has sufficient access rights for terminating the project. If it is desired to check the
access rights, use methods of the RUser object.

5l RSys Object

Example

Dim UserName
' If there is a user logged on to the runtime software.
If RUser. GetLoggedOnUserName(UserName) Then
" If the user has the Servicing access right.
If RUser. CheckUserAccessRights(UserName, "S") Then
RSys. RestartProject "" ' Restarts the project.
End If
End If

Reliance 4 - Scripts N

m RSys Object

3.13.29 RSys.RestartWindows Procedure

RSys.RestartWindows terminates the runtime software and restarts the operating system.
Syntax
RSys.RestartWindows

Remarks

The method does not check if the user currently logged on to the runtime software (if
any) has sufficient access rights for terminating the project. If it is desired to check the
access rights, use methods of the RUser object.

5l RSys Object

Example

Dim UserName
' If there is a user logged on to the runtime software.
If RUser. GetLoggedOnUserName(UserName) Then
" If the user has the Servicing access right.
If RUser. CheckUserAccessRights(UserName, "S") Then
RSys. RestartWindows " Restarts the operating system
End If
End If

3.13.30 RSys.SaveCustomReport Procedure

RSys.SaveCustomReport saves a custom report defined in a visualization project to a
specified file.

Syntax

RSys.SaveCustomReport Report: Variant; FileName: String

Argument Description

Report The name or ID of the custom report.

FileName The file to which the custom report is
to be saved.

I Reliance 4 - Scripts

RSys Object m

Remarks

In case of custom reports of type FastReport, the file extension determines the format of
the created document.

Document formats

Document format Extension
Portable Document Format pdf
Excel 97-2003 sheet xls
Excel sheet XIsx
Data files in XML format xml
CSV (delimited by semicolon) csv
Web page htm or html
FastReport rrp or fr3

5l Rsys Object

Example

' Save the report " Reportl" to a specified file.
RSys. SaveCustomReport "Reportl", "C:\Reliance\CustomReports\Reportl. htm"

Reliance 4 - Scripts N

m RSys Object

3.13.31 RSys.SetLocalTime Function

RSys.SetLocalTime sets the current local date and time to a specified value.
Syntax

RSys.SetLocalTime(Value: DateTime): Boolean
Argument Description

Value The new value for the current local date and
time.

Return values

Value Meaning
True The date and time has been set to the new
value.
False The date and time has not been set to the new
value.
Remarks

In order for the call to succeed, the user currently logged on to the operating system
must have the appropriate security privilege for this operation.

5l RSys Object

Example

Dim NewTime

' Store the current date and time incremented by 1 hour in a variable
NewTime = RSys. Now + TimeSerial(1l, 0, O0)

" Change the current date and time to the value stored in the variable.
If RSys. SetLocalTime(NewTime) Then

r

End If

I Reliance 4 - Scripts

RSys Object m

3.13.32 RSys.SetMainWindowTitle Procedure

RSys.SetMainWindowTitle changes the title of the runtime software's main window by
appending a specified text to the default title (e.g. Reliance Control).

Syntax

RSys.SetMainWindowTitle Title: String
Argument Description

Title The text to be appended to the default title.
5l RSys Object

Example

" After the call, the title would be: Reliance Control — Demo.
RSys. SetMainWindowTitle "Demo"

3.13.33 RSys.ShowCustomReport Procedure

RSys.ShowCustomReport shows a custom report defined in a visualization project.
Syntax

RSys.ShowCustomReport Report: Variant; AsStandaloneWindow: Boolean

Argument Description
Report The name or ID of the custom report.
AsStandaloneWindow Determines whether to show the custom report

in a stand-alone window.

5l RSys Object

Example

" Show the report " Reportl" in a stand-alone window.

Reliance 4 - Scripts N

m RSys Object

RSys. ShowCustomReport "Reportl", True

3.13.34 RSys.ShowDbReport Procedure

RSys.ShowDbReport shows a historical report defined in a visualization project.
Syntax
RSys.ShowDbReport Report: Variant; AsStandaloneWindow: Boolean
Argument Description
Report The name or ID of the report.

AsStandaloneWindow |Determines whether to show the
report in a stand-alone window.

5l RSys Object

Example

" Show the report " Reportl" in a stand-alone window.
RSys. ShowDbReport "Reportl", True

3.13.35 RSys.ShowDbTrend Procedure

RSys.ShowDbTrend shows a historical trend defined in a visualization project.
Syntax

RSys.ShowDbTrend Trend: Variant; AsStandaloneWindow: Boolean
Argument Description
Trend The name or ID of the trend.

AsStandaloneWindow |Determines whether to show the
trend in a stand-alone window.

5l RSys Object

I Reliance 4 - Scripts

RSys Object 297

Example

" Show the trend " Trendl" in a stand-alone window
RSys. ShowDbTrend "Trendl", True

3.13.36 RSys.ShowTagDbTrend Procedure

RSys.ShowTagDbTrend shows the historical trend of a specified tag. The trend is not one the
trends defined through the Trend Manager. If the tag's data is logged into multiple data
tables, the trend data is loaded from the table that has the shortest sampling interval.

Syntax

RSys.ShowTagDbTrend DevName, TagName: String; AsStandaloneWindow: Boolean

Argument Description

DevName The name of the device that the tag
belongs to.

TagName The name of the tag.

AsStandaloneWindow |Determines whether to show the
trend in a stand-alone window.

5l RSys Object

Example

" Show the trend of the tag WaterTemperature from the device PLC1 in a stand-alone
window.

RSys. ShowTagDbTrend "PLC1", "WaterTemperature", True

3.13.37 RSys.ShutDownWindows Procedure

RSys.ShutDownWindows terminates the runtime software and shuts down the operating
system.

Syntax

RSys.ShutDownWindows

Reliance 4 - Scripts N

m RSys Object

5l RSys Object

Example

Dim UserName

' If there is a user logged on to the runtime software.

If RUser. GetLoggedOnUserName(UserName) Then
r

If the user has the Servicing access right.
If RUser. CheckUserAccessRights(UserName, "S") Then

RSys. ShutDownWindows " Shut down the operating system
Else
RSys. ExitRuntimeModule ' Otherwise terminate the runtime software.
End If
End If

3.13.38 RSys.SetProgramLanguage Procedure

RSys.SetProgramLanguage sets the runtime software's user interface language to a
specified language.

Syntax

RSys.SetProgramLanguage Language: Variant
Argument |Description

Language | The abbreviation or index of the language.

List of language abbreviations:

Language Index Abbreviation
Czech 0] CSY

English 1 ENU

Polish 2 PLK

Russian 3 RUS

German 4 DEU
Lithuanian 5 LTH

I Reliance 4 - Scripts

RSys Object m

Hungarian 6 HUN
Slovak 8 SKY
Greek 9 ELL

5l RSys Object

Example

RSys. SetProgramlLanguage "CSY" ' sets the runtime software's user interface language to
Czech language.

3.13.39 RSys.SetProjectLanguage Procedure

RSys.SetProjectLanguage sets the project's active language to a specified language.
Syntax

RSys.SetProjectLanguage Language: Variant
Argument |Description

Language |The name or ID of the language.

5l RSys Object

Example

RSys. SetProjectLanguage "Czech (Czech Republic)" ' Sets the project's active language
to "Czech (Czech Republic)".

3.13.40 RSys.Sleep Procedure

Suspends the execution of the current script for a specified time.

Reliance 4 - Scripts N

m RSys Object

Syntaxe
RSys.Sleep Interval: Integer

Argument Description

Interval Time interval (ms).

5l Object RSys

Example

" Suspend the current script for 2 seconds
RSys. Sleep 2000

3.13.41 RSys.UTCDateTimeTolLocalDateTime Function

RSys.UTCDateTimeToLocalDateTime converts a specified date and time value from UTC to
the local time.

UTC stands for Coordinated Universal Time. It is the primary time standard by which the world
regulates clocks and time. The UTC time is based on atomic clocks and is very close to
Greenwich Mean Time (GMT). Time zones around the world are expressed as positive or
negative offsets from UTC.

The local time is dependent on the operating system settings (the time zone, automatically
adjusting to daylight saving time).

Syntax

RSys.UTCDateTimeToLocalDateTime(Value: DateTime): DateTime
Argument Description

Value The date and time value to be converted.

Return values

The method returns a date and time value in the DateTime format.

I Reliance 4 - Scripts

RSys Object (LI

Remarks

This method can be useful e.g. when processing historical data logged by Reliance into a
table in Microsoft SQL Server if the record timestamps are stored in UTC. For example,
you could export certain records from the table to a file in the CSV format with

timestamps in the local time.

5l Rsys Object

Example

Dim LocalDateTimeValue, UTCDateTimeValue

' Get the value of the tag UTCDateTimeValue from the device System.
UTCDateTimeValue = RTag. GetTagValue("System", "UTCDateTimeValue")

" Convert the date and time value to the local time.

LocalDateTimeValue = RSys. UTCDateTimeToLocalDateTime(UTCDateTimeValue)

' Store the result in the tag LocalDateTimeValue from the device System
RTag. SetTagValue "System", "LocalDateTimeValue", LocalDateTimeValue

Reliance 4 - Scripts N

m TTable-type Objects

3.14 TTable-type Objects

TTable-type objects implement methods and properties for operations on database tables,
either current or archive, belonging to databases defined in a visualization project. To create
a new TTable-type object, use the RDb.CreateTableObject method.

Properties:

22| TTable.ArchiveName Property
22| TTable.DatabaseName Property
22| TTable.DateFieldValue Property
22| TTable.lsArchive Property

2| TTable.TimeFieldValue Property

Methods:

22| TTable.Append Procedure

2| TTable.Bof Function

2| TTable.Cancel Procedure

2| TTable.CloseTable Procedure
2| TTable.CreateTable Function
2| TTable.Delete Procedure

2| TTable.DeleteTable Function
2| TTable.Edit Procedure

22| TTable.EmptyTable Function
2| TTable.Eof Function

2| TTable.FieldExists Function
2| TTable.First Procedure

2| TTable.GetFieldValue Function
2| TTable.Last Procedure

22| TTable.MoveBy Procedure
2| TTable.Next Procedure

I Reliance 4 - Scripts

TTable-type Objects m

W

2| TTable.OpenTable Function

2| TTable.Post Procedure

| TTable.Prior Procedure

=] TTable.SetFieldValue Procedure

| TTable.TableExists Function

| TTable.UpdateTableStructure Procedure

W

W

W

3.14.1 TTable.ArchiveName Property

TTable.ArchiveName determines the full name of the archive database table to be accessed
by this object.

Syntax
TTable.ArchiveName: String

Remarks

The property is read-write. It only makes sense if TTable.IsArchive = True.

5l TTable-type Objects

Example

Dim Table

Set Table = RDb. CreateTableObject ' Create a TTable-type object.

" Name of the database, as defined in a visualization project

Table. DatabaseName = "Databasel"

' We want to access an archive table that contains data from August, 2000.
Table. IsArchive = True

Table. ArchiveName = "C:\Reliance\Projects\Test\Data\2000\dl 0008. DB"
If Table. TableExists Then ' If the archive table exists
If Table. OpenTable Then " If the table can be opened.
'...
Table. CloseTable ' Close the table
End If
End If
Set Table = Nothing " Free the TTable-type object.

Reliance 4 - Scripts N

m TTable-type Objects

3.14.2 TTable.DatabaseName Property
TTable.DatabaseName determines the data table to associate with this object. It corresponds
to the name property of the data table defined via the Data Table Manager.
Syntax
TTable.DatabaseName: String
Remarks

The property is read-write.

5l TTable-type Objects

Example

Dim Table
Set Table = RDb. CreateTableObject ' Create a TTable-type object.

' Name of the data table, as defined in a visualization project.

Table. DatabaseName = "Water"
If Table. OpenTable Then ' If the current table can be opened.
Table. Append " Append a new record.

[

Save current system date to the new record.
Table. DateFieldValue = Date

[

Save current system time to the new record.
Table. TimeFieldValue = Time

[

Save the value of the tag WaterTemperature from the device PLC1 to the new record.

Table. SetFieldValue "PLCl", "WaterTemperature'", RTag. GetTagValue('"PLC1l",
"WaterTemperature")
Table. Post ' Write the new record to the table.
Table. CloseTable ' Close the table.
End If
Set Table = Nothing ' Free the TTable-type object.

3.14.3 TTable.DateFieldValue Property

TTable.DateFieldValue determines the value of the date field of a database table's active
record.

I Reliance 4 - Scripts

TTable-type Objects m

Syntax
TTable.DateFieldValue: DateTime

Remarks

The property is read-write. The table must be open and not empty. In addition, the table
must be in edit or insert mode before you can write the property. Every table belonging to
a database defined in a visualization project contains a field for storing a record's date
which is returned by this property.

5l TTable-type Objects

Example

Dim Table
Set Table = RDb. CreateTableObject ' Create a TTable-type object.

' Name of the database, as defined in a visualization project.

Table. DatabaseName = "Water"
If Table. OpenTable Then ' If the current table can be opened.
Table. Append " Append a new record.

[

Save current system date to the new record.
Table. DateFieldValue = Date

[

Save current system time to the new record.
Table. TimeFieldValue = Time

[

Save the value of the tag WaterTemperature from the device PLC1 to the new record.

Table. SetFieldvValue "PLCl", "WaterTemperature'", RTag.GetTagValue('"PLC1l",
"WaterTemperature")
Table. Post ' Write the new record to the table.
Table. CloseTable ' Close the table.
End If
Set Table = Nothing ' Free the TTable-type object.

Reliance 4 - Scripts N

m TTable-type Objects

3.14.4 TTable.lsArchive Property

TTable.lsArchive determines whether the object is to access the current or an archive
database table.

Syntax
TTable.IlsArchive: Boolean

Remarks

The property is read-write.
Value Meaning

True The object is to access an archive table
(specified by the TTable.ArchiveName property).

False The object is to access the current table (the
default).

5l TTable-type Objects

Example

Dim Table

Set Table = RDb. CreateTableObject ' Create a TTable-type object.
" Name of the database, as defined in a visualization project.
Table. DatabaseName = "Databasel"

We want to access an archive table that contains data from August, 2000.
Table. IsArchive = True

Table. ArchiveName = "C:\Reliance\Projects\Test\Data\2000\dl 0008. DB"
If Table. TableExists Then ' If the archive table exists
If Table. OpenTable Then " If the table can be opened.
Table. CloseTable ' Close the table
End If
End If
Set Table = Nothing ' Free the TTable-type object.

I Reliance 4 - Scripts

TTable-type Objects

3.14.5 TTable.TimeFieldValue Property

TTable.DateFieldValue determines the value of the time field of a database table's active
record.

Syntax
TTable.TimeFieldValue: DateTime

Remarks

The property is read-write. The table must be open and not empty. In addition, the table
must be in edit or insert mode before you can write the property. Every table belonging to
a database defined in a visualization project contains a field for storing a record's time
which is returned by this property.

5l TTable-type Objects

Example

Dim Table
Set Table = RDb. CreateTableObject ' Create a TTable-type object.

' Name of the database, as defined in a visualization project.

Table. DatabaseName = "Water"
If Table. OpenTable Then ' If the current table can be opened.
Table. Append " Append a new record.

[

Save current system date to the new record.
Table. DateFieldValue = Date

Save current system time to the new record.
Table. TimeFieldValue = Time

[

Save the value of the tag WaterTemperature from the device PLC1 to the new record.

Table. SetFieldValue "PLCl", "WaterTemperature'", RTag. GetTagValue('"PLC1l",
"WaterTemperature")
Table. Post ' Write the new record to the table.
Table. CloseTable ' Close the table.
End If
Set Table = Nothing ' Free the TTable-type object.

Reliance 4 - Scripts N

m TTable-type Objects

3.14.6 TTable.Append Procedure

TTable.Append adds a new, empty record at the end of a database table and makes it the
active record.

Syntax
TTable.Append

Remarks

The table must be open. After a call to this method, the table is in insert mode. In insert
mode, it is possible to modify the new record by setting the values of database fields.
After modifying the record, call the TTable.Post method to post the record (i.e. write it to
the table). Setting the active record to another record using the TTable.First, TTable.Last,
TTable.Next, TTable.Prior, TTable.MoveBy methods also posts the record. If the record
has not yet been posted, it can be canceled by calling the TTable.Cancel method or
closing the table using the TTable.CloseTable method.

Al TTable-type Objects

Example

Dim Table
Set Table = RDb. CreateTableObject ' Create a TTable-type object.

' Name of the database, as defined in a visualization project.

Table. DatabaseName = "Water"
If Table. OpenTable Then ' If the current table can be opened.
Table. Append ' Append a new record.

' Save current system date to the new record.
Table. DateFieldValue = Date
' Save current system time to the new record.
Table. TimeFieldValue = Time

' Save the value of the tag WaterTemperature from the device PLC1 to the new record.

Table. SetFieldValue "PLCl", "WaterTemperature", RTag. GetTagValue("PLC1l",
"WaterTemperature")
Table. Post ' Write the new record to the table.
Table. CloseTable ' Close the table.
End If
Set Table = Nothing " Free the TTable-type object.

I Reliance 4 - Scripts

TTable-type Objects m

3.14.7 TTable.Bof Function

TTable.Bof indicates whether a database cursor is positioned at the beginning of a database
table (Bof stands for Beginning of file).

Syntax
TTable.Bof: Boolean

Return values
Value Meaning

True The cursor is guaranteed to be positioned at the
beginning of the table.

False The cursor is not guaranteed to be positioned at
the beginning of the table.

Remarks

The table must be open. This method is useful in combination with the TTable.First,
TTable.Last, TTable.Next, TTable.Prior, TTable.MoveBy, TTable.Eof methods.

TTable.Bof returns True when a script:
¢ Opens the table.
e Calls the TTable.First method.

e Calls the TTable.Prior method, and the call fails (because the cursor is already
positioned at the first record in the table).

TTable.Bof returns False in all other cases.

5l TTable-type Objects

Example

Dim Table

Set Table = RDb. CreateTableObject ' Create a TTable-type object.
" Name of the database, as defined in a visualization project.
Table. DatabaseName = "Water"

If Table. OpenTable Then ' If the current table can be opened.

Reliance 4 - Scripts N

TTable-type Objects

Table. Last ' Move to the last record.
" While the Table. Bof method returns False.
While Not Table. Bof

[

Table. Prior ' Move to the prior record.
WEnd
Table. CloseTable " Close the table.
End If
Set Table = Nothing ' Free the TTable-type object.

3.14.8 TTable.Cancel Procedure

TTable.Cancel cancels changes (if any) to a database table's active record if those changes
have not yet been posted (i.e. written to the table).

Syntax
TTable.Cancel

Remarks

The table must be open. Changes can also be canceled by closing the table using the
TTable.CloseTable method.

5l TTable-type Objects

Example

Dim Table
Set Table = RDb. CreateTableObject ' Create a TTable-type object.

' Name of the database, as defined in a visualization project.

Table. DatabaseName = "Water"
If Table. OpenTable Then ' If the current table can be opened.
Table. Append ' Append a new record.

' Save current system date to the new record.
Table. DateFieldValue = Date

' Save current system time to the new record.

Table. TimeFieldValue = Time

' Save the value of the tag WaterTemperature from the device PLC1 to the new record.

Table. SetFieldValue "PLCl", "WaterTemperature", RTag. GetTagValue("PLC1l",
"WaterTemperature")

Table. Cancel " Cancel the new record.

Table. CloseTable ' Close the table.
End If

I Reliance 4 - Scripts

Set Table = Nothing ' Free the TTable-type object.

3.14.9 TTable.CloseTable Procedure

TTable.CloseTable closes a database table.
Syntax
TTable.CloseTable

Remarks

The method cancels changes (if any) to the table's active record if those changes are not
yet written to the table.

5l TTable-type Objects

Example

Dim Table
Set Table = RDb. CreateTableObject ' Create a TTable-type object.

' Name of the database, as defined in a visualization project.

Table. DatabaseName = "Water"
If Table. OpenTable Then ' If the current table can be opened.
Table. Append " Append a new record.

' Save current system date to the new record.
Table. DateFieldValue = Date

' Save current system time to the new record.

Table. TimeFieldValue = Time

' Save the value of the tag WaterTemperature from the device PLC1 to the new record.

Table. SetFieldValue "PLCl", "WaterTemperature", RTag. GetTagValue("PLC1l",
"WaterTemperature")
Table. Post " Write the new record to the table.
Table. CloseTable ' Close the table.
End If
Set Table = Nothing " Free the TTable-type object.

Reliance 4 - Scripts N

m TTable-type Objects

3.14.10 TTable.CreateTable Function

TTable.CreateTable creates a new database table.
Syntax
TTable.CreateTable

Return values

Value Meaning

True The table has been created.

False The table has not been created.
Remarks

The method creates the current or an archive table based on the value of the TTable.
IsArchive property. If the table already exists, it is not overwritten and the call fails.

5l TTable-type Objects

Example

Dim Table, TableNotExists
Set Table = RDb. CreateTableObject ' Create a TTable-type object.
TableNotExists = True

' Name of the database, as defined in a visualization project.

Table. DatabaseName = "Water"
If Table. TableExists Then " If the table exists.
TableNotExists = Table. DeleteTable ' Delete the table.
End If
If TableNotExists Then
If Table.CreateTable Then ' Create a new table.
! e o o
End If
End If
Set Table = Nothing ' Free the TTable-type object.

I Reliance 4 - Scripts

TTable-type Objects m

3.14.11 TTable.Delete Procedure

TTable.Delete deletes the active record from a database table and positions a database
cursor on the next record.

Syntax
TTable.Delete

Remarks

The table must be open. This operation cannot be reversed. If the table is empty, both
the TTable.Bof and TTable.Eof methods return True.

5l TTable-type Objects

Example

Dim Table

Set Table = RDb. CreateTableObject ' Create a TTable-type object.
' Name of the database, as defined in a visualization project.

Table. DatabaseName = "Water"

If Table. OpenTable Then " If the current table can be opened.
If Not (Table.Bof And Table.Eof) Then ' If the table is not empty.
Table. Last ' Move to the last record.
Table. Delete ' Delete the active record.

End If
Table. CloseTable ' Close the table.
End If
Set Table = Nothing ' Free the TTable-type object.

3.14.12 TTable.DeleteTable Function

TTable.DeleteTable deletes an existing database table.
Syntax
TTable.DeleteTable: Boolean

Return values

Value Meaning

Reliance 4 - Scripts N

m TTable-type Objects

True The table has been deleted.
False The table has not been deleted.
Remarks

The table must not be open by another TTable-type object or another program (e.g.

another instance of the runtime software).

Before calling this method, it is advisable to test whether the table exists by calling the

TTable.TableExists method.

5l TTable-type Objects

Example

Dim Table, TableNotExists
Set Table = RDb. CreateTableObject ' Create a TTable-type object.
TableNotExists = True

' Name of the database, as defined in a visualization project.

Table. DatabaseName = "Water"
If Table. TableExists Then " If the table exists.
TableNotExists = Table.DeleteTable ' Delete the table.
End If
If TableNotExists Then
If Table.CreateTable Then " Create a new table.
! e o o
End If
End If
Set Table = Nothing ' Free the TTable-type object.

3.14.13 TTable.Edit Procedure

TTable.Edit puts a database table into edit mode.

I Reliance 4 - Scripts

TTable-type Objects

Syntax
TTable.Edit

Remarks

The table must be open. In edit mode, it is possible to modify the active record by setting
the values of database fields. After modifying the record, call the TTable.Post method to
post the record (i.e. write it to the table). Setting the active record to another record using
the TTable.First, TTable.Last, TTable.Next, TTable.Prior, TTable.MoveBy methods also
posts the record. If the record has not yet been posted, the changes to the record can be
canceled by calling the TTable.Cancel method or closing the table using the TTable.
CloseTable method.

5l TTable-type Objects

Example

Dim Table
Set Table = RDb. CreateTableObject ' Create a TTable-type object.

' Name of the database, as defined in a visualization project.

Table. DatabaseName = "Water"

If Table. OpenTable Then ' If the current table can be opened.
Table. Last ' Move to the last record.
Table. Edit ' Put the table into edit mode.

' Save 0 to the database field linked to the tag

' WaterTemperature from the device PLCI.

Table. SetFieldvValue "PLCl", "WaterTemperature", O
Table. Post ' Write the new record to the table.
Table. CloseTable ' Close the table.

End If

Set Table = Nothing ' Free the TTable-type object.

Reliance 4 - Scripts N

m TTable-type Objects

3.14.14 TTable.EmptyTable Function

TTable.EmptyTable deletes all records from a database table.
Syntax
TTable.EmptyTable: Boolean

Return values

Value Meaning

True Records have been deleted.

False Records have not been deleted.
Remarks

The table must not be open by another TTable-type object or another program (e.g.
another instance of the runtime software).

Before calling this method, it is advisable to test whether the table exists by calling the
TTable.TableExists method.

5l TTable-type Objects

Example

Dim Table
Set Table = RDb. CreateTableObject ' Create a TTable-type object.

' Name of the database, as defined in a visualization project.

Table. DatabaseName = "Water"
If Table. TableExists Then " If the table exists.
If Table. EmptyTable Then ' Empty the table.
End If
End If
Set Table = Nothing ' Free the TTable-type object.

I Reliance 4 - Scripts

TTable-type Objects

3.14.15 TTable.Eof Function

TTable.Eof indicates whether a database cursor is positioned at the end of a database table
(Eof stands for End of file).

Syntax
TTable.Eof: Boolean

Return values
Value Meaning

True The cursor is guaranteed to be positioned at the
end of the table.

False The cursor is not guaranteed to be positioned at
the end of the table.

Remarks

The table must be open. This method is useful in combination with the TTable.First,
TTable.Last, TTable.Next, TTable.Prior, TTable.MoveBy, TTable.Bof methods.

TTable.Eof returns True when a script:
e Opens an empty table.
¢ Calls the TTable.Last method.

e Calls the TTable.Next method, and the call fails (because the cursor is already
positioned at the last record in the table).

TTable.Eof returns False in all other cases.

5l TTable-type Objects

Example

Dim Table

Set Table = RDb. CreateTableObject ' Create a TTable-type object.
" Name of the database, as defined in a visualization project.
Table. DatabaseName = "Water"

If Table. OpenTable Then ' If the current table can be opened.

Reliance 4 - Scripts N

m TTable-type Objects

Table. First ' Move to the first record.
" While the Table. Eof method returns False.
While Not Table. Eof

[

Table. Next ' Move to the next record.
WEnd
Table. CloseTable ' Close the table.
End If
Set Table = Nothing ' Free the TTable-type object.

3.14.16 TTable.FieldExists Function

TTable.FieldExists indicates whether a field linked to a specified tag exists in a database
table.

Syntax

TTable.FieldExists(DevName, TagName: String): Boolean
Argument Description
DevName The name of the device that the tag belongs to.

TagName The name of the tag that the field is linked to.

Return values

Value Meaning

True The field exists in the table.

False The field does not exist in the table.
Remarks

The table must be open.

5l TTable-type Objects

Example

Dim Table

I Reliance 4 - Scripts

TTable-type Objects

Set Table = RDb. CreateTableObject ' Create a TTable-type object.

' Name of the database, as defined in a visualization project.

Table. DatabaseName = "Water"

If Table. OpenTable Then ' If the current table can be opened.
" If the database field linked to the tag WaterTemperature

" from the device PLC1 does not exist the table has an old structure.

If not Table.FieldExists("PLCl", "WaterTemperature") Then
Table. CloseTable ' Close the table
If Table.DeleteTable Then ' If the table can be deleted
If Table.CreateTable Then ' If a new table can be created
If Table. OpenTable Then ' If the table can be opened.
'...
Table. CloseTable ' Close the table
End If
End If
End If
End If
End If
Set Table = Nothing ' Free the TTable-type object.

3.14.17 TTable.First Procedure

TTable.First positions a database cursor on the first record in a database table and makes it
the active record.

Syntax
TTable.First

Remarks

The table must be open. Calling this method posts (i.e. writes to the table) any changes
to the active record. This method is useful in combination with the TTable.Bof and
TTable.Eof methods.

5l TTable-type Objects

Example

Dim Table

Set Table = RDb. CreateTableObject ' Create a TTable-type object.
" Name of the database, as defined in a visualization project.
Table. DatabaseName = "Water"

If Table. OpenTable Then ' If the current table can be opened.

Reliance 4 - Scripts N

m TTable-type Objects

Table. First ' Move to the first record.
" While the Table. Eof method returns False.
While Not Table. Eof

[

Table. Next ' Move to the next record.
WEnd
Table. CloseTable ' Close the table.
End If
Set Table = Nothing ' Free the TTable-type object.

3.14.18 TTable.GetFieldValue Function

TTable.GetFieldValue returns the value of a field linked to a specified tag for the current
record in a database table.

Syntax

TTable.GetFieldValue(DevName, TagName: String): Variant
Argument Description
DevName The name of the device that the tag belongs to.

TagName The name of the tag that the field is linked to.

Return values
If the call succeeds, the method returns the value of the field for the current record.

If the call fails, the method returns Empty.

Remarks

The table must be open and not empty. Before calling this method, you can test whether
the field exists by a call to the TTable.FieldExists method.

Al TTable-type Objects

Example

Dim Table, Count, Sum

Sum = 0O

Count = 0

Set Table = RDb. CreateTableObject ' Create a TTable-type object.

I Reliance 4 - Scripts

TTable-type Objects

' Name of the database, as defined in a visualization project.

Table. DatabaseName = "Water"
If Table. OpenTable Then ' If the current table can be opened.
Table. First ' Move to the first record.

" While the Table. Eof method returns False.

While Not Table. Eof
' Get the value of the database field linked to the tag
' WaterTemperature from the device PLCI.

Sum = Sum + Table. GetFieldValue("PLC1l", "WaterTemperature")

Count = Count + 1

Table. Next ' Move to the next record
WEnd
Table. CloseTable ' Close the table
Set Table = Nothing ' Free the TTable-type object.
If Count > 0 Then " Check count for the value of 0.

[

Store information on the result of the operation

[

to the tag DisplayResult from the device System

RTag. SetTagValue "System", "DisplayResult'", "The average value is: " + CStr(Value
/ Count)

End If
End If

3.14.19 TTable.Last Procedure

TTable.Last positions a database cursor on the last record in a database table and makes it
the active record.

Syntax
TTable.Last

Remarks

The table must be open. Calling this method posts (i.e. writes to the table) any changes
to the active record. This method is useful in combination with the TTable.Bof and
TTable.Eof methods.

Al TTable-type Objects

Example

Dim Table
Set Table = RDb. CreateTableObject ' Create a TTable-type object.

' Name of the database, as defined in a visualization project.

Reliance 4 - Scripts N

m TTable-type Objects

Table. DatabaseName = "Water"
If Table. OpenTable Then ' If the current table can be opened.
Table. Last ' Move to the last record.

" While the Table. Bof method returns False.
While Not Table. Bof

[

Table. Prior ' Move to the prior record.

WEnd
Table. CloseTable ' Close the table.
End If
Set Table = Nothing ' Free the TTable-type object.

3.14.20 TTable.MoveBy Procedure

TTable.MoveBy positions a database cursor on a record relative to the active record in a
database table and makes it the active record.

Syntax

TTable.MoveBy Count: Integer
Argument Description

Count The number of records by which to move the
cursor. It can be either a positive (moving
forward) or negative (moving backward) integer
value.

Remarks

The table must be open. Calling this method posts (i.e. writes to the table) any changes
to the active record. This method is useful in combination with the TTable.Bof and
TTable.Eof methods.

5l TTable-type Objects

Example
Dim Table
Set Table = RDb. CreateTableObject " Create a TTable-type object.
' Name of the database, as defined in a visualization project.
Table. DatabaseName = "Water"

I Reliance 4 - Scripts

If Table. OpenTable Then
If Not (Table.Bof And Table. Eof)
Table. First
Table. MoveBy 5

[

End If

Table. CloseTable
End If
Set Table = Nothing

3.14.21 TTable.Next Procedure

TTable-type Objects m

" If the current table can be opened.
Then ' If the table is not empty.
' Move to the first record.

' Move by 5 records forward

' Close the table

' Free the TTable-type object.

TTable.Next positions a database cursor on the next record in a database table and makes it

the active record.
Syntax
TTable.Next

Remarks

The table must be open. Calling this method posts (i.e. writes to the table) any changes
to the active record. This method is useful in combination with the TTable.Bof and

TTable.Eof methods.

Al TTable-type Objects

Example

Dim Table

Set Table RDb. CreateTableObject

" Name of the database, as defined

Table. DatabaseName = "Water"

If Table. OpenTable Then !
Table. First !

Create a TTable-type object.

in a visualization project

If the current table can be opened.

Move to the first record.

" While the Table. Eof method returns False.

While Not Table. Eof

[

Table. Next !

WEnd

Table. CloseTable !
End If
Set Table = Nothing !

Move to the next record.
Close the table

Free the TTable-type object.

Reliance 4 - Scripts N

m TTable-type Objects

3.14.22 TTable.OpenTable Function

TTable.OpenTable opens a database table.
Syntax
TTable.OpenTable: Boolean

Return values

Value Meaning

True The table has been opened.

False The table has not been opened.
Remarks

Before calling this method, it is advisable to test whether the table exists by calling the
TTable.TableExists method.

5l TTable-type Objects

Example

Dim Table
Set Table = RDb. CreateTableObject ' Create a TTable-type object.

' Name of the database, as defined in a visualization project.

Table. DatabaseName = "Water"
If Table. OpenTable Then ' If the current table can be opened.
Table. Append " Append a new record.

" Save current system date to the new record.
Table. DateFieldValue = Date
' Save current system time to the new record.
Table. TimeFieldValue = Time

' Save the value of the tag WaterTemperature from the device PLC1 to the new record.

Table. SetFieldValue "PLCl", "WaterTemperature'", RTag.GetTagValue('"PLC1l",
"WaterTemperature")
Table. Post ' Write the new record to the table.
Table. CloseTable ' Close the table.
End If
Set Table = Nothing ' Free the TTable-type object.

I Reliance 4 - Scripts

TTable-type Objects m

3.14.23 TTable.Post Procedure

TTable.Post posts (i.e. writes to the table) any changes to a database table's active record.

Syntax
TTable.Post

Remarks

The table must be open and must be in edit or insert mode. To put a table into edit or
insert mode, call the TTable.Edit or TTable.Append method.

Al TTable-type Objects

Example

Dim Table
Set Table = RDb. CreateTableObject ' Create a TTable-type object.

' Name of the database, as defined in a visualization project.

Table. DatabaseName = "Water"
If Table. OpenTable Then ' If the current table can be opened.
Table. Append ' Append a new record.

' Save current system date to the new record.
Table. DateFieldValue = Date

' Save current system time to the new record.

Table. TimeFieldValue = Time

' Save the value of the tag WaterTemperature from the device PLC1 to the new record.

Table. SetFieldValue "PLCl", "WaterTemperature", RTag. GetTagValue("PLC1l",
"WaterTemperature")
Table. Post ' Write the new record to the table.
Table. CloseTable ' Close the table.
End If
Set Table = Nothing " Free the TTable-type object.

Reliance 4 - Scripts N

m TTable-type Objects

3.14.24 TTable.Prior Procedure

TTable.Prior positions a database cursor on the previous record in a database table and
makes it the active record.

Syntax
TTable.Prior

Remarks

The table must be open. Calling this method posts (i.e. writes to the table) any changes
to the active record. This method is useful in combination with the TTable.Bof and
TTable.Eof methods.

5l TTable-type Objects

Example

Dim Table
Set Table = RDb. CreateTableObject ' Create a TTable-type object.

' Name of the database, as defined in a visualization project.

Table. DatabaseName = "Water"
If Table. OpenTable Then ' If the current table can be opened.
Table. Last ' Move to the last record.

" While the Table. Bof method returns False.
While Not Table. Bof

[

Table. Prior ' Move to the prior record.
WEnd
Table. CloseTable ' Close the table.
End If
Set Table = Nothing ' Free the TTable-type object.

I Reliance 4 - Scripts

TTable-type Objects

3.14.25 TTable.SetFieldValue Procedure

TTable.SetFieldValue sets the value of a field linked to a specified tag to a specified value for
the current record in a database table.

Syntax

TTable.SetFieldValue DevName, TagName: String; Value: Variant
Argument Description
DevName The name of the device that the tag belongs to.
TagName The name of the tag that the field is linked to.

Value The new value for the field.

Remarks

The table must be open and must be in edit or insert mode. To put a table into edit or
insert mode, call the TTable.Edit or TTable.Append method. Before calling this method, it
is advisable to test whether the field exists by calling the TTable.FieldExists method. After
modifying the active record using this method, call the TTable.Post method to post the
record (i.e. write it to the table). Setting the active record to another record using the
TTable.First, TTable.Last, TTable.Next, TTable.Prior, TTable.MoveBy methods also posts
the record. If the record has not yet been posted, the changes to the record can be
canceled by calling the TTable.Cancel method or closing the table using the TTable.
CloseTable method.

5l TTable-type Objects

Example

Dim Table
Set Table = RDb. CreateTableObject ' Create a TTable-type object.

' Name of the database, as defined in a visualization project

Table. DatabaseName = "Water"
If Table. OpenTable Then ' If the current table can be opened.
Table. Append " Append a new record

' Save current system date to the new record.
Table. DateFieldValue = Date

' Save current system time to the new record.

Reliance 4 - Scripts N

m TTable-type Objects

Table. TimeFieldValue = Time

' Save the value of the tag WaterTemperature from the device PLC1 to the new record.

Table. SetFieldValue "PLCl", "WaterTemperature", RTag. GetTagValue("PLC1l",
"WaterTemperature")
Table. Post ' Write the new record to the table
Table. CloseTable ' Close the table
End If
Set Table = Nothing " Free the TTable-type object.

3.14.26 TTable.TableExists Function

TTable.TableExists indicates whether a database table exists.
Syntax
TTable.TableExists: Boolean

Return values

Value Meaning

True The table exists.

False The table does not exist.
Remarks

If the table does not exist, it can be created by a call to the TTable.CreateTable method.

5l TTable-type Objects

Example

Dim Table

Set Table = RDb. CreateTableObject ' Create a TTable-type object.

' Name of the database, as defined in a visualization project

Table. DatabaseName = "Databasel"

' We want to access an archive table that contains data from August, 2000.

Table. IsArchive = True

Table. ArchiveName = "C:\Reliance\Projects\Test\Data\2000\dl 0008. DB"
If Table. TableExists Then ' If the archive table exists
If Table. OpenTable Then " If the table can be opened.

[

I Reliance 4 - Scripts

TTable-type Objects m

Table. CloseTable ' Close the table.
End If
End If
Set Table = Nothing " Free the TTable-type object.

3.14.27 TTable.UpdateTableStructure Procedure

TTable.UpdateTableStructure updates the structure of a database table by adding new
columns to the table based on data table fields defined via the Data Table Manager (if any
fields were added later).

Syntax
TTable.UpdateTableStructure

Remarks

The table must exist. It does not matter if it is open or closed. After calling the procedure,
the table is closed.

5l TTable-type Objects

Example

Dim Table
Set Table = RDb. CreateTableObject ' Create a TTable-type object.

' Name of the database, as defined in a visualization project.

Table. DatabaseName = "Water"

If Table. TableExists Then " If the table exists.
Table. UpdateTableStructure ' Update the table's structure.
If Table. OpenTable Then " If the table can be opened.

Table. CloseTable ' Close the table.

End If

End If

Set Table = Nothing ' Free the TTable-type object.

Reliance 4 - Scripts N

m RTag Object

3.15 RTag Object

The RTag object implements methods for operations on tags defined in a visualization
project. The tags can be of simple data types (e.g. Word, Byte, Bool, String, etc.) or array data
types (e.g. Array of Word).

Methods:

2| RTag.SetTagElementValues Procedure

| RTag.GetTagElementValue Function

2| RTag.GetTagValue Function

2| RTag.MoveTagElementValues Procedure
2| RTag.MoveTagElementValuesToSimpleTag Procedure
2| RTag.MoveTagValue Procedure

2| RTag.MoveTagValueToArrayTag Procedure
2| RTag.SetTagElementValue Procedure

2| RTag.SetTagValue Procedure

2| RTag.UpdateTagValue Procedure

3.15.1 RTag.SetTagElementValues Procedure

RTag.SetTagElementValues fills the value of an array-type tag or its part with a specified
value.

Syntax

RTag.SetTagElementValues DevName, TagName: String; Value: Variant; Offset,
Count: Integer

Argument Description
DevName The name of the device that the tag belongs to.
TagName The name of the tag.

Value The value to be used for the array elements.

I Reliance 4 - Scripts

RTag Object Q)]

Offset The zero-based index of the first array element to
be set to the specified value.

Count The number of array elements to be set to the
specified value.

Remarks

The tag must be of an array data type (e.g. Array of Word). The value of the Offset and
Count arguments is checked at runtime, so calling the method never affects memory not
belonging to the tag.

5l RTag Object

Example

' Fill 20 elements of the tag ByteArray from the device PLCI
" with the value 0 starting with the element at the index 10.
RTag. SetTagElementValues "PLCl1", "ByteArray", 0, 10, 20

3.15.2 RTag.GetTagElementValue Function

RTag.GetTagElementValue returns the value of an array-type tag at a specified index.
Syntax

RTag.GetTagElementValue(DevName, TagName: String; Index: Integer): Variant
Argument Description
DevName The name of the device that the tag belongs to.
TagName The name of the tag.

Index The zero-based index of the array element whose
value is to be returned.

Return values

If the call succeeds, the method returns the value of the tag at the specified index.

Reliance 4 - Scripts N

m RTag Object

If the call fails, the method returns Empty.

Remarks

The tag must be of an array data type (e.g. Array of Word). To find out whether the return
value is valid, use the IsEmpty function. If ISEmpty returns True, the return value of RTag.
GetTagElementValue has not been assigned a value (e.g. if the specified tag does not
exist, is of an incorrect data type, has an invalid value, etc.). The validity of the return
value of RTag.GetTagElementValue is also affected by the Return value even if not valid
option (Reliance Design > Project > Options > Scripts > Other).

5l RTag Object

Example

Dim Value

" Get the value of the tag WordArray

' from the device PLC1 at the index 0.

Value = RTag. GetTagElementValue("PLCl", "WordArray", O0)

If Not IsEmpty(Value) Then ' Check for the validity of the result.

End If

3.15.3 RTag.GetTagValue Function

RTag.GetTagValue returns the value of a tag.
Syntax
RTag.GetTagValue(DevName, TagName: String): Variant
Argument Description
DevName The name of the device that the tag belongs to.

TagName The name of the tag.

Return values
If the call succeeds, the method returns the value of the tag.

If the call fails, the method returns Empty.

I Reliance 4 - Scripts

RTag Object m

Remarks

The tag must be of a simple data type (e.g. Bool, Byte, Word, String, etc.). To find out
whether the return value is valid, use the IsEmpty function. If IsEmpty returns True, the
return value of RTag.GetTagValue has not been assigned a value (e.g. if the specified
tag does not exist, is of an incorrect data type, has an invalid value, etc.). The validity of
the return value of RTag.GetTagValue is also affected by the Return value even if not
valid option (Reliance Design > Project > Options > Scripts > Other).

5l RTag Object

Example

Dim Value

' Get the value of the tag Varl from the device PLCI.

Value = RTag. GetTagValue("PLC1", "Varl")

If Not IsEmpty(Value) Then ' Check for the validity of the result.

[

End If

3.15.4 RTag.MoveTagElementValues Procedure

RTag.MoveTagElementValues copies the value of an array-type tag or its part to another
array-type tag.

Syntax

RTag.MoveTagElementValues SourceDevName, SourceTagName, TargetDevName,
TargetTagName: String; Sourcelndex, Targetindex, Count: Integer

Argument Description

SourceDevName |The name of the device that the source tag
belongs to.

SourceTagName |The name of the source tag.

TargetDevName |The name of the device that the target tag
belongs to.

TargetTagName | The name of the target tag.

Reliance 4 - Scripts N

m RTag Object

Sourcelndex The zero-based index of the first element of
the source array to be copied.

TargetIndex The zero-based index of the first element of
the target array to be overwritten.

Count The number of array elements to be copied.

Remarks

The tags must be of an array data type. The base data type (i.e. data type of array
elements) of the source and target tag may differ, but must have the same size (e.g.
Array of DoubleWord and Array of LongInt). However, if the source tag is of type Array of
Bool, the target tag must be of the same type. When copying the value of individual array
elements, no data type conversion is performed. Also, the Analog value correction and
Negate value if digital properties are ignored (Reliance Design > Managers > Device
Manager > tag properties > the Correction page). Thus, after calling RTag.
MoveTagElementValues, the values of the corresponding elements of the source and
target array can differ because of different interpretation.

5l RTag Object

Example

r

Copy 10 elements of the tag WordArray from the device System

' starting with the element at the index 0

' to the tag WordArray from the device Virtuall

' starting with the element at the index 50.

RTag. MoveTagElementValues "System", "WordArray", "Virtuall", "WordArray", 0, 50, 10

3.15.5 RTag.MoveTagElementValuesToSimpleTag Procedure
RTag.MoveTagElementValuesToSimpleTag copies the value of an array-type tag or its part to
a simple-type tag (e.g. Bool, Byte, Word, String, etc.).

Syntax

RTag.MoveTagElementValuesToSimpleTag SourceDevName, SourceTagName,
TargetDevName, TargetTagName: String; Sourcelndex: Integer

I Reliance 4 - Scripts

RTag Object m

Argument Description

SourceDevName |The name of the device that the source tag
belongs to.

SourceTagName |The name of the source tag.

TargetDevName The name of the device that the target tag
belongs to.

TargetTagName |The name of the target tag.

Sourcelndex The zero-based index of the first element of
the source array to be copied.

Remarks
The source and target tag data types must meet the following requirements:

- the target tag data type size must be dividable by the size of the base data type (i.e.
data type of array elements) of the source tag

- if the source tag is of type Array of Bool, the target tag must be of type Bool

When copying the value, no data type conversion is performed. Also, the Analog value
correction and Negate value if digital properties are ignored (Reliance Design >
Managers > Device Manager > tag properties > the Correction page). The number of
array elements copied depends on the target tag data type size.

5l RTag Object

Example

' Copy 4 elements of the tag ByteArray from the device System

' starting with the element at the index 0 to the tag Float.

' The number of elements copied is determined by the size of the tag Float.
RTag. MoveTagElementValuesToSimpleTag "System", "ByteArray", "System", "Float", O

Reliance 4 - Scripts N

m RTag Object

3.15.6 RTag.MoveTagValue Procedure

RTag.MoveTagValue copies the value of a tag to another tag.

Syntax

RTag.MoveTagValue SourceDevName, SourceTagName,
TargetTagName: sString

Argument

SourceDevName

SourceTagName

TargetDevName

TargetTagName

Remarks

Description

The name of the device that the source tag
belongs to.

The name of the source tag.

The name of the device that the target tag
belongs to.

The name of the target tag.

TargetDevName,

The tags must be of a simple data type (e.g. Bool, Byte, Word, String, etc.). The data type
of the source and target tag may differ, but must have the same size (e.g. DoubleWord
and Longint). However, if the source tag is of type Bool, the target tag must be of the
same type. When copying the value, no data type conversion is performed. Also, the
Analog value correction and Negate value if digital properties are ignored (Reliance
Design > Managers > Device Manager > tag properties > the Correction page). Thus,
after calling RTag.MoveTagValue, the value of the source and target tag can differ
because of different interpretation.

5l RTag Object

Example

" Copy the value of the tag Word from the device System

' to the tag Word from the device Virtuall.
RTag. MoveTagValue "System", "Word", "Virtuall", "Word"

I Reliance 4 - Scripts

RTag Object XY/

3.15.7 RTag.MoveTagValueToArrayTag Procedure

RTag.MoveTagValueToArrayTag copies the value of a simple-type tag (e.g. Bool, Byte, Word,
String, etc.) to an array-type tag.
Syntax

RTag.MoveTagValueToArrayTag SourceDevName, SourceTagName, TargetDevName,
TargetTagName: String; Targetindex: Integer

Argument Description

SourceDevName |The name of the device that the source tag
belongs to.

SourceTagName |The name of the source tag.

TargetDevName |The name of the device that the target tag
belongs to.

TargetTagName |The name of the target tag.

TargetIndex The zero-based index of the first element of
the target array to be overwritten.

Remarks
The source and target tag data types must meet the following requirements:

- the source tag data type size must be dividable by the size of the base data type (i.e.
data type of array elements) of the target tag

- if the source tag is of type Bool, the target tag must be of type Array of Bool

When copying the value, no data type conversion is performed. Also, the Analog value
correction and Negate value if digital properties are ignored (Reliance Design >
Managers > Device Manager > tag properties > the Correction page). The number of
array elements overwritten depends on the source tag data type size.

5l RTag Object

Example

' Copy the value of the tag Float from the device System

Reliance 4 - Scripts N

m RTag Object

' to the tag ByteArray from the device System
' starting with the element at the index 0.
' The number of elements overwritten is determined by the size of the tag Float

RTag. MoveTagValueToArrayTag "System", "Float", "System", "ByteArray", 0

3.15.8 RTag.SetTagElementValue Procedure

RTag.SetTagElementValue sets the value of an array-type tag at a specified index to a
specified value.

Syntax
RTag.SetTagElementValue DevName, TagName: String; Index: Integer; Value:

Variant
Argument Description
DevName The name of the device that the tag belongs to.
TagName The name of the tag.

Index The zero-based index of the array element whose
value is to be set.

Value The new value for the array element.

Remarks

The tag must be of an array data type (e.g. Array of Word). The form of specifying the
value depends on the tag's data type:

Data type Form

Integer-type arrays A sequence of digits.

Floating point-typelA sequence of digits which may
arrays include the period character as a

decimal separator.

String-type arrays A sequence of characters enclosed in
double quotes.

Digital-type arrays One of the constants False, True (O,
1).

I Reliance 4 - Scripts

RTag Object m

5l RTag Object

Example

r

Set the value of the tag WordArray (an integer-type array)
' from the device PLC1 at the index 0 to the value 20.
RTag. SetTagElementValue "PLC1l", "WordArray", 0, 20

[

Set the value of the tag FloatArray (a floating point-type array)
" from the device PLC1 at the index 0 to the value 100.25.
RTag. SetTagElementValue "PLCl", "FloatArray", 0, 100.25

r

Set the value of the tag StringArray (a string-type array)
' from the device PLC1 at the index 0 to the value " Hello".
RTag. SetTagElementValue "PLC1l", "StringArray", 0, "Hello"

[

Set the value of the tag BoolArray (a digital-type array)
" from the device PLC1 at the index 10 to the value True.
RTag. SetTagElementValue "PLCl1l", "BoolArray", 10, True

3.15.9 RTag.SetTagValue Procedure

RTag.SetTagValue sets the value of a tag to a specified value.
Syntax

RTag.SetTagValue DevName, TagName: String; Value: Variant
Argument Description
DevName The name of the device that the tag belongs to.
TagName The name of the tag.

Value The new value for the tag.

Remarks

The tag must be of a simple data type (e.g. Bool, Byte, Word, String, etc.). The form of
specifying the value depends on the tag's data type:

Data type Form

Integer types A sequence of digits.

Reliance 4 - Scripts N

m RTag Object

Floating point types

String type

Digital type

5l RTag Object

Example

A sequence of digits which may
include the period character as a
decimal separator.

A sequence of characters enclosed in
double quotes.

One of the constants False, True (O,
1).

' Set the value of the tag Word (an
" from the device PLC1 to the value
RTag. SetTagValue "PLC1", "Word", 20
' Set the value of the tag Float (a
' from the device PLCl1 to the value

integer-type tag)
20.

floating point-type tag)
100. 25.

RTag. SetTagValue "PLC1", "Float", 100.25

[

Set the value of the tag String (a string-type tag)

" from the device PLC1 to the value " Hellod".

RTag. SetTagValue "PLC1",

r

"String", "Hello"
Set the value of the tag Bool (a digital-type tag)

' from the device PLC1 to the value 0.

RTag. SetTagValue "PLC1",

"Bool", 0

3.15.10 RTag.UpdateTagValue Procedure

RTag.UpdateTagValue updates the value of a tag.

Syntax

RTag.UpdateTagValue DevName, TagName: String

Argument
DevName

TagName

I Reliance 4 - Scripts

Description
The name of the device that the tag belongs to.

The name of the tag.

RTag Object QY 4}

Remarks

The way in which the value is updated depends on the type of the device the tag belongs
to and the way in which the device is connected to the computer:

A physical device directly connected to/Calling the method forces the

the computer (e.g. PLC connected via ajcommunication driver to reread the

serial cable) value from the device (this feature
might not be supported by every
communication driver).

A virtual device directly connected toTags belonging to such a device are
the computer or the System device always up-to-date. Calling the method
has no effect.

A device provided to the computeri/Calling the method forces the runtime
through a network connection software to reread the value from the
server computer.

5l RTag Object

Example

' Update the value of the tag Word from the device PLCI.
RTag. UpdateTagValue "PLC1l", "Word"

Reliance 4 - Scripts N

m RUser Object

3.16 RUser Object

The RUser object implements methods for operations on users defined in a visualization
project. The methods enable you to log users on and off of the runtime software, retrieve the
name of the currently logged on user, and retrieve information on users. The methods only
operate on users connected to the computer on which a visualization project is running.

Methods:

2| RUser.CheckUserAccessRights Function

2| RUser.CheckUserPassword Function

| RUser.GetLoggedOnUserName Function

2| RUser.GetUserID Function

2| RUser.IsUserAdmin Function

22| RUser.LogOffUser Procedure

22| RUser.LogOnUser Procedure

2| RUser.LogOnUserWithCode Function

22| RUser.LogOnUserWithNameAndPassword Function

| RUser.UserExists Function

3.16.1 RUser.CheckUserAccessRights Function

RUser.CheckUserAccessRights determines whether a user has at least one of specified
access rights.

Syntax
RUser.CheckUserAccessRights(User: Variant; Rights: String): Boolean
Argument Description
User The name or ID of the user.

Right The names of the access rights of interest
separated with commas.

I Reliance 4 - Scripts

RUser Object m

Remarks
The method only operates on users connected to the computer on which a visualization
project is running.

Return values

Value Meaning

True The user has at least one of the specified access
rights.

False The user does not exist or does not have any of

the specified access rights.

5l RUser Object

Example

Dim UserName
' If a user is logged on.
If RUser. GetLoggedOnUserName(UserName) Then
' If the user has the Servicing (denoted by " S') or "Terminate' access right.

If RUser. CheckUserAccessRights(UserName, "S, Terminate") Then

End If
End If

3.16.2 RUser.CheckUserPassword

RUser.CheckUserPassword determines whether a user has a specified password.

Syntax
RUser.CheckUserPassword(User: Variant; Password: String): Boolean
Argument Description
User The name or ID of the user.

Password User password.

Reliance 4 - Scripts N

m RUser Object

Remarks

The method only operates on users connected to the computer on which a visualization
project is running.

Return values

Value Meaning
True The user has specified password.
False The user does not exist or does not have

specified password.

5l RUser Object

Example

Dim UserName
' If a user is logged on.
If RUser. GetLoggedOnUserName(UserName) Then
' If the user has " 123456" password
If RUser. CheckUserPassword(UserName, "123456") Then

End If
End If

3.16.3 RUser.GetLoggedOnUserName Function

RUser.GetLoggedOnUserName returns the name of the user currently logged on to the
runtime software.

Syntax

RUser.GetLoggedOnUserName(ByRef UserName: Variant): Boolean
Argument Description

UserName A variable that is to receive the name of the user.

I Reliance 4 - Scripts

Return values
Value
True

False

5l RUser Object

Example

Dim UserName

[

Meaning
A user is logged on.

No user is logged on.

If a user is logged on.

If RUser. GetLoggedOnUserName(UserName) Then

' If the name of the user is " Service".

If UserName = "Service" Then

End If
End If

3.16.4 RUser.IsUserAdmin Function

RUser Object m

RUser.IsUserAdmin determines whether a user is a user administrator (i.e. whether the user
is allowed to administrate users; User Manager > user properties > the Basic page).

Syntax

RUser.IsUserAdmin(User: Variant): Boolean

Argument

User

Return values
Value

True

Description

The name or ID of the user.

Meaning

The user is a user administrator.

Reliance 4 - Scripts N

m RUser Object

False The user does not exist or is not a user
administrator.

Remarks

The method only operates on users connected to the computer on which a visualization
project is running.

5l RUser Object

Example

Dim UserName

' If a user is logged on.

If RUser. GetLoggedOnUserName(UserName) Then
' If the user is a user administrator

If RUser. IsUserAdmin(UserName) Then

End If
End If

3.16.5 RUser.GetUserID Function

RUser.GetUserlID returns the ID (a unique integer identifier) for a user.
Syntax

RUser.GetUserlD(UserName: String): Integer
Argument Description

UserName | The name of the user.

Return values
If the call succeeds, the method returns the ID of the user.

If the call fails, the method returns O.

I Reliance 4 - Scripts

RUser Object EZY¥4

Remarks

The method only operates on users connected to the computer on which a visualization
project is running.

5l RUser Object

Example
Dim UserID
If RUser. UserExists("Operator") Then ' If a user of the name Operator exists.
UserID = RUser. GetUserID("Operator") ' Get the ID of the user
! e o o
End If

3.16.6 RUser.LogOffUser Procedure

RUser.LogOffUser logs off the user currently logged on to the runtime software.
Syntax

RUser.LogOffUser

5l RUser Object

Example

Dim UserName
' If the tag EndOfShift from the device System is equal to True

If RTag. GetTagValue("System", "EndOfShift") Then
RUser. LogOffUser ' Log off the user
End If

3.16.7 RUser.LogOnUser Procedure

RUser.LogOnUser displays a log-on user dialog to enable the user to log on to the runtime
software.

Reliance 4 - Scripts N

m RUser Object

Syntax

RUser.LogOnUser

5l RUser Object

Example

Dim UserName

If Not RUser. GetLoggedOnUserName(UserName) Then
" If no user is currently logged on, display a log-on user dialog.
RUser. LogOnUser

End If

3.16.8 RUser.LogOnUserWithCode Function

RUser.LogOnUserWithCode logs on the user whose Code property matches a specified code
(User Manager > user properties > the Basic page).

Syntax

RUser.LogOnUserWithCode(Code: String): Boolean
Argument Description

Code The code of the user to log on.

Remarks

The method only operates on users connected to the computer on which a visualization
project is running.

Return values

Value Meaning
True A user with the specified code exists.
False A user with the specified code does not exist.

I Reliance 4 - Scripts

RUser Object m

5l RUser Object

Example

Dim UserCode

' Get the value of the tag UserCode from the device System.
UserCode = RTag. GetTagValue("System", "UserCode")

If RUser. LogOnUserWithCode(UserCode) Then

End 1f
3.16.9 RUser.LogOnUserWithNameAndPassword Function

RUser.LogOnUserWithNameAndPassword logs on the user whose Name and Password
properties match specified credentials (User Manager > user properties > the Basic page).

Syntax
RUser.LogOnUserWithNameAndPassword(UserName, Password: String): Boolean
Argument Description

UserName |The name of the user to log on.

Password The password of the user to log on.

Remarks

The method only operates on users connected to the computer on which a visualization
project is running.

Return values

Value Meaning

True A user with the specified credentials exists.

False A user with the specified credentials does not
exist.

Reliance 4 - Scripts N

m RUser Object

5l RUser Object

Example

Dim UserName, Password

' Get the value of the tag UserName from the device System.
UserName = RTag. GetTagValue("System", "UserName")

' Get the value of the tag Password from the device System.
Password = RTag. GetTagValue("System", "Password")

If RUser. LogOnUserWithNameAndPassword(UserName, Password) Then

[

End If
3.16.10 RUser.UserExists Function

RUser.UserExists determines whether a specified user exists.
Syntax

RUser.UserExists(User: Variant): Boolean
Argument Description

User The name or ID of the user.

Return values

Value Meaning

True The user exists.

False The user does not exist.
Remarks

The method only considers users connected to the computer on which a visualization
project is running.

I Reliance 4 - Scripts

RUser Object ikl

5l RUser Object

Example
Dim UserID
If RUser. UserExists("Operator") Then " If a user of the name Operator exists.
UserID = RUser. GetUserID("Operator") ' Get the ID of the user.
! o o .
End If

Reliance 4 - Scripts N

m RWS Object

3.17 RWS Object

The RWS object implements methods for accessing the Web service of Reliance data servers.

Methods:
| RWS.GetThinClientList Procedure

3.17.1 RWS.GetThinClientList Procedure

RWS.GetThinClientList returns a list of objects containing information about thin clients
connected to the data server.
Syntaxe

RWS. GetThinClientList ByRef ClientList: Variant, ByRef ClientCount:
Variant

Argument |Popis
ClientList List of connected thin clients.

ClientCount |Number of connected thin clients.

5l RWS Object

Example

Dim ClientList, ClientCount, ClientIndex, ClientInfo
' Retrieving the list of thin clients
RWS. GetThinClientList ClientList, ClientCount
RTag. SetTagValue "System", "ThinClients Count", ClientCount
For ClientIndex = 0 To ClientCount - 1
Set ClientInfo = ClientList(ClientIndex)

RTag. SetTagElementValue "System", "ThinClients SessionId", ClientIndex, ClientInfo.
SessionId

RTag. SetTagElementValue "System", "ThinClients IPAddress", ClientIndex, ClientInfo.
IPAddress

RTag. SetTagElementValue "System", "ThinClients SoftwareType", ClientIndex,

ClientInfo. SoftwareType ' Web Client = 0, Mobile Client = 1

RTag. SetTagElementValue "System", "ThinClients SoftwareVersion", ClientIndex,
ClientInfo. SoftwareVersion

RTag. SetTagElementValue "System", "ThinClients ComputerId", ClientIndex, ClientInfo

I Reliance 4 - Scripts

RWS Object m

ComputerId

RTag. SetTagElementValue "System", "ThinClients ComputerName", ClientIndex,
ClientInfo. ComputerName

RTag. SetTagElementValue "System", "ThinClients UserId", ClientIndex, ClientInfo.
UserId

RTag. SetTagElementValue "System", "ThinClients UserName", ClientIndex, ClientInfo.
UserName

RTag. SetTagElementValue "System", "ThinClients RegisterDateTime", ClientIndex,
ClientInfo. RegisterDateTime

RTag. SetTagElementValue "System", "ThinClients LastRequestDateTime", ClientIndex,
ClientInfo. LastRequestDateTime

RTag. SetTagElementValue "System", "ThinClients RequestCount", ClientIndex,
ClientInfo. RequestCount

RTag. SetTagElementValue "System", "ThinClients Disconnected", ClientIndex,
ClientInfo. Disconnected

Set ClientInfo = Nothing
Next

Reliance 4 - Scripts N

	Introduction
	VBScript Language Reference
	Syntax of procedure and function calls
	Working with properties and methods of objects
	Data Type Functions
	CBool Function
	CByte Function
	CCur Function
	CDate Function
	CDbl Function
	CInt Function
	CLng Function
	CSng Function
	CStr Function
	Fix Function
	Int Function
	IsArray Function
	IsDate Function
	IsEmpty Function
	IsNull Function
	IsNumeric Function
	IsObject Function
	TypeName Function
	VarType Function

	Date and Time Functions
	Date Function
	DateAdd Function
	DateDiff Function
	DatePart Function
	DateSerial Function
	DateValue Function
	Day Function
	Hour Function
	Minute Function
	Month Function
	MonthName Function
	Now Function
	Second Function
	Time Function
	Timer Function
	TimeSerial Function
	TimeValue Function
	Weekday Function
	WeekdayName Function
	Year Function

	Array Functions
	Array Function
	Dim Statement
	Erase Statement
	Filter Function
	IsArray Function
	Join Function
	LBound Function
	Private Statement
	Public Statement
	ReDim Statement
	Split Function
	UBound Function

	String Functions
	Asc Function
	Chr Function
	FormatCurrency Function
	FormatDateTime Function
	FormatNumber Function
	FormatPercent Function
	InStr Function
	InStrRev Function
	LCase Function
	Left Function
	Len Function
	LTrim Function
	Mid Function
	MonthName Function
	Replace Function
	Right Function
	RTrim Function
	Space Function
	StrComp Function
	String Function
	StrReverse Function
	Trim Function
	UCase Function
	WeekdayName Function

	Conversion Functions
	Asc Function
	CBool Function
	CByte Function
	CCur Function
	CDate Function
	CDbl Function
	Chr Function
	CInt Function
	CLng Function
	CSng Function
	CStr Function
	DateSerial Function
	DateValue Function
	Day Function
	Fix Function
	Hex Function
	Hour Function
	Int Function
	LCase Function
	Minute Function
	Month Function
	Oct Function
	Second Function
	TimeSerial Function
	TimeValue Function
	UCase Function
	Weekday Function
	Year Function

	Math Functions
	Abs Function
	Atn Function
	Cos Function
	Exp Function
	Fix Function
	Int Function
	Log Function
	Rnd Function
	Round Function
	Sgn Function
	Sin Function
	Sqr Function
	Tan Function

	Miscellaneous Functions
	Eval Function
	GetObject Function
	GetRef Function
	InputBox Function
	LoadPicture Function
	MsgBox Function
	RGB Function
	ScriptEngine Function
	ScriptEngineBuildVersion Function
	ScriptEngineMajorVersion Function
	ScriptEngineMinorVersion Function

	VBScript Statements
	Call Statement
	Const Statement
	Dim Statement
	Do...Loop Statement
	Erase Statement
	Execute Statement
	Exit Statement
	For Each...Next Statement
	For...Next Statement
	Function Statement
	If...Then...Else Statement
	On Error Statement
	Option Explicit Statement
	Private Statement
	Public Statement
	Randomize Statement
	ReDim Statement
	Rem Statement
	Select Case Statement
	Set Statement
	Stop Statement
	Sub Statement
	While...WEnd Statement
	With Statement

	VBScript Constants
	Color Constants
	Comparison Constants
	Date and Time Constants
	Date Format Constants
	Miscellaneous Constants
	MsgBox Constants
	String Constants
	Tristate Constants
	VarType Constants

	VBScript Operators
	Addition Operator (+)
	And Operator
	Assignment Operator
	Concatenation Operator (&)
	Division Operator (/)
	Eqv Operator
	Exponentiation Operator (^)
	Imp Operator
	Integer Division Operator (\)
	Is Operator
	Mod Operator
	Multiplication Operator (*)
	Negation Operator (-)
	Not Operator
	Or Operator
	Subtraction Operator (-)
	Xor Operator

	Reliance-defined Objects
	Reliance-defined Objects
	Execution of Scripts in the Runtime Environment
	Processing of Data Passed to Scripts from the Runtime Environment
	Working with Global Constants, Variables, Procedures and Functions
	Tips for Writing Scripts
	RAlm Object
	RAlm.AckAlarm Procedure
	RAlm.AckAllAlarms Procedure
	RAlm.CreateAlarm Procedure
	RAlm.CurrentAlarms Procedure
	RAlm.CurrentAlarmsByDevice Procedure
	RAlm.DbAlarms Procedure
	RAlm.DbAlarmsByDevice Procedure
	RAlm.DbAlarmsByFilter Procedure
	RAlm.DisableDeviceAlarms Procedure
	RAlm.EnableDeviceAlarms Procedure
	Alarm Type Constants
	Alarm Triggering Condition Constants

	RDb Object
	RDb.AppendRecord Procedure
	RDb.CreateTableObject Function
	RDb.GetTagHistValue Function
	RDb.GetTagStatistics Procedure

	RDev Object
	RDev.ConnectToCommDriver Procedure
	RDev.SendCustomData Procedure
	RDev.RDev.ReceiveCustomDataReply Procedure

	RError Object
	RError.Code Property
	RError.Description Property
	The List of Reliance-defined Objects Error Codes

	RInet Object
	RInet.SendMail Function

	RModem Object
	RModem.GSMSendATCommand Function
	RModem.GSMGetSMSStatus Function
	RModem.GSMSendSMS Function
	RModem.GSMSendSMSEx Function
	The List of Error Codes (CMS) According to GSM 07.05 Standard

	RScr Object
	RScr.DisableScript Procedure
	RScr.EnableScript Procedure
	RScr.ExecScript Procedure
	RScr.GetCurrentScriptData Function
	RScr.GetCurrentScriptDataEx Function
	RScr.GetScriptInfo Function
	RScr.GetScriptText Function
	Basic Events
	Events Triggered by a Component
	Events Triggered by an SMS Message
	Events Triggered by an Alarm
	Events Triggered by a Thin Client Request

	RSys Object
	RSys.ActivateWindow Procedure
	RSys.CloseWindow Procedure
	RSys.ConvertTimeToDST Function
	RSys.CopyFile Function
	RSys.CreateDir Function
	RSys.DateTimeToInt64Time Function
	RSys.DeleteFile Function
	RSys.DirExists Function
	RSys.ExecApp Procedure
	RSys.ExitRuntimeModule Procedure
	RSys.FileExists Function
	RSys.GetComputerName Function
	RSys.GetProjectDir Function
	RSys.Int64TimeToDateTime Function
	RSys.LocalDateTimeToUTCDateTime Function
	RSys.LogMessage Procedure
	RSys.Now Function
	RSys.PlaySound Procedure
	RSys.PrintCustomReport Procedure
	RSys.PrintDbReport Procedure
	RSys.PrintDbTrend Procedure
	RSys.PrintTagDbTrend Procedure
	RSys.PathToRelativePath Function
	RSys.RelativePathToPath Function
	RSys.RemoveDir Function
	RSys.RenameFile Function
	RSys.ReplaceCZChars Function
	RSys.RestartProject Procedure
	RSys.RestartWindows Procedure
	RSys.SaveCustomReport Procedure
	RSys.SetLocalTime Function
	RSys.SetMainWindowTitle Procedure
	RSys.ShowCustomReport Procedure
	RSys.ShowDbReport Procedure
	RSys.ShowDbTrend Procedure
	RSys.ShowTagDbTrend Procedure
	RSys.ShutDownWindows Procedure
	RSys.SetProgramLanguage Procedure
	RSys.SetProjectLanguage Procedure
	RSys.Sleep Procedure
	RSys.UTCDateTimeToLocalDateTime Function

	TTable-type Objects
	TTable.ArchiveName Property
	TTable.DatabaseName Property
	TTable.DateFieldValue Property
	TTable.IsArchive Property
	TTable.TimeFieldValue Property
	TTable.Append Procedure
	TTable.Bof Function
	TTable.Cancel Procedure
	TTable.CloseTable Procedure
	TTable.CreateTable Function
	TTable.Delete Procedure
	TTable.DeleteTable Function
	TTable.Edit Procedure
	TTable.EmptyTable Function
	TTable.Eof Function
	TTable.FieldExists Function
	TTable.First Procedure
	TTable.GetFieldValue Function
	TTable.Last Procedure
	TTable.MoveBy Procedure
	TTable.Next Procedure
	TTable.OpenTable Function
	TTable.Post Procedure
	TTable.Prior Procedure
	TTable.SetFieldValue Procedure
	TTable.TableExists Function
	TTable.UpdateTableStructure Procedure

	RTag Object
	RTag.SetTagElementValues Procedure
	RTag.GetTagElementValue Function
	RTag.GetTagValue Function
	RTag.MoveTagElementValues Procedure
	RTag.MoveTagElementValuesToSimpleTag Procedure
	RTag.MoveTagValue Procedure
	RTag.MoveTagValueToArrayTag Procedure
	RTag.SetTagElementValue Procedure
	RTag.SetTagValue Procedure
	RTag.UpdateTagValue Procedure

	RUser Object
	RUser.CheckUserAccessRights Function
	RUser.CheckUserPassword
	RUser.GetLoggedOnUserName Function
	RUser.IsUserAdmin Function
	RUser.GetUserID Function
	RUser.LogOffUser Procedure
	RUser.LogOnUser Procedure
	RUser.LogOnUserWithCode Function
	RUser.LogOnUserWithNameAndPassword Function
	RUser.UserExists Function

	RWS Object
	RWS.GetThinClientList Procedure

