
PLC TECOMAT
Programmer's Manual

Table of contents

3 TXV 001 09.02

PLC TECOMAT Programmer's Manual

10th edition - January 2005

Table of contents

1. INTRODUCTION ...6

2. PLC AND USER PROGRAM ..8
2.1. Activation sequence ...9
2.2. PLC operating modes...9
2.3. User program restarts...11

3. USER PROGRAM STRUCTURE ..13

4. INSTRUCTION AND OPERAND STRUCTURE..17
4.1. Immediate operand ..18

4.1.1. Number system ...18
4.1.2. Direct data formats..19

4.2. Address operand ..21
4.2.1. Bool type operand ...23
4.2.2. Byte / usint / sint operands ..24
4.2.3. Word / uint / int operands ..25
4.2.4. Dword / udint / dint operands ..27
4.2.5. Real type operand...28
4.2.6. Lreal type operand ..30

4.3. Transition destination ...32
4.4. Instruction parameter..32

5. SCRATCHPAD MEMORY STRUCTURE..34
5.1. Input images X..35
5.2. Output images Y...35
5.3. System registers S ...35
5.4. User registers R..44

6. DIRECT INPUT/OUTPUT ACCESS ..45
6.1. Direct input/output access - 16 bit model ...45

6.1.1. Physical addresses in PLC TECOMAT NS950 ...46
6.1.2. Physical addresses in PLC TECOMAT TC400, TC500, TC600......................47

6.2. Direct input/output access - 32 bit model ...47

7. OTHER ADDRESS SPACES ..49
7.1. Data D ..49
7.2. Tables T ...49
7.3. DataBox additional data memory ...51

8. RESULT STACK ...56
8.1. Stack structure..57
8.2. Data interpretation at the stack - 16 bit model..58

8.2.1. Data of bool type - 16 bit model ..58

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 4

8.2.2. Data of byte / usint / sint type - 16 bit model ...59
8.2.3. Data of word / uint / int type - 16 bit model..59
8.2.4. Data of dword / udint / dint type - 16 bit model..59
8.2.5. Data of real type - 16 bit model ...60

8.3. Data interpretation at the stack - 32 bit model..60
8.3.1. Data of bool type - 32 bit model ..60
8.3.2. Data of byte / usint / sint type - 32 bit model ...61
8.3.3. Data of word / uint / int type - 32 bit model..61
8.3.4. Data of dword / udint / dint type - 32 bit model..62
8.3.5. Data of real type - 32 bit model ...62
8.3.6. Data of lreal type- 32 bit model ...63

8.4. Switching among stacks ...63

9. COMPILER DIRECTIVES ...65
9.1. #program ..65
9.2. #unit, #module..66
9.3. #include, #usefile..67
9.4. #def ..67
9.5. #reg, #rem ..68
9.6. #struct...70
9.7. #data, #table...74
9.8. #if, #elif, #else, #endif...75
9.9. #ifdef, #ifndef, #else, #endif ...76
9.10. #usi...77
9.11. #label..78
9.12. #macro, #endm ..79
9.13. #mnemo, #mnemoend ...80
9.14. #useoption..81

10. USER PROCESSES ...83
10.1. General principles of activation ..83
10.2. I/O scan ..85
10.3. Restart treatment - processes P62, P63 ..86
10.4. Loop processes ..87

10.4.1. Basic process P0...87
10.4.2. Four-phase activated processes P1, P2, P3, P4...88
10.4.3. Time-activated processes P5, P6, P7, P8, P9 ..89
10.4.4. User-activated processes P10 to P40 ...90
10.4.5. P64 cycle final process..91

10.5. Interrupt processes...91
10.5.1. Time - activated interrupt P41 ...93
10.5.2. Input - activated interrupt P42 ...93
10.5.3. Error - activated interrupt P43 ...95
10.5.4. HW counter - activated interrupt or incremental encoder activated

interrupt P44..96
10.5.5. Serial channel - activated CH2 P45 ..96

10.6. Breakpoint treatment - processes P50 to P57..96
10.7. P60 Subroutine package ..97

11. INSTRUCTION SET ..98

Table of contents

5 TXV 001 09.02

12. USER INSTRUCTIONS...100
12.1. Application of USI in a user program..100
12.2. USI for particular series of central units..100
12.3. Creating a user-defined USI ...101
12.4. C language compilers used ...102
12.5. Example of creation of a user-defined instruction USI103
12.6. Application example for USI instruction..104
12.7. Comments ..104

A. APPENDIX ..106
A.1. Instruction execution time for central unit CPM-1E TECOMAT NS950................106
A.2. Instruction execution time for central unit CPM-1M TECOMAT NS950108
A.3. Instruction execution time for central unit CPM-2S TECOMAT NS950................111
A.4. Instruction execution time for central units CPM-1D TECOMAT NS950 and

TECOMAT TC400, TC500, TC600...114
A.5. Instruction execution time for central units CPM-1B, CPM-2B TECOMAT

NS950 ...119
A.6. Instruction execution time for central units CP-7001, CP-7002 TECOMAT

TC700 and TECOMAT TC650 ..124

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 6

1. INTRODUCTION

The objective of the manual is to give information on the TECOMAT programmable
logic controllers (PLCs) and facilitate their programming. In the next text the central units
are described by their series (see text), not by PLC types.

Central unit (CPU) series

Every PLC TECOMAT type has several central processor units (CPUs) available that
are differentiated by marking them by means of a letter representing their series.

Every series of these CPUs has given their size of memory spaces, the range of the
instruction file and operand, stack structure and is the main parameter for the compiler of
a user program. The following central units PLC TECOMAT are divided by their properties
into the following series:

B series - NS950 CPM-1B, CPM-2B
C series - TC650, TC700 CP-7001, CP-7002
D series - TC400, TC500, TC600, NS950 CPM-1D
E series - NS950 CPM-1E
M series - NS950 CPM-1M
S series - NS950 CPM-1S, CPM-2S

Manual division

♦ The 2nd chapter describes general principles for processing a user program in a PLC.
♦ The 3rd chapter describes the basic structure of a user program in the Mosaic

development environment.
♦ In 4th chapter the structure of instructions and their operands are described.
♦ The 5th chapter describes the structure of the scratchpad memory including a detailed

overview of system services contained in system registers S.
♦ The 6th chapter is aimed at the basic principles of the physical addressing of the PLC

units.
♦ The 7th chapter describes other address spaces for data - D data, T tables and

DataBox additional memory.
♦ The 8th chapter describes the structure and behaviour of result stackers
♦ The 9th chapter contains an overview of the directives that can be used in the Mosaic

development environment including samples for their applications.
♦ The 10th chapter deals with user processes
♦ The 11th chapter contains an overview of instructions and permissible operands.
♦ In the 12th chapter user instructions are described

The examples in the manual are in their mnemocode only due to space. To display the
examples in a relay line diagram please use the Mosaic development environment.

Related manuals

Detailed information on instructions are contained in the PLC TECOMAT Instruction set
manual - 16 bit model (TXV 001 05.02 - for CPU of series B, D, E, M, S) and PLC
TECOMAT Instruction set manual - 32 bit model (TXV 004 01.02 - for CPU of series C).

The examples for the solution of various partial problems are contained in the PLC
TECOMAT Programming examples manual – 16 bit model (TXV 001 07.02 – for CPUs of

1. Introduction

7 TXV 001 09.02

B, D, E, M, S series) and in the PLC TECOMAT Programming examples manual – 32 bit
model (TXV 004 04.02 – for CPUs of C series).

PLC programming

The programming of control algorithms and testing of the correctness of created
programs for the TECOMAT PLCs is carried out on standard PCs. For connection with the
PLC standard serial channel of these PCs is used. Some types of the central units are
additionally equipped with Ethernet interface and USB.

With each PLC a CD-ROM with examples and the Mosaic development environment for
Windows in the Mosaic Lite version is provided.

The examples of the PLC programs contain instructions for the operation of various
PLC units and also the examples from manuals TXV 001 07.02 and TXV 004 04.02.

The Mosaic development environment

The Mosaic development environment is a complex development tool for programming
PLC TECOMAT applications and TECOREG controllers that provides a user-friendly
application for program creation and debugging. It is a product running under Windows
2000 / XP platforms where a great number of modern technologies are employed. The
modular structure of the Mosaic development environment enables the users to create
such an environment from its parts that he will need. The following versions are available:

Mosaic Lite non-keyed version with a possibility to program a PLC with two
peripheral units

Mosaic Compact enables programming compact PLC TECOMAT of series TC400, TC500,
TC600 and TECOREG controllers without limitations

Mosaic Profi designated for all systems of company Teco without limitations

The basic environment contains the components necessary for creation of a program:
text editor xPRO mnemocode compiler, debugger, a module for communication with the
PLC, a PLC configuration module and help. A simulator of operation panels ID-07 / ID-08
and built-in TC500 panel are part of the basic environment.

The expansion of the environment is done by means of plug-ins - modules that are
initialised in connection with the basic environment, so the Mosaic development
environment can be expanded to have a possibility of further programming - structured
text according to standard EN 61131 (Mosaic ST plugin), language of ladder diagrams
(Mosaic LD plugin - under development) or function blocks (Mosaic FBD plugin - under
development) and other support tools for designing operator panel screens (PanelMaker),
a tool for working with PID controllers (PIDMaker), graphic on-line analysis of variables
being monitored or off-line analysis of archived data (GraphMaker).

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 8

2. PLC AND USER PROGRAM

What is a Programmable Logic Controller

A programmable logic controller (further in the text as PLC) is a numerical control
electronic system designed to control the processes in industrial environments. It uses a
programmable memory for internal saving of user-oriented instructions that are used for
the execution of specific functions to control various types of machines or processes
through digital or analog inputs and outputs.
The company Teco a. s. manufactures PLC systems under the TECOMAT trademark.

Principles of user program execution

The control algorithm of a programmable logic controller is written as a sequence of
instructions in the memory of a user program. The central unit stepwise reads the memory
instructions, executes the operations assigned to them with the data from the scratchpad
memory and stack or executes transitions in instruction sequences if the instruction is
from the group of organizational instructions. When all instructions of the algorithm
required are executed, the central unit updates the output variables into output peripheral
units and updates the states from the input peripheral units into scratchpad memory. This
is continuously repeated and the process is called a "program cycle" (figure 2.1).

Cyclic execution of user program

The one-time state update of input variables during the program cycle avoids the
possibilities of hazardous states during solution of control algorithm (the input variables
cannot be changed during computation).

Before creating a user program for the PLC it is necessary to realize this. In some
cases this can facilitate the solution of the problems, sometimes it makes the situation
more complicated.

Figure 2.1 Designing of a user program in PLC

2. PLC and user program

9 TXV 001 09.02

On figure 2.1 a simplified layout for a user program in the PLC is shown with the
following meanings:
♦ activation sequence is the activity of the PLC after switching the supply (see chapter

2.1.)
♦ restart is the activity of the PLC immediately before executing the user program (see

chapter 2.3.)
♦ the RUN and HALT modes represent the operating modes of the PLC (see chapter

2.2.)
♦ read out from the inputs represents the transcription of values from the PLC input units

into zone X in the scratchpad memory
♦ the execution of the user program is done with the values in the scratchpad memory
♦ write to outputs represents the transcription of values as calculated by the user program

from zone Y into the PLC output units
♦ control includes the preparation of the PLC central unit for the solution of next program

cycle

The activities into outputs, control and read out from the inputs are together called "I/O
scan".

2.1. ACTIVATION SEQUENCE

The activation sequence represents the activity of the PLC immediately after switching
power supply. It includes HW as well as SW testing of the PLC and setting the PLC to a
defined initial state. In the central units equipped with setting buttons or in the PLC
equipped with a keyboard panel (TC500) it is possible to call the setup mode for setting up
the parameters after switching on power supply.

After the termination of the activation sequence, restart is carried out, the PLC is
switched to the RUN mode and the user program is started. If the PLC diagnostics
evaluates a critical error during the activation sequence, the PLC remains in the HALT
mode and the error is signalised.

If the setup mode is called and the activation sequence is carried out after its
termination, but the PLC then switches to the HALT mode, the user program is not
executed, the PLC outputs remain locked and the PLC is expecting the commands from
the superior system. The user program can be run either by means of the superior system
or by switching the power supply off and on. This can be used in such cases, when there
is a program in the PLC that significantly violates its basic functions. The details on
behaviour of particular PLC types are given in corresponding manuals.

2.2. PLC OPERATING MODES

The TECOMAT PLC can run in two basic modes. The two modes are called RUN and
HALT.

RUN Mode

In the RUN mode, the PLC reads the values of the input signals from the input units,
executes the instructions of the user program and writes the calculated values of output
signals into the output units. These activities represent a program cycle.

As you can see in figure 2.1, for the PLC the inputs are evaluated discontinuously (a
general property that differs digital systems from fully analog ones), the sampling

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 10

sequence of the PLC is given mainly by the size and structure of the user program. Based
on the capacity of the central unit, the cycle time ranges from milliseconds up to hundreds
of milliseconds.

HALT Mode

The HALT mode is mainly used for the activities connected with user program editing.
In this mode, neither the user program nor data transmission between the central unit and
peripheral units are executed.

PLC behaviour during a critical error

An exception from the above mentioned is, if a critical error occurs in the PLC that
inhibits control activities. In this case, a mechanism for critical error treatment is started
and treats the critical error from the point of control security and always switches the PLC
to the HALT mode.

Operating mode change

The change of the PLC modes can be done through a superior system (master
computer) that is connected to the communication channel supporting system services
(serial channel, Ethernet or USB) or by means of service inputs. Typically, a standard PC
represents this superior system serving as a programming means, monitoring or
visualization workplace for the operation of the object being controlled.

When changing the PLC operating modes, some activities are executed standardly and
some are optional.

It is possible to say in general that the change of the PLC operating mode is an activity
requiring higher concentration of the operators, since in many cases it very significantly
influences the state of the object being controlled. The change from the RUN to the HALT
mode can be an example when the PLC stops executing of the user program and the
object connected is not controlled. Therefore we recommend reading the following text
very carefully.

When the change of the PLC mode is done through the Mosaic development
environment, the optional activities for the mode change are part of the Project manager in
folder Environment / Control PLC.

Switching from HALT to RUN

When switching from the HALT to the RUN mode the following activities are executed:
♦ user program integrity test
♦ software configuration test for the peripheral units stated in the user program
♦ user program start

The following items are optional:

♦ PLC error reset
♦ warm or cold restart
♦ output locking during user program execution

Switching from RUN to HALT

When switching from the RUN the HALT mode the following activities are executed:

♦ the of the user program stops
♦ locking (disconnection) of PLC outputs

2. PLC and user program

11 TXV 001 09.02

The following items are optional:

♦ PLC error reset
♦ PLC output reset

If during the change from one operating mode to the other one a critical error occurs,
the PLC sets the HALT mode, indicates the error and waits for clearing the error cause.

Warning: Control stop through the HALT mode is designated only for PLC program
debugging purposes. This feature does not replace the CENTRAL STOP
feature in any way. The CENTRAL STOP circuits must be connected in
such a way so that their function is independent on PLC work!

Details on behaviour and possibilities of particular PLC types are given in
corresponding manuals.

2.3. USER PROGRAM RESTARTS

Restart is an activity of the PLC, the task of which is to prepare the PLC to execute the
user program. Under normal conditions restart is executed after a successful termination
of the activation sequence and at every change of user program.

The TECOMAT PLCs differ two types of restart, warm and cold. The warm restart
enables to holdback the values in the registers also when power supply is off (remanent
zone). The cold restart always performs full memory initialisation.

Activities during restart

During restart, the following activities are performed:

♦ user program integrity test
♦ reset of the entire PLC scratchpad
♦ remanent zone reset (cold restart only)
♦ setting of backed-up registers (warm restart only)
♦ initialisation of system registers S
♦ initialisation and check of PLC peripheral system

User program startup without restart

The user program is also possible to be run without restarting, in this case only the user
program integrity test and PLC peripheral system check are performed (not initialisation).

User processes during restart

Dependent on the type of restart being executed functions also the scheduler of user
processes P. If warm restart is executed within HALT → RUN switching, user process P62
is executed as the first one after switching into the RUN mode (if it is programmed). In
case of cold restart, user process P62 is executed as the first one. If no restart during
switching into the RUN mode is executed, process P0 is executed as the first one after
switching.

Program change during PLC run

The Mosaic development environment also enables a program change when the PLC is
running. In this case it is important to realize that for the period of loading of a new

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 12

program, the execution of the program is topped without locking the outputs. This can also
take a couple of seconds!

Restart type preset

The type of restart after starting a user program from the Mosaic development
environment can be set in the Manager project in folder Environment | Control PLC. For
the type of restart after switching the power supply on for the PLC (after a successful
activation sequence) is given the option in folder Sw | Cpm.
This setting will automatically be transferred during compilation into the user program by
means of directive #useoption.

3. User program structure

13 TXV 001 09.02

3. USER PROGRAM STRUCTURE

Programming language of xPRO compiler

The programming language of the xPRO compiler within the Mosaic development
environment is based on the mnemonic language of the PLC as described in chapter 4.
The extension is given by a possibility to use symbolic names of the variables (registers,
labels, etc.) and directives for the compiler. The xPRO compiler can be incorporated with
compilers of higher language, e.g. according to IEC 61131-3.

Rules for program write

The user program write is governed by several simple rules:
♦ Each line of the source text of the program can have one instruction at most. This

means the line can also be empty or can contain just a comment. Attention - a label is
also an instruction!

♦ Symbolic names can begin with letters 'a' to 'z', 'A' to 'Z' or '_', and can also contain
characters 'a' to 'ž', 'A' to 'Ž', '0' to '9' and '_' (underline character). A symbolic name
must not begin neither with a digit nor a character with a diacritical mark (wedges and
acute accents).

Attention! A symbolic name must not be identical with any of the reserved symbols
of the compiler (see Table 3.1).

♦ Comments start after the semi-colon character ';'. The entire text beyond this character
is considered as a comment and ignored.

♦ Lower-case and upper-case letters can be used arbitrarily, the compiler internally
converts all letters to upper-case ones, thus it is not case sensitive.
When using these rules it is possible to write the following simple program:

Example 3.1
#def StartStop %X0.0 ;declaration of inputs, outputs and constants
#def Output %Y0.0
#def Value 21
#reg bool Reset ;declaration of registers
#reg uint Timer, Counter
;
P 0 ;program start

LD StartStop ;timer control bit
LD Reset ;setting timer to zero
LD Value ;timer preset
RTO Timer.3 ;second timer function
WR Output ;output
JMC Jump ;conditional jump
INR Counter ;number of cycles, when Output is = 0

Jump: ;label
E 0 ;program end

The program as per example 3.1 represents the basic components of the user program
in the Mosaic development environment.

The Mosaic development environment automatically creates the program header in the
control file xxx.mak, where xxx is the name of the project within the project group. In the

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 14

Mosaic development environment the #program directive is not written into the source file,
as opposed to the xPRO environment where the directive is used.

After the program header is created, declarations of inputs, outputs, constants and
registers follow. If we do not use these declarations, the user program then can be written
by means of absolute operands (i.e. X, Y, S, D, R registers). But we do not recommend
fundamentally to do this since this way is very confused and makes prospective program
modifications very difficult. In addition, some program designs using structures and
symbolic references are almost impracticable when using absolute addresses.

Problems also can occur when transferring the program algorithm in absolute
representation among particular types of central units.

The central units with the 32 bit stack width supporting a higher language require so
called percent convention when writing absolute operands, this is to say that the %
character has to be written before an absolute operand character (see example 3.1). All
prefixes (indx, bitpart, bitcnt, offset, sizeof) are written with two underline characters
(__indx, __bitpart, __bitcnt, __offset, __sizeof) and the following object is parenthesised.
These measures are necessary to eliminate collision with the symbolic names of a higher
language. In case of the central units with the 16 bit stack width, the use of the percent
character and underline characters before an absolute operand is not obligatory, but we
recommend to use them due to code transferability.

Software configuration is the description of the peripheral units used by means of the
#unit directive, or #module (TC650, TC700) respectively. These directive determine the
interconnection of the inputs and outputs with the scratchpad memory and enable the data
transfer between the user program and environment. The Mosaic development
environment generates a list of the #unit / #module directives, related initialisation tables
and necessary declarations automatically based on filled-in tables in the configuration
section (Project manager, folder Hw | HW Configuration) in an individual file xxx.hwc,
where xxx is the name of the project.

If we check the option Suppress directive #UNIT in the configuration section, then the
PLC will execute the user program only in the scratchpad memory. The inputs will not be
downloaded into the scratchpad memory and there will be no write into the outputs in the
scratchpad memory. The outputs will remain locked. This state can be useful when
debugging an algorithm in the PLC without connected technology.

After this the user program follows. Since the Mosaic development environment
contains the xPRO compiler, the user program instruction write in this environment is
identical to the recent xPRO development environment. Each user program must have the
P0 process even if it should remain empty. The P0 and E0 instructions are obligatory
ones.

Using comments is not obligatory, but the rule is, the better the program is commented
with more details, the easier to do some modifications later on is.

The indentation of the instruction by means of tabulators, as you can see from the
example, is not necessary, it is enough to use the space character to separate the
operand and all instructions could be written from the line margin but we try to do our best
to have the program as well-ordered as possible.

In table 3.1 there is a list of reserved compiler symbols that cannot be used as symbolic
names since they are used by the compiler to mark preset object. It is necessary to pay
attention to this list since the mistakes caused by using the reserved symbols for another
purpose could result in an unpredictable behaviour.

3. User program structure

15 TXV 001 09.02

Table 3.1 List of reserved compiler symbols that cannot be used as a symbolic name
(valid for upper-case and lower-case letters)

A* CHGS DIGITOUT8 FTSS LDQ OPTION
ABS CHPAR DIGIT_050 G* LDS OR
ABSD CMDF DIGIT_200 GS* LDSR ORC
ABSL CMF DIGIT_300 GT LDU ORL
ACS CML DIGIT_400 GTDF LDX P
ACSD CMP DIGIT_500 GTF LDY PERIOD_500
ADD CMPS DIGIT_600 GTS LEA PERIOD_600
ADDF CNT DIGIT_633 H* LEAX PID
ADF CNV DIGIT_63X HIGH LEAY PIDA
ADL COLD DIGOUT16 HPD LET PLC
ADX COS DIGOUT8 HPE LETX POP
ALIGNED COSD DIG_10IN_10OUT HS* LINK POPB
ANALOG_050 COUNT_500 DIG_5IN_6OUT HYP LINT POPL
ANALOG_200 COUNT_600 DINT HYPD LMS POPQ
ANALOG_300 CP7001 DISPASCII IC_04 LN POPW
ANALOG_400 CP7002 DISPHEX IDB LND POW
ANALOG_500 CPM1A DIV IDFL LOG POWD
ANALOG_600 CPM1B DIVL IDFW LOGD PROGRAM
ANC CPM2B DIVS IF LONG PRV
AND CPM1D DL0, DL1...* IFDEF LOW PSHB
ANL CPM1E DQ0, DQ1...* IFL LREAL PSHL
AN_4IN CPM1M DS* IFNDEF LT PSHQ
AN_4IN_4OUT CPM1S DST IFW LTB PSHW
AN_8IN CPM2S DT ILDF LTDF PUBLIC
AN_8IN_4OUT CS* DW0, DW1...* ILF LTF PUT
AS* CSG DWORD IMP LTS PUTX
ASB CSGD E INCLUDE LWORD R*
ASN CSGL EC INDX** M* R0, R1...*
ASND CTD ED INR M0, M1...* RCHK
ATN CTU EOC INT MACRO RD0, RD1...*
ATND D* EQ INTIN_500 MAX RDB
B* D0, D1...* EQDF INTIN_600 MAXD RDT
BAS DATA EQF IRC_500 MAXF REAL
BCD DATE ENDIF IRC_600 MAXS REC
BCL DCR ENDM IWDF MD0, MD1...* RED
BCMP DD0, DD1...* ES* IWF MF0, MF1...* REG
BET DEF ETH1, ETH2... JB MIN REI
BETX DF0, DF1...* EXP JC MIND RES
BIL DFF EXPD JMC MINF RESM
BIN DFST EXTB JMD MINS RESX
BIT DID EXTW JMI ML0, ML1...* RET
BITCNT** DIDF F* JMP MNT RF0, RF1...*
BITPART** DIF FDF JNB MOD RFRM
BOOL DIFCNT100MS FIL JNC MODS RL0, RL1...*
BOX DIG2 FIS JNS MOV RND
BP DIG4 FIT JNZ MQ0, MQ1...* RNDD
BRC DIG8 FLG JS MTN ROL
BRD DIGIN16 FLO JZ MUD ROR
BRE DIGIN8 FLOAT L MUDF RQ0, RQ1...*
BS* DIGIN8OUT8 FLOD L0, L1...* MUF RTO
BYTE DIGIT2 FNS LABEL MUL RW0, RW1...*
C* DIGIT4 FNT LAC MULS S*
CAC DIGIT8 FS* LD MW0, MW1...* S0, S1...*
CAD DIGITIN16 FST LDC NEG SCH2
CAI DIGITIN32 FTB LDI NGL SCMP
CAL DIGITIN64 FTBN LDIB NOP SCNV
CEI DIGITIN8 FTM LDIL NXT SCON
CEID DIGITOUT16 FTMN LDIQ OFF SD0, SD1...*
CH1, CH2... DIGITOUT32 FTS LDIW OFFSET** SDEL
CHG DIGITOUT64 FTSF LDL ON SEQ

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 16

Table 3.1 List of reserved compiler symbols that cannot be used as a symbolic name
(valid for upper-case and lower-case letters) - continued

SET STATM TER UNLK WRX _ANALOG_
SETX STDF TF0, TF1...* USB1, USB2... WRY _CHX
SF0, SF1...* STE TIME USEOPTION WSTRING _GT_40_
SFL STF TL0, TL1...* USI WTB _GT_40A_
SFND STK TOD USINT X* _IC_12_
SFR STRING TOF UWDF X0, X1...* _IC_13_
SHL STRUCT TON UWF XD0, XD1...* _IM_61_
SHR SUB TQ0, TQ1...* UW0,UW1... XF0, XF1...* _INTELIG
SIN SUDF TR050 UX_52 XH_04 _INTELIGENT
SIND SUF TR200 VIRTMUX XL0, XL1...* _IR_11_
SINS SUL TR300 WAC XOC _IT_04_
SINT SUX TW0, TW1...* WARM XOL _IT_06_
SIZEOF** SW0, SW1...* U* WDB XOR _IT_12_
SL0, SL1...* SWL U0, U1...* WMS XQ0, XQ1...* _IT_15_
SLEN SWP UD0, UD1...* WORD XW0, XW1...* _KEYDISP_200_
SLFT SYNC UDFL WR X_OFF _KEYDISP_500_
SMID SYS UDFW WRA X_ON _OT_04_
SND T* UDINT WRC Y* _OT_04X_
SPEC T0, T1...* UF0, UF1...* WRI Y_OFF _OT_05
SPECIAL TABLE UFL WRIB Y_ON _OT_05X
SQ0, SQ1...* TAN UFW WRIL Y0, Y1...* _PLCTYPE_
SQR TAND UINT WRIQ YD0, YD1...* _SC_11_
SQRD TC400 UL0, UL1...* WRIW YF0, YF1...* _SPECIALTAB_
SRC TC500 ULDF WRS YL0, YL1...* _SPECTAB_
SRD TC600 ULF WRSR YQ0, YQ1...*
SREP TC700 ULINT WRT YW0, YW1...*
SRGT TD0, TD1...* UNIT WRU _ANAL_

* Symbols marked * are in the 32 bit stack width central units obligatorily used with the %
character and then it is possible to use them as a symbolic name. For example:

%SW12 ;absolute marking of register SW12
#def SW12 %X0 ;symbolic marking of input

** Symbols marked ** are in the 32 bit stack width central units obligatorily used with the
__ characters and then it is possible to use them as a symbolic name. For example:

__indx (item) ;use of prefix __indx
#def indx 20 ;symbolic marking of constant

Note: Due to continuous development and enhancement of the xPRO compiler
we do not recommend using one to four-letter symbolic names (mainly
originating from English names or abbreviations) separately or in
combination with a numeric index. When really necessary to use such a
name we recommend using the underline character before it (_A as an
example).

4. Instruction and operand structure

17 TXV 001 09.02

4. INSTRUCTION AND OPERAND STRUCTURE

Instruction

An instruction is the smallest element of the user program. It consists of a mnemocode
and an operand. Formally, we distinguish between operand-free instructions from
instructions with one operand.

Mnemonic code

A mnemocode is a group of one or three letters having a meaning of an abbreviation
usually derived from the English name of the instructions (for example AND, OR, XOR,
NEG, FLG, RET, ED, EC).

Operand-free instruction

The operand-free instruction usually processes the content of the stack top, or also
other stack layers of the stack pertinently or executes an unequivocally specified activity
(for example return from subroutine). The operand-free instruction consists of the
mnemocode only and its activity is not necessary to specify in more detail.

Instruction with one operand

The mnemocode of the operand instruction is followed with a group of characters that
specify one of the operands as agreed and with this operand the instruction works or
which specify the behaviour of the instruction (for example instruction parameter, number
of repetitions of the basic operation, jump position, etc.). The second operand for logical
and arithmetic operations is the stack top. The operand is separated from the mnemocode
at least by one space character.

Absolute addresses are written beginning with the % character, which is not obligatory
when programming 16 bit stack width central units, but we recommend to use them with
regard to the transferability of the user programs to the central units with the 32 bit stack
width.

The operands instructions can have the following structure, for example:

AND %X0
AND %Y2
OR %RW4
TON %RW16.1
JMP %L15
P 0
NOP 17
LTB %T5
POP 3
LD 123
LD %10110110

Sort of operands

According to the meaning we can specify four types of operands:

immediate operand - the instruction operand is directly a numeric value (written in the
numeric system selected), with which the required instruction is executed

address operand - determines the address of the position, from where the operation result
is read or where it is saved

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 18

transition destination - the operand is the number of the label (a labelled position in the
program), where the programmed transition (a jump or a call) is directed

instruction parameter - a single numeric or letter parameter marking the instruction in
question (for example process number, label number, null instruction
number, stack) or specifies its behaviour (for example number of stack
shifts).

From the format point of view there are no other instructions. If some instructions or the
subroutine require more parameters (function blocks, table or block instructions), they are
passed in several stack levels where the sequences of instructions LD or LDC are saved.

Operand types

According to data width several operand types are distinguished. These types are
marked in two ways - one way is marked as TECOMAT which is the marking used with
previous compiler versions, the second way of marking corresponds to IEC 61131. Both
ways of identification can be normally used. An overview is given in Table 4.1.

Tab.4.1 Operand types
TECOMAT IEC 61131 Width Numeric range

bit bool 1 bit Boolean information 0 - 1
byte 8 bits 0 to 255
usint 8 bits 0 to 255byte
sint 8 bits –128 to +127

word 16 bits 0 to 65 535
uint 16 bits 0 to 65 535word
int 16 bits –32 768 to +32 767

dword 32 bits 0 to 4 294 967 295
udint 32 bits 0 to 4 294 967 295long
dint 32 bits –2 147 483 648 to +2 147 483 647

float real 32 bits ±1,175494x10–38 to ±3,402823x1038

double lreal 64 bits ±2,2x10–308 to ±1,8x10308

Types float and double, or real and lreal as the case may be contain numeric formats
with floating point according to IEEE-754.

In the following text we will be using the types according to IEC 61131. The information
is valid also for equivalent types of TECOMAT.

4.1. IMMEDIATE OPERAND

In this case a number is written as the operand of the instruction that is directly
processed by the instruction - data carried directly in the instruction. The immediate
operand thus has the meaning of a numeric constant.

4.1.1. Number systems

Constant entry in common number systems

The numeric constant can be entered in any numeric system in the following form:

#n#cccc

where n stands for the base of the numeric system,

4. Instruction and operand structure

19 TXV 001 09.02

cccc is the number itself in the numeric system selected

If the base of the numeric system is greater than 10, then the particular digits can be
written decimally (in the form of a two-digit number) and are separated with a dot.

LD #8#360 ;octal number system
WR #60#15.28.35 ;write time data in hours,

;minutes and seconds by means of
;sexagesimal system

Shortened entry in most frequently used number systems

The most frequently numeric systems used are the decimal systems used mainly for
arithmetic instructions, the binary and hexadecimal systems used preferably for logic
instructions. These systems allow a shortened notation.

If the number is written without specifying a numeric system to be used it is considered
to be a decimal number. The binary system is marked with the % character before the
number. The hexadecimal system is marked with the $ character before the number
where digits 0 to 9, A to F are used:

LD 152 ;decimal system
AND %0111110100110100 ;binary system
AND $7D34 ;hexadecimal system

Negative numbers

For the decimal system the write of a negative number is permissible. The negative sign
causes that instead of the binary equivalent of the number the binary complement is
saved as the instruction operand of this 8 bit number (sint), 16 bits (int) or 32 bits
(dint)(according to the type of instruction).

For example, the value of -1 will have the value of 255 in the sint format, the value of 65
535 in the int format and the value of 4 294 967 295 in the dint format. The real and lreal
format already contains the information on the sign.

4.1.2. Immediate data formats

The format of the numeric constant is unequivocally determined by the type of
instruction. The instructions expect the constants of type corresponding to the description
of appropriate instruction.

If to the instruction requiring a numeric constant of 32 bit width a number of 8 bit width
is written, then the compiler adds zeros to that number to 32 bit width. This way is thus
permissible.

LDL $1F ;32 bit width expected
LDL $0000001F ;identical notation
AND %11 ;16 bit width expected
AND %0000000000000011 ;identical notation

The numeric constant of the real and lreal types is permissible only for the decimal
system. Since the real type has the same length as the dword, udint and dint types but
entirely different data interpretation, the numeric constant entry of the real type marks out
that it contains the decimal point even if it is an integral number. The presence of the
decimal point is thus the information important for the xPRO compiler to compile this
constant into the correct format.

LDL 1 ;type dint

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 20

LDL 1.0 ;type real
LDQ 1.0 ;type lreal

Note: Instead of the LDL instruction, the LD instruction is used in the user
programs for the central units with the stack width of 32 bits (CPU series
C). Nevertheless, the compiler accepts also the LDL instruction and
converts it automatically to the LD one. By doing this, program portability
is ensured (see chapter 8 Result stack).

Table 4.2 Immediate operand ranges
byte / sint byte / usint word / int word / uint

–128 to +127 0 to 255 –32768 to +32 767 0 to 65535
%0 to %11111111 %0 to %1111111111111111

–$80 to $7F $0 to $FF –$8000 to $FFFF $0 to $FFFF
#60#0 to #60#8.15 #60#0 to #60#18.12.15

dword / dint long / udint
–2147483648 to +2147483647 0 to 4294967295

%0 to %11111111111111111111111111111111
–$80000000 to $FFFFFFFF $0 to $FFFFFFFF

#60#0 to #60#59.59.59 *

real lreal
±1,175494x10-38 to ±3,402823x1038 ±2,2x10–308 to ±1,8x10308

* Sexagesimal system is valid for hours, minutes and seconds, not for days.

Symbolic name used as operand

As a immediate operand it is also possible to use a symbolic name defined by the #def
directive. A mathematical expression can be used, too.

#def number 10
LD number ;LD 10
LD number ∗ ∗ ∗ ∗4 ;LD 40

Object number as operand – prefix __indx, __bitpart, __bitcnt

If we need to use a register number, table number or label number as an operand, then
the __indx prefix will be used.

#reg uint register1,register2 ;RW0,RW2
LD __indx (register1) ;LD 0
LD __indx (register2) ;LD 2

If we need to use a register bit number as an operand, then the __bitpart prefix will be
used.

#reg bool register1,register2 ;R10.0,R10.1
LD __bitpart (register1) ;LD 0
LD __bitpart (register2) ;LD 1

If we need to use the bit ordinal number as an operand within the entire register zone,
then the __bitcnt will be used.

#reg bool register1,register2 ;R10.0,R10.1
LD __bitcnt register1 ;LD 80
LD __bitcnt register2 ;LD 81

4. Instruction and operand structure

21 TXV 001 09.02

Object address as operand - prefix __offset

By means of prefix __offset we can work with an object address as it is required by
some special functions as the pointer for data positioning.

#reg usint work[20] ;R150
LD __offset (list) ;LD 790 - for CPUs of B, D, E, M, S series

;LD 24726 - for CPU of C series

Length of object as operand - prefix __sizeof

By means of the __sizeof prefix we can work with the object length, mostly a structure.

#struct list usint first, uint second, real third
LD __sizeof (list) ;LD 7

4.2. ADDRESS OPERAND

Address operand space type

The address operand has the meaning of the position address, from where the
information being processed is read or where the operation result is saved. The type of
operand space is marked with the first character in the operand:

X - scratchpad input image
Y - scratchpad output image
S - scratchpad system registers
R - scratchpad user registers
U - physical addresses
D - user program data constant zone
T - user program table zone

This first character is sometimes called as "operand space specifier".
In the user programs for the central units with the 32 bit stack width it is obligatory to

use the beginning character of % before the specifier. By this it is determined
unequivocally that this is an absolute address and not a symbolic name. With the central
units with 16 bit stack width this way of notation is not obligatory, but we recommend to
use it with regard to user program transferability.

Symbolic name used as operand

Usually, we use the symbolic name assigned by means of the #def, #reg, #rem, #data
or #table directives as the address operand.

#def input %X0
#rem bool register1 ;R0.0 remanent
#reg bool register2 ;R1.0
#data usint record = 1,2,3,4 ;D0, D1, D2, D3
#table uint 10,tab = 1,2,3,4 ;TW10

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 22

Table 4.3 Central unit address operand ranges for series E and M
bool byte / usint / sint word / uint / int

X0.0 - X15.7 X0 - X15 XW0 - XW14
Y0.0 - Y15.7 Y0 - Y15 YW0 - YW14
S0.0 - S63.7 S0 - S63 SW0 - SW62
R0.0 - R255.7 R0 - R255 RW0 - RW254

- U$0000 - U$FFFF * UW$0000 - UW$FFFE *
D0.0 - D255.7 D0 - D255 DW0 - DW254
T0.0 - T255.0 * T0 - T255 * TW0 - TW255 *

* Not implemented in central units of series E.

Table 4.4 Central unit address operand ranges for series S
bool byte / usint / sint word / uint / int

X0.0 - X127.7 X0 - X127 XW0 - XW126
Y0.0 - Y127.7 Y0 - Y127 YW0 - YW126
S0.0 - S63.7 S0 - S63 SW0 - SW62
R0.0 - R511.7 R0 - R511 RW0 - RW510

- U$0000 - U$FFFF UW$0000 - UW$FFFE
D0.0 - D255.7 D0 - D255 DW0 - DW254
T0.0 - T255.0 T0 - T255 TW0 - TW255

Table 4.5 Central unit address operand ranges for series B and D
bool byte / usint / sint word / uint / int

X0.0 - X127.7 X0 - X127 XW0 - XW126
Y0.0 - Y127.7 Y0 - Y127 YW0 - YW126
S0.0 - S63.7 S0 - S63 SW0 - SW62
R0.0 - R8191.7 R0 - R8191 RW0 - RW8190

- U$0000 - U$FFFF UW$0000 - UW$FFFE
D0.0 - D255.0 D0 - D255 DW0 - DW254
T0.0 - Tmax T0 - T255 TW0 - TW255

dword / udint / dint real
XL0 - XL124 XF0 - XF124
YL0 - YL124 YF0 - YF124
SL0 - SL60 SF0 - SF60
RL0 - RL8188 RF0 - RF8188

- -
DL0 - DL252 DF0 - DF252

- -

Table 4.6 Central unit address operand ranges for series C
bool byte / usint / sint word / uint / int

X0.0 - X8191.7 X0 - X8191 XW0 - XW8190
Y0.0 - Y8191.7 Y0 - Y8191 YW0 - YW8190
S0.0 - S6143.7 S0 - S6143 SW0 - SW6142
R0.0 - R40955.7 R0 - R40955 RW0 - RW40954
D0.0 - D2047.7 D0 - D2047 DW0 - DW2046
T0.0 - Tmax.0 T0 - Tmax TW0 - TWmax

4. Instruction and operand structure

23 TXV 001 09.02

dword / udint / dint real lreal
XL0 - XL8188 XF0 - XF8188 XD0 - XD8184
YL0 - YL8188 YF0 - YF8188 YD0 - YD8184
SL0 - SL6140 SF0 - SF6140 SD0 - SD6136
RL0 - RL40952 RF0 - RF40952 RD0 - RF40948
DL0 - DL2044 DF0 - DF2044 DD0 - DD2040
TL0 - TLmax TF0 - TFmax -

* In the central units of series C the U-operands are replaced with the RFRM system
instructions which performs immediate update of dedicated peripheral module data.

Note: Apart from the data, each T-table additionally occupies 4 bytes for service
information in the memory.
A list of T-table addresses created by the compiler is part of the user
program. This list has n+1 items, where n stands for the highest table
number declared in the user program. In the list, addresses of all tables
from T0 to Tn are listed including those not being declared (having zero
address). As the result of this, if we use only the tables with high numbers
in the user program, the table address will occupy unnecessarily a great
part of the memory determined for the user program.
Therefore, we recommend to number the tables ascendingly from 0 (the
xPRO compiler supports this principle when using symbolic names of the
tables).

4.2.1. Bool type operand

Data of the bool type in the scratchpad represents one concrete bit in the byte given by
the address of the byte and the number of the bit.

Data assumes values 0 and 1 (due to a different interpretation on the stack we call
them log.0 and log.1).

.7 .6 .5 .4 .3 .2 .1 .0
R0 x x x b x x x x

Figure 4.1 Bool type data saving in the scratchpad
b - logical value of the bit (log.0 or log.1)

The bool type operand is addressed by the byte address in the operand space and the
bit number inside this byte. In absolute expression, the byte address is unequivocally
given by the number in the address operand. The bit number has a value 0 to 7 and is
entered after the point, for example:

LD %X1.2
WR %Y1.7
LD %S53.4
WR %R123.6
LD %D25.6

The lowest (low) bit of the byte correspond to 0, the highest (upper) bit of the byte
corresponds to 7. If the contents of the byte is displayed as a binary number or as a
sequence of bit values on the line, then the lowest bit is rightmost and the top one
leftmost.

The U-operands do not enable bit access.

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 24

The T-operands determining the bit access to the tables always have the bit number
equal to 0. So the bit access is distinguished from the byte one, otherwise the bit number
does not have any meaning in this case.

LTB %T4.0 ;load item from bit table T4 (the item number
;is determined by the index saved on the stack top)

Symbolic expression

In symbolic expression the operand is determined by the #def, #reg, #rem, #data and
#table directives.

#def input %X2.1
#rem bool register1 ;R0.0 remanent
#reg bool register2 ;R1.0
#reg bool register3 ;R1.1
#data bool record = 1,0,1,0 ;D0.0, D0.1, D0.2, D0.3
#table bool tab = 1,0,1,1 ;T0.0

Casting to bool

If we need to cast an operand locally in our user program (we need to use another
operand type than it is defined by the above mentioned directives) it is possible to cast it
locally to the bool type by adding the bit number. The bits can be numbered within the
entire operand width, thus from 0 to 7 for 8 bit width, 0 to 15 for 16 bit width and 0 to 31 for
32 bit width.

#reg usint register1 ;R0
#reg uint register2 ;RW1
#reg udint register3 ;RL3
#table usint tab = 1,2,3,4 ;T0
;

LD register1.0 ;LD %R0.0
LD register2.5 ;LD %R1.5
LD register3.31 ;LD %R6.7
LTB tab.0 ;LTB %T0.0

4.2.2. Byte / usint / sint operand

The byte, usint and sint types data in the scratchpad represent one concrete byte given
by the address.

The data assumes values of 0 to 255 (byte, usint) or, when using the highest (upper) bit
as the sign, –128 to +127 (sint).

.7 .6 .5 .4 .3 .2 .1 .0
R0 B

Figure 4.2 Byte, usint, sint data saving in the scratchpad
B - byte value

In absolute expression the operand is addressed by the number in the address
operand.

LD %X1
WR %Y0
LD %S53
WR %R123
LD %D25

4. Instruction and operand structure

25 TXV 001 09.02

LTB %T4

The U-operand is addressed by the physical hexadecimal address of 16 bit width ($
stands for the hexadecimal number system).

LD %U$9101 ;address hexadecimal value

Symbolic expression

In symbolic expression the operand is determined by the #def, #reg, #rem, #data and
#table directives.

#def input %X2
#rem usint register1 ;R0 remanent
#reg byte register2 ;R1
#reg usint registr3 ;R2
#reg sint registr4 ;R3
#data usint record = 1,2,3,4 ;D0, D1, D2, D3
#table usint tab = 1,2,3,4 ;T0

Casting to byte, usint, sint

If we need to cast an operand locally in our user program (we need to use another
operand type than it is defined by the above mentioned directives) it is possible to cast it
locally by adding the byte, usint, sint prefixes.

#reg bool register1 ;R0.0
#reg uint register2 ;RW1
#reg udint register3 ;RL3
#table uint tab = 1,2,3,4 ;TW0
;

LD usint register1 ;LD %R0
LD sint register2 ;LD %R1
LD usint register3+3 ;LD %R6
LTB usint tab ;LTB %T0

The variable of the word, uint, int types can be cast to two variables of the byte, uint, int
types also by means of the __high and __low prefixes.

LD __high (register2) ;LD R2
LD __low (register2) ;LD R1

4.2.3. Word / uint / int operand

The word, uint and int types data in the scratchpad represent two concrete bytes given
by the address of the first of them. The data is saved in such a way that low-significance
byte has the low address that the high-significance byte (Intel convention).

The data can assume values of 0 to 65 535 (word, uint) or, when using the highest
(upper) bit as the sign, –32 768 to +32 767 (int).

.7 .6 .5 .4 .3 .2 .1 .0
RW0 R0 WL

R1 WH

Figure 4.3 Word, uint, int data saving in the scratchpad
WH - higher byte value
WL - lower byte value

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 26

In absolute expression, the address of operand is written in such a way that behind the
specifier the W character is written as the symbol of the operand type followed by a
numeric value addressing the lower word byte. If, for example, register R14 has the value
of $21 and register R15 a value of $43, then by means of instruction

LD %RW14

we read a value of $4321. Similarly, other operands are written.

LD %XW1
WR %YW0
LD %SW53
WR %RW123
LD %DW25
LTB %TW4

Similarly, using the U-operand means working with two physical addresses following
each other. For example, if we have a sixteen-input binary unit with address 2 in PLC
NS950, the state of the input signals of byte 0 is % 1101 0001 in binary notation and the
state of the input signals of byte 1 is %0010 1100 in binary notation, then by means of the
following instruction

LD %UW$9200

we load value $2CD1.

Time unit coding in timer instructions

Timer instructions (TON, TOF, RTO, IMP) work only with the uint type operand
containing the current value of the timer. Moreover, it is necessary to enter a time unit,
which the instruction should use and in which the value of the timer is measured out. Four
time units are possible that are entered by means of a code number 0 to 3 specified in the
instruction after the address number. Both items are separated by the full stop. The time
units are encoded as follows:

.0 - unit of 10 ms

.1 - unit of 100 ms

.2 - unit of 1 s

.3 - unit of 10 s

If the code of the time unit is not specified, it is understood as zero one, i.e. the unit of
10 ms. Let us specify some examples of timer instructions:

TON %RW10.0 ;timer is at RW10, unit of 10 ms
TON %RW10 ;identical write
TOF %RW24.1 ;timer is at RW24, unit of 100 ms
RTO %RW32.2 ;timer is at RW32, unit of 1 s
IMP %RW34.3 ;timer is at RW34, unit of 10 s

Symbolic expression

In symbolic expression, the operand is determined by the #def, #reg, #rem, #data and
#table directives.

#def input %XW2
#rem uint register1 ;RW0 remanent
#reg word register2 ;RW2
#reg uint registr3 ;RW4
#reg int registr4 ;RW6

4. Instruction and operand structure

27 TXV 001 09.02

#data uint record = 1,2,3,4 ;DW0, DW2, DW4, DW6
#table uint tab = 1,2,3,4 ;TW0

Casting to word, uint, int

If we need to cast an operand locally in our user program (we need to use another
operand type than it is defined by the above mentioned directives) it is possible to cast it
locally by adding the word, uint, int prefixes.

#reg bool register1 ;R0.0
#reg usint register2 ;R1
#reg udint register3 ;RL2
#table usint tab = 1,2,3,4 ;T0
;

LD uint register1 ;LD %RW0
LD int register2 ;LD %RW1
LD uint register3+2 ;LD %RW4
LTB uint tab ;LTB %TW0

4.2.4. Dword / udint / dint operand

The dword, udint and dint types data in the scratchpad represents four concrete bytes
determined by the address of the first one of them. The data is saved in such a way that
the low-significance byte has the lowest address (Intel convention).

The data assumes values 0 to 4 294 967 295 or, when using the highest (upper) bit as
the sign, –2 147 483 648 to +2 147 483 647.

.7 .6 .5 .4 .3 .2 .1 .0
RL0 R0 L0

R1 L1
R2 L2
R3 L3

Figure 4.4 Dword, udint, dint data saving in the scratchpad
L0 - lowest byte value
:

L3 - highest byte value

In absolute expression, the address of the operand is written in such a way that behind
the space specifier the L character is written as the symbol of the operand type followed
by a numeric value addressing the lowest byte. If, for example, register R14 has the value
of $21, register R15 the value of $43, register R16 the value of $65 and register R17 the
value of $87, then by means of instruction

LD %RL14

we load $87654321. Similarly, other operands are written.

LD %XL1
WR %YL0
LD %SL53
WR %RL123
LD %DL25
LTB %TL4

The U operand does not enable access in this format.

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 28

Symbolic expression

In symbolic expression, the operand is determined by the #def, #reg, #rem, #data and
#table directives.

#def input %XL4
#rem udint register1 ;RL0 remanent
#reg dword register2 ;RL4
#reg udint registr3 ;RL8
#reg dint registr4 ;RL12
#data udint record = 1,2,3,4 ;DL0, DL4, DL8, DL12
#table udint tab = 1,2,3,4 ;TL0

Casting to dword, udint, dint

If we need to cast an operand locally in our user program (we need to use another
operand type than it is defined by the above mentioned directives) it is possible to cast it
locally by adding the dword, udint, dint prefixes.

#reg bool register1 ;R0.0
#reg usint register2 ;R1
#reg uint register3 ;RW2
#table usint tab = 1,2,3,4 ;T0
;

LD udint register1 ;LD %RL0
LD dint register2 ;LD %RL1
LD udint register3 ;LD %RL2
LTB udint tab ;LTB %TL0

4.2.5. Real operand

The real type data in the scratchpad represent four concrete bytes given by the address
of the first one of them. The data is saved in such a way that the lowest-significance byte
has the lowest address (Intel convention).

According to IEEE-754 (Institute of Electrical and Electronics Engineers) the data for
the number with single precision assumes a value within a range of approx.
±1,175494x10–38 to ±3,402823x1038 with accuracy to approx. 7 valid decimal digits.
Further, four values specifying the following states are defined:

$7FFFFFFF - invalid number (NaN - not a number)
$FFFFFFFF - invalid number (NaN - not a number)
$7F800000 - exceeding the range of positive numbers (+INF)
$FF800000 - exceeding the range of negative numbers (–INF)

Real type structure

The data is divided into three parts. The highest (upper) bit marked with s on figure 4.5
determines the sign of the whole number. If s = 0, the number is positive, if s = 1, the
number is negative. Next 8 bits marked with the e character are called exponent, which
carries information on the number size. The other 23 bits marked with the m character are
called mantissa and carry significant digits (i.e. without insignificant zeros on the left side).

The mantissa has not the control bit expressed which means that it represents the
binary number in the form of 1,mmmmmmm. The exponent then specifies the number of
binary orders, by which we have to move the decimal point imaginarily to get the number

4. Instruction and operand structure

29 TXV 001 09.02

required. If we move the decimal point to the left the exponent will be negative, if we move
it to the right, the exponent will be positive.

The exponent is not expressed in the binary complementary code, but in the code with
shifted zero, which means that value $7F (127) will be added to the actual value of the
exponent. Zero is represented by $7F, number one by $80, etc. When decoding the
exponent the value of $7F must be subtracted.

The value of the number can be expressed as follows:

() () mval es ,121 127 ××−= −

Example of recalculation into real format

Number 12345 = 1,2345 x 104 = $3039
in format real: $46 40 E4 00

Backward recalculation:
s e m
0 | 1000 1100 | 1000 0001 1100 1000 0000 000

() ()

998,1234425069578,1

8192

1

1024

1

512

1

256

1

2

1
21

13

1271400

=×=

 ++++××−= −

val

val

.7 .6 .5 .4 .3 .2 .1 .0
RF0 R0 m m m m m m m m

R1 m m m m m m m m
R2 e m m m m m m m
R3 s e e e e e e e

Figure 4.5 Real type data saving in the scratchpad
s - sign (1 bit)
e - exponent (8 bits)
m - mantissa(23 bits)

In absolute expression, the operand address is written in such a way that after the
specifier the F character is written as the operand type symbol followed by a number
addressing the lowest byte. Thus, the principle is analogical to the dword, udint, dint types
operand.

LD %XF1
WR %YF0
LD %SF53
WR %RF123
LD %DL25
LTB %TL4

The U operand does not enable access of this type.

Symbolic expression

In symbolic expression, the operand is determined by the #def, #reg, #rem, #data and
#table directives.

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 30

#def input %XF4
#rem real register1 ;RF0 remanent
#reg real register2 ;RF4
#data real record = 1.0,2.0,3.0,4.0 ;DF0, DF4, DF8, DF12
#table real tab = 1.0,2.0,3.0,4.0 ;TF0

Casting to real

If we need to cast an operand locally in our user program (we need to use another
operand type than it is defined by the above mentioned directives) it is possible to cast it
locally by adding the real prefix.

#reg bool register1 ;R0.0
#reg usint register2 ;R1
#reg uint register3 ;RW2
#table usint tab = 1,2,3,4 ;T0
;

LD real register1 ;LD %RF0
LD real register2 ;LD %RF1
LD real register3 ;LD %RF2
LTB real tab ;LTB %TF0

Caution! By simple casting of the operand to the real type it is not possible to
convert the content of the operand to the real type. It is necessary to use
the corresponding conversion instruction (also for conversions between
real and lreal types).

4.2.6. Lreal operand

The lreal type data in the scratchpad represent eight concrete bytes given by the
address of the first one of them. The data is saved in such a way that the lowest-
significance byte has the lowest address (Intel convention).

According to IEEE-754 (Institute of Electrical and Electronics Engineers) the data for
the number with double precision assumes a value within a range of approx. ±2,2x10–308

to ±1,8x10308 with accuracy to approx. 16 valid decimal digits. Further, four values
determining the following states are defined:

$7FFFFFFF FFFFFFFF- invalid number (NaN - not a number)
$FFFFFFFF FFFFFFFF- invalid number (NaN - not a number)
$7FF00000 00000000 - exceeding the range of positive numbers (+INF)
$FFF00000 00000000 - exceeding the range of negative numbers (–INF)

Lreal type structure

The data is divided into three parts. The highest (upper) bit marked with s on figure 4.6
determines the sign of the whole number. If s = 0, the number is positive, if s = 1, the
number is negative. Next 11 bits marked with the e character are called exponent, which
carries information on the number size. The other 52 bits marked with the m character are
called mantissa and carry significant digits (i.e. without insignificant zeros on the left side).

The mantissa has not the control bit expressed which means that it represents the
binary number in the form of 1,mmmmmmm. The exponent then specifies the number of
binary orders, by which we have to move the decimal point imaginarily to get the number
required. If we move the decimal point to the left, the exponent will be negative, if we
move it to the right, the exponent will be positive.

4. Instruction and operand structure

31 TXV 001 09.02

The exponent is not expressed in the binary complementary code, but in the code with
shifted zero, which means that value $3FF (1023) will be added to the actual value of the
exponent. Zero is represented by $3FF, number one by $400, etc. When decoding the
exponent the value of $3FF must be subtracted.

The value of the number can be expressed as follows:

() () mval es ,121 1023 ××−= −

.7 .6 .5 .4 .3 .2 .1 .0
RD0 R0 m m m m m m m m

R1 m m m m m m m m
R2 m m m m m m m m
R3 m m m m m m m m
R4 m m m m m m m m
R5 m m m m m m m m
R6 e e e e m m m m
R7 s e e e e e e e

Figure 4.6 Double and lreal format data saving in the scratchpad
s - sign(1 bit)
e - exponent (11 bits)
m - mantissa (52 bits)

In absolute expression, the operand address is written in such a way that after the
specifier the D character is written as the operand type symbol followed by a number
addressing the lowest byte.

LD %XD1
WR %YD0
LD %SD53
WR %RD123
LD %DD25

The U and T operands do not enable any access in this type.

Symbolic expression

In symbolic expression, the operand is determined by the #def, #reg, #rem a #data
directives.

#def input %XD4
#rem lreal register1 ;RD0 remanent
#reg lreal register2 ;RD8
#data lreal record = 1.0,2.0,3.0,4.0 ;DD0, DD8, DD16, DD24

Casting to lreal

If we need to cast an operand locally in our user program (we need to use another
operand type than it is defined by the above mentioned directives) it is possible to cast it
locally by adding the lreal prefix.

#reg udint register1 ;RL0
#reg uint register2 ;RW4
;

LD lreal register1 ;LD %RD0
LD lreal register2 ;LD %RD4

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 32

Caution! By simple casting of the operand to the lreal type it is not possible to
convert the content of the operand to the lreal type. It is necessary to use
the corresponding conversion instruction (also for conversions between
real and lreal types).

4.3. TRANSITION DESTINATION

For the jump and call instructions, the operand is the label to which the transition will be
executed. The instruction has the following format, as an example:

JMP %L15

and passes the program execution to label L15. In the program the label is written as
instruction L with the corresponding numeric parameter and serves exclusively as the
jump and call target. During execution, the L instruction is interpreted as no operation
instruction.
Using symbolic labels is much more effective, where instead of the L instruction with the
label number we write a symbolic name after which the compiler itself inserts a number.
By doing this, the user program is optimised for a list of label addresses to be as short as
possible, being part of the user program and having information for the PLC during jump
instruction execution.

jump1: ;L 0
:
JMC jump2 ;JMC %L1
JMP jump1 ;JMP %L0
:

jump2: ;L 1

Application of #label directive

The #label directive is used only when we want to assign a concrete number to a label
or when we need to ensure the order of labels for indirect jumps by instructions LMI and
CAI. The #label directive is necessary also when we use the number of the label as
operand (with indx prefix) or as a table item before the label is used. For the compiler it
would be an unknown name.

Caution: If we use the L label with the highest value of the n parameter in the user
program, the compiler will produce a list of label addresses for all labels
from L0 to Ln including those that will not be used (they will have zero
address). As a consequence of this, if we use in the program the L1023
label only, the label list will occupy unnecessarily 2 KB of the memory,
with the addresses of the other labels being zero! Therefore, we
recommend to number the tables ascendingly from 0 (the xPRO compiler
supports this principle when using symbolic names of the tables).

4.4. INSTRUCTION PARAMETER

Some instructions require entering a numeric parameter. With some instructions the
parameter is saved passively and serves only for identification of the instruction (for
example with instruction L, NOP, P, E). With some instructions, the parameter effects the

4. Instruction and operand structure

33 TXV 001 09.02

way of instruction execution, for example, with instructions ROL, ROR, POP it specifies
the number of steps (shifts).

The instructions working with more stacks (CHG, WAC, LAC) use the character
parameter marking the stack being in use.

The instruction parameters is thus entered as a numeric value or one or two-letter
string. The parameter range is determined by the type of instruction.

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 34

5. SCRATCHPAD MEMORY STRUCTURE

Scratchpad function

Scratchpad or scratchpad memory is a section of the PLC memory space that is
accessible for reading as well as writing user data. The PLC instructions enable access to
any part of the scratchpad in all supported formats (based on CPU series). This memory is
pre-divided into several sections with designated meaning. A schematic diagram of the
scratchpad memory is on figure 5.1.

Scratchpad division

The scratchpad memory is divide into the following sections:

♦ images of input signals X
♦ images of output signals Y
♦ system registers S
♦ user registers R

Central unit series E M S D B C
Input signal images

X
X0

:

X15

X0
:

X15

X0
:

X127

X0
:

X127

X0
:

X127

X0
:

X8191
Output signal images

Y
Y0

:

Y15

Y0
:

Y15

Y0
:

Y127

Y0
:

Y127

Y0
:

Y127

Y0
:

Y8191
System registers

S
S0

:

S63

S0
:

S63

S0
:

S63

S0
:

S63

S0
:

S63

S0
:

S6143
User registers

R
R0

:

R255

R0
:

R255

R0
:

R511

R0
:

R8191

R0
:

R8191

R0
:

R40955

Figure 5.1 Scratchpad memory structure including operand ranges for particular series of
central units

Access to scratchpad

Generally, the principle is followed that the access of the system program to the
scratchpad memory is realized exclusively at the phase of the I/O scan of the user
program cycle. This concerns not only scanning physical inputs into area X and setting
values from area Y to physical outputs, but it is valid also for the changes of the values of
system variables S. This means that for the cycle time of the user program, the
scratchpad data is frozen and updated after the forthcoming cycle I/O scan. In this way, a
possibility of occurrence of various hazardous states as the result of asynchronism of
change moments of particular variables is reduced in the user program. Within the cycle
only such variables are changed that are influenced by the user program (direct write to
the scratchpad - WR, WRC, WRA, PUT, LET, BET, SET, RES), or effects of some
functions (for example setting of result flags, counter and timer status updating, shift
register updating, etc.).

Notice: It is necessary to realize that the moments of user interrupt are
asynchronous against the idle cycle of the user program and through
unsystematic management over stack variables the user himself can
cause enough hazardous states. Thus it is necessary to pay attention to

5. Scratchpad memory structure

35 TXV 001 09.02

the assignment of the variables, establishing rules for co-operation
between the processes of the idle cycle and interrupt processes. For this,
the Mosaic development environment provides a significant support.

Data backup during power failure

During supply voltage failure, a part of the scratchpad content is backed up from a back
up power supply (so called remanent zone in user registers R). During restart these
backed up data can be used for further control - depending on the type of start-up and
other circumstances (scratchpad integrity, unchanged content of the user program, etc.).
When selecting configuration, the user also can select the size of the remanent zone.

5.1. INPUT IMAGES X

Before each program cycle start the central unit ensures the update of this area of the
scratchpad memory from the input peripheral units based on the declaration table
specified in the user program and describing the assignment between input images X and
physical addresses of particular units.

In case of insufficient memory in the X area it is possible to use without limitations the
area of user registers R for the same purpose.

5.2. OUTPUT IMAGES Y

After each cycle termination of the program the central unit assures the transfer of the
results from this area of the scratchpad memory to the outputs of the peripheral units
based on the declaration table specified in the user program and describing the
assignment between output images Y and physical addresses of particular units.

In case of insufficient memory in the Y area it is possible to use without limitations the
area of user registers R for the same purpose.

5.3. SYSTEM REGISTERS S

This area of the scratchpad memory is reserved for specific use by the system program
of the controller and is not recommended to use it for other purposes. Some bits and
bytes are regularly set by the system program at the I/O scan and are suitable for reading
only. Conversely, some bits by their setting modify the behaviour of the system program.

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 36

Table 5.1 System register overview
Registers Application CPU Series

S0 arithmetic operation result flag E M S D B C
S1 logical operation result flag E M S D B C
S2 system state flags E M S D B C
S3 time of recent cycle in 10 ms E M S D B C
S4 cycle counter E M S D B C
S5 counter of tens of milliseconds of system time M S D B C
S6 counter of seconds of system time M S D B C
S7 counter of minutes of system time M S D B C
S8 counter of hours of system time M S D B C
S9 counter of days in a week M S D B C

S10 counter of days in a month M S D B C
S11 month counter M S D B C
S12 year counter M S D B C
S13 units of time M S D B C

S14 - S15 counter in 100 ms increments M S D B C
S16 - S17 counter in 1 s increments M S D B C
S18 - S19 counter in 10 s increments M S D B C

S20 time unit leading edges from S13 M S D B C
S21 time unit falling edges from S13 M S D B C

S22 - S23 time of recent cycle in 100 µs S D B C
S24 - S29 process control masks M S D B C
S30 - S33 spare

S34 error internal code E M S D B C
S35 hardware state flags E M S D B C
S36 processor board temperature C
S37 spare
S38 user program edition number E M S D B C
S39 contents change number E M S D B C

S40 - S41 PLC system program version code E M S D B C
S42 - S43 spare
S44 - S45 compiler type E M S D B C
S46 - S47 spare
S48 - S51 error full code S D B C
S52 – S55 counter 1 ms C
S56 – S57 interrupting module address C
S58 - S63 spare
S64 – S75 system registers of high-level programming language C
S76 - S2047 spare

S100 – S227 peripheral system state zone C
S228 – S2047 spare
S2048 - S6143 system stack C

Attention! The not occupied system registers (in table 5.1 marked as reserve) must
not be used at all as user memory! These registers can be used by the
system for testing and diagnostics purposes. Any write to them can
result in unpredictable consequences!

5. Scratchpad memory structure

37 TXV 001 09.02

The meaning of the system registers are as follows:

S0 - flags of arithmetic operation results
It is influenced only by some arithmetical instructions, comparison instructions,
timer instructions and counters. The other instructions do not change it.

S0.7 S0.6 S0.5 S0.4 S0.3 S0.2 S0.1 S0.0
0 D5.2 D5.1 D5.0 CI ≤ <(CO) =(ZR)

S0.0 (=) - equality of both operands
(ZR) - result zero value

- division by zero during division instructions
S0.1 (<) - first operand < second operand

(CO) - output carry (carry out), during the operation, carry was executed
to a higher order

S0.2 (≤) - first operand ≤ second operand
- logical add of bits S0.0 OR S0.1

S0.3 (CI) - input carry (carry in)
- serves for cascading of arithmetical operations ADD, SUB, INR,

DCR, EQ, LT, GT (16 bit model only). If we want to respect the
carry from a lower order in some of these operations, it is
necessary to set CI to the value of the carry before this operation.
At every setting of S0 (after the instructions specified) the CI bit is
set to zero, so that the next arithmetic instruction is executed
without carry from below. Arithmetic instructions are thus
cascaded only when the user enters the value of the carry in bit
CI. In the 32 bit model, this flag is not functional.

S0.4 to S0.6 (D5) - after instruction BCD they contain the highest digit of the result
(the maximum value is 6), after other instructions the bits are set
to zero

S0.4 (OV) - exceeding the maximum timer range (at this cycle or any time
before during simultaneous activation of the timer)

S0.5 (OC) - exceeding the maximum timer range just at this cycle
S0.7 - spare

Detailed information is given in instruction descriptions effecting register S0.

S1 - flags of logic operation results

Table instructions set the S1.0 bit with the following meaning:
S1.0 = 1 - item within table range, item found
S1.0 = 0 - item out of table range, item not found

Arithmetic instructions for applications with the floating point. block operations and
operations with structured tables set the S1.0 bit with the following meanings:

S1.0 = 1 - input parameters are OK, the result is valid
S1.0 = 0 - input parameters out of range, the result is invalid

Instruction FLG sets register S1 according to the content of the stack top.

S1.7 S1.6 S1.5 S1.4 S1.3 S1.2 S1.1 S1.0
ORH ORL ANH ANL N3 N2 N1 N0

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 38

S1.0 to S1.3 (N) - binary number (N4, N3, N2, N1, N0) assuming values 00000 to
10000, having the meaning of the number of logic one bits of the
stack top (bit N4 is released in all bits of the stack top)

S1.4 (ANL) - logical product of bits of low byte of A0 stack top
S1.5 (ANH) - logical product of bits of upper byte of A0 stack top
S1.6 (ORL) - logical add of bits of low byte of A0 stack top
S1.7 (ORH) - logical add of bits of upper byte of A0 stack top

The STE instruction sets bits S1.0 and S1.1 in the following meaning:

S1.0 = 1 - sequencer status changed
S1.0 = 0 - sequencer status not changed
S1.1 = 1 - I/O scan (sequencer carry - status changed from 15 to 0)
S1.1 = 0 - other cases

Detailed information is given in instruction descriptions that effect register S1.

S2 - system state flags

Set by the system program according to its state at the cycle I/O scan.

S2.7 S2.6 S2.5 S2.4 S2.3 S2.2 S2.1 S2.0
LIM NRS ON RST HOT RUN MS SP

S2.0 (SP) - state of service input SP - external start of the PLC
S2.1 (MS) - state of service input MS - external blocking of outputs
S2.2 (RUN) - 1 - cycle start, the program is executed (RUN mode)

0 - cycle stop, the program is not executed, the PLC dwells at the
cycle I/O scan (HALT mode)

S2.3 (HOT) - 1 - first pass through the cycle after warm restart
S2.4 (RST) - 1 - first pass through the cycle after cold restart
S2.5 (ON) - 1 - active outputs

0 - locked outputs
S2.6 (NRS) - 1 - first pass through the cycle without restart
S2.7 (LIM) - 1 - cycle time first limit exceeded (alarm)

Bits S2.3, S2.4 and S2.6 are useful for variable initialisation.

Notice: The S2 register is designated for indication only, not for write.

S3 - time of recent cycle in tens of milliseconds

The binary data with the unit of 10 ms (range 0 - 2,55 s) informs on the duration of
the recent cycle of the user program.

S4 - cycle counter

Binary data that is set to zero at every system restart and after each I/O scan it is
increased by one. It enables more complex distribution of the control algorithm
into particular cycles.

S5 to S12 - system time and date

A binary data file, the data has the meaning of time in units of time. In the user
program it enables to use hour and date data without complicated recalculations.
The time data is received from the real time circuit and is updated at every cycle

5. Scratchpad memory structure

39 TXV 001 09.02

I/O scan. During power supply failure time does not stop, since this circuit has a
backup battery.

S5 - counter of tens of milliseconds (0 - 990 ms)
S6 - counter of seconds (0 - 59 s)
S7 - counter of minutes (0 - 59 minutes)
S8 - counter of hours (0 - 23 hours)
S9 - counter of days in a week (1 - 7)
S10 - counter of days in a month (1st to the last day in the current month, leap

year respected)
S11 - counter of months (1 to 12)
S12 - counter of years - the last two digits of year (0 - 99)

S13 - time units

A file of bit variables that change their status once a unit specified. The course of
these time signals has repeating of approx. 1:1 and is derived from states S5 to
S8 (figure 5.2 to 5.5). They can be used as a source of time pulses for user
counters, for realization of time functions (flashing, D, T and JK circuits). The time-
measuring variables can be used under the assumption that the cycle time of the
user program is reliably shorter then the half of the time unit being used.
The particular bits have the following meaning:

S13.7 S13.6 S13.5 S13.4 S13.3 S13.2 S13.1 S13.0
1 day 1 hour 10 min 1 min 10 s 1 s 500 ms 100 ms

Figure 5.2 State of bit variables S13 in relation to the counter of tens of milliseconds S5

Figure 5.3 State of bit variables S13 in relation to the counter of seconds S6

Figure 5.4 State of bit variables S13 in relation to the counter of minutes S7

Figure 5.5 State of bit variables S13 in relation to the counter of hours S8

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 40

S14, S15 - counter in 100 ms increments
S16, S17 - counter in 1 s increments
S18, S19 - counter in 10 s increments

Each word SW14, SW16, SW18 contains a binary data in a range of 65 535 unit
of time. The changes of this data are synchronous with changes S5 to S13. The
main use for them is replacement of timers, especially in cases of realization of
time interval sequences (sequential and time control). The particular bits can be
used as the sources of the time units. Based on our needs, only the low or upper
byte can be used.

S20 - leading edges time units from S13
S21 - falling edges time units from S13

On the positions with the same meaning as at S13, the change signals are set
with the change of homogenous content of S13 from log.0 to log.1 (S20) or
from log.1 to log.0 (S21). The changes are evaluated against the state from the
recent cycle.

S20.7 S20.6 S20.5 S20.4 S20.3 S20.2 S20.1 S20.0
S21.7 S21.6 S21.5 S21.4 S21.3 S21.2 S21.1 S21.0
1 day 1 hour 10 min 1 min 10 s 1 s 500 ms 100 ms

S22, S23 - time of recent cycle in 100 µs

Binary data with 100 µs units (range 0 - 6,5535 s) informs on duration of the
recent cycle of the user program. It is specified data of the S3 register.

S24 to S29 - process control masks

Control masks for control and indication of activated processes P1 to P48 (chapter
10.). The assignment is as follows:

.7 .6 .5 .4 .3 .2 .1 .0
S24 P8 P7 P6 P5 P4 P3 P2 P1
S25 P16 P15 P14 P13 P12 P11 P10 P9
S26 P24 P23 P22 P21 P20 P19 P18 P17
S27 P32 P31 P30 P29 P28 P27 P26 P25
S28 P40 P39 P38 P37 P36 P35 P34 P33
S29 P48 P47 P46 P45 P44 P43 P42 P41

The logic ones correspond to the active processes, the logic zeros to the passive
processes. Bits S24.0 to S25.0 are set by the process scheduler at the cycle I/O
scan and decides on the activation of the P1 to P9 processes. If the bits are
overwritten by the user, the process planned is yet executed.
Bits S25.1 to S28.7 are available to the user to control processes P10 to P40.
Setting the bit to log.1 results in inclusion of the process in question into the next
cycle. After restart these bits are always set to zero.
Bits S29.0 to S29.7 are available to the user to forbid or permit the execution of
interrupt processes P41 to P48. These bits are not implemented of the central unit
of series M, so it is not possible to forbid the execution of the interrupt process.
After restart, the bits corresponding to the interrupt processes used in the user
program are set to log.1.

S30 to S33 - spare

5. Scratchpad memory structure

41 TXV 001 09.02

S34 - error internal code

The first byte of the code for the last error occurred.
S34.7 = 1 (code ≥ 128) - fatal error, user program execution is stopped, the PLC is

switched to the HALT mode and locks the outputs
S34.7 = 0 (code < 128) - other errors significantly not effecting the control itself, the

user program continues, these errors can be user-treated by
means of this system register

S34 = 0 - error-free state
2 - serial communication error
7 - remanent zone check error
8 - exceeding first limit of cycle time watch
9 - wrong system time of RTC circuit

16 - division by zero
17 - initial index for WMS instruction is out of table T
18 - initial index for LMS instruction is out of table T
19 - table instruction over the scratchpad exceeded its range
20 - data source block was defined out of range of the scratchpad, data or

table
21 - data destination block was defined out of range of the scratchpad or table
32 - user program failure detection during continuous check
80 - central unit does not support the service for user instructions
81 - central unit does not support the service required for user instructions

128 - user program error
129 - peripheral system error
130 - communication error with expansion modules
131 - errors in serial channels
160 to 175 - errors in peripheral system

S35 - flags of hardware state

S35.7 S35.6 S35.5 S35.4 S35.3 S35.2 S35.1 S35.0
STEN STIN 0 0 0 0 ERO BAT

S35.0 (BAT) - state of backup battery of RAM and RTC
1 - voltage of backup battery is lower than 2,1 V
0 - backup battery OK

S35.1 (ERO) - 1 - binary output error (output short circuit, unloaded output)
(contained in TC500, TC600)

S35.6 (STIN) - current time indication (TC700)
0 - normal time
1 - daylight saving time

S35.7 (STEN) - automatic transition between daylight saving time and normal time
(TC700)
0 - off, time the whole year without shifts
1 - on, time is automatically changed

S36 - processor board temperature (TC700)

Temperature measured on the central unit board in °C. It is possible to control for
example fans in control boards.

S37 - spare

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 42

S38 - user program edition number

In the activation sequence, it is copied from the configuration constant of the user
program.
The value of the constant can be entered through the Mosaic environment.

S39 - content change number

In the activation sequence, it is copied from the configuration constant of the user
program.
The value of the constant can be entered through the Mosaic environment. It is
determined mainly as the differentiation of user program versions.

S40, S41 - central unit system program version code
For example, for version 4.1 the code will be S40 = 4 a S41 = 1.

S42, S43 - spare

S44, S45 - compiler type

Compiler type, by means of which the user program was created.

S46, S47 - spare

S48 to S51 - full error code

Full code of the last error occurred determined for easy reading of the last error
occurred by the superior system. The error code is saved in the udint format, i.e.
the first byte is saved in register S51 (identical with the content of register S34),
the last byte is saved in register S48. An overview of error codes is listed in the
manual of the PLC type in question.

S52 to S55 - counter with step 1 ms

A ms unit counter of type udint SL52. It allows a more precise time control.
Particular bits can be used as time unit sources. Any byte or word can be used as
required.

S56, S57 - interrupting module address

When entering the interrupting process P42 (interrupt from a peripheral module)
the register S56 contains the rack position and the register S57 the rack number,
where the module is fitted that initiated this interrupt. This information is used to
distinguish interrupt from more modules and they can be also used to acquire
parameters for the RFRM and STATM instructions. Details are given in chapter
10.5.

S58 to S63 - spare

S64 to S75 - system registers of higher programming language

System registers SL64, SL68, SL72, used by the system resources of the PLC
supporting a higher programming language. The value must not be changed
through direct access in any case.

5. Scratchpad memory structure

43 TXV 001 09.02

S76 to S2047 – spare

S100 to S227 - peripheral system status zone

Registers S100 to S227 contain the peripheral system status zone providing
information on immediate status of each peripheral module. This is important
especially in such cases, when it is allowed to take out a peripheral module under
run and the user program requires a piece of information whether the data read
from the module are valid. In other respects this zone can be used for a detailed
PLC diagnostics realized by a superior system. To each position in the rack of the
modular PLC or in the assembly of a compact PLC (see the relevant manual
describing the particular PLC) corresponds one register, the index of which can be
deduced from the following formula:

n = (r * 16) + p + 100

where n stands for register resultant index
r stands for rack number
p stands for rack position number

As the result of this is that the module fitted in rack 0 on position 0 has assigned
register S100, module on position 1 register S101, ..., module in rack 1 on position
0 register S116, etc. All the registers of the status zone have the following
structure:

Sn.7 Sn.6 Sn.5 Sn.4 Sn.3 Sn.2 Sn.1 Sn.0
POS OTH DEC ERR 0 0 DATA ECOM

Sn.0 (ECOM) - communication status with module
0 - communication OK
1 - module stopped communicating

Sn.1 (DATA) - validity of transmitted data
0 - data in scratchpad are not current, no data exchange
1 - current data in scratchpad, data exchange takes place

Sn.4 (ERR) - an error reported by module
0 - module is without error
1 - module reports a serious error not allowing data exchange

Sn.5 (DEC) - module operation is declared
0 - module is not operated by the user program
1 - module is operated by the user program

Sn.6 (OTH) - wrong module type
0 - in position fitted module required by declaration
1 - module type fitted in position is different than required

Sn.7 (POS) - position occupied
0 - position is not occupied
1 - module found on position

A detailed behaviour of the status zone depending on the PLC type is described in
the manual of the particular PLC type.

S228 to S2047 - spare

S2048 to S6143 - system stack

Areas S2048 to S6143 are used as the system stack of the PLC, used by the
system resources of the PLC supporting a higher programming language. The
values saved here must not be changed through direct access in any case.

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 44

5.4. USER REGISTERS R

Memory area designated for user program variables, counters, timers, shift registers,
step sequencers and dynamic tables. In the activation sequence of the user program, all R
registers are set to zero after cold restart. After warm restart, the remanent zone of the R
registers is kept unchanged, the other zones are reset.

Remanent zone

The remanent zone is the area of the R registers, the content of which remins
unchanged when the PLC power supply is off. The size of this area is selected by means
of the compiler of the user program (in the Mosaic development environment in the Project
manager folder Sw | Cpm, item Remanent register zone, the start is always on register R0.
The maximum size of the remanent zone is determined by the central unit series (see
table 5.2).

Attention! Fundamentally, we do not place the input and output images of the peripheral
units into the remanent zone. In case of intelligent peripheral units the
beginning of data exchange can be violated which could result in their non-
functionality.

It is up to the user how he will use the R registers, that will be used for working
variables or tables and which will be used for realization of functional blocks.

The compiler integrated in the Mosaic development environment enables directly to
declare the remanent variable by means of the #rem directive that is equivalent to the #reg
directive, but in addition, it places the variable into the remanent zone (see chap. 9.5).

Table 5.2 Remanent zone maximum sizes for particular central unit series
CPU Series Maximum remanent zone length Backup registers

C 16384 R0 - R16383
B 4096 R0 - R4095
D 512 R0 - R511

E, M, S 256 R0 - R255

Use of the R registers for counters and timers

The system does not decide how many counters, timers etc. can be used. The only
limitation is the total number of the R registers divided by two (uint type) or by four (udint
type). To each pair of the R registers internal flags for timer and counter functions are
assigned in the system. The system enables to use for the counter and timers both the
pairs beginning with an even register (RW0, RW2, RW4, ...) and an odd register (RW1,
RW3, RW5, ...). Needless to say, it is not possible to use registers RW0 and RW1 at a
time. For one thing a collision in register R1 comes up and the same flags are assigned to
these registers. If we want to use symbolic declarations of the variables by means of the
#reg directives, such collision cannot occur. The same is valid also for the udint type
counters.

The decision whether the object becomes remanent or not is made by the user in which
area the object will be put. If the user program uses time-limited objects that eliminate
each other in the course of time, then they can be realized with the same R registers. The
registers reserved for a counter of shift register can be operated through various
instructions for counting and shifting without error occurrence (not valid for timers). The R
registers assigned to an object are freely accessible for other instructions, so, as an
example, the value of the counter or timer can be compared with some data or it can be
changed pertinently.

6. Direct input / output access

45 TXV 001 09.02

6. DIRECT INPUT/OUTPUT ACCESS

6.1. DIRECT INPUT/OUTPUT ACCESS - 16 BIT MODEL

Systems TECOMAT TC400, TC500, TC600 and NS950 allow direct access to
peripheral units by means of the U-operands containing so called physical address of an
input or output.

Physical address

The term "physical address" denominates the effective address that the inputs and
outputs occupy on the bus. For standard peripheral unit operation, an image is assigned
to the physical addresses of the unit in the scratchpad (area X, Y, R) by means of the
#unit directive. The data is updated always at the cycle I/O scan.

U operand

But there are some situations when due to time it is necessary to load the immediate
state or to write a value in the unit immediately. For this purpose a physical address
marked by the U operand is available. The U operand thus provides an alternative to the X
and Y areas in the scratchpad enabling direct contact with the peripheral units at the time
as necessary without waiting for the cycle I/O scan.

The U operand enables the access in 8 bit and 16 bit formats by means of instructions
LD and WR. It is useful to use this operand to support time-critical reactions. An excessive
use results in reducing program performance, since the direct access to the peripheral
units is more time-consuming than the operations with the scratchpad memory.

The physical address is written immediately after the U operand (or UW, as the case
may be) always in hexadecimal notation. Particular physical addresses are differentiated
according to the type of PLC, which is given by its design. Detailed information is given in
the following chapters.

Restrictions for the use of the U operand

It is necessary to realize that working with physical address infringes the principle of
constancy of the input and output data during the cycle and increases the risk of
hazardous states. The use of the U operands should be limited solely to such cases when
an immediate response must be ensured, for example when treating emergency
situations, in the processes of interrupt handling, etc.

Important notes

By writing to the physical address or by reading from the physical address of the
peripheral unit the corresponding value change in the image of this unit in the scratchpad
memory does not take place !

In case of physical reading the value in the image of the cycle I/O scan is corrected but
this will not do any harm (but it is necessary to take this into account).

But in case of physical writing, the correction must be ensured by the user program,
otherwise the original value from the scratchpad will be written in the unit at the cycle I/O
scan.

If it is necessary to use the physical write to the unit, it is better to switch off the service
of the unit outputs in the software configuration during the compilation of the user program
in the compiler (#unit directive item) and operate the outputs solely by the physical write
through the U operand.

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 46

6.1.1 Physical addresses in PLC TECOMAT NS950

The physical addresses of the peripheral units are permissible only in the basic frame
(frame 0 operated directly by the central unit). The peripheral units in expansion frames
are accessible only through their images in the scratchpad memory.

Physical address structure

Peripheral unit physical address has the following structure:

address upper byte address low byte
A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

A15 - A12 - unit type (fixed)
0xxx (0-7) - system and virtual units

(special cases described in related manuals)
1000 (8) -8 binary inputs or outputs

(units OR-14, OS-28, OS-32, OS-34, XH-04)
1001 (9) -16 binary inputs or outputs

(units IB-36 to IB-47, IB-50, OR-15, OS-29, OS-30, OS-31,
OS-33, OS-35)

1010 (A)- 32 binary inputs or outputs
(units IB-48, IB-49, OS-26, OS-27, UX-52)

1100 (C)- special units without initialisation table
(units IC-04)

1101 (D)- analog units without own processor
(units IT-04, IT-12, IT-15, OT-04)

1111 (F) -units with own processor
(units IT-06, OT-05, GT-40, IC-12 to IC-15, SC-11, CD-01
to CD-04, UP-01, UP-02)

A11 - A8 - unit address in the frame (optional through the jumpers accessible on the
side wall of the peripheral unit box)

A7 - 0 - input address
1 - output address
unit with own processor (type F) do not have input and output addresses
differentiated through this bit, their input and output zones are assigned
dynamically according to the size required

A6 - A0 - byte number within unit

Example of application for physical address

LD %U$8100 ;direct load of states of eight inputs of unit XH-04
;with address 1 in the frame

LD %UW$9200 ;direct load of state of 16 inputs of unit of types
;IB-36 to IB-47, IB-50 with address 2 in the frame

WR %U$A083 ;direct write of value into 8 outputs of the third byte
;of the unit of types OS-26, OS-27 with address 0 in
;the frame

WR %UW$9380 ;direct write of value into 16 outputs of units of
;types OR-15, OS-29, OS-30, OS-31, OS-33, OS-35
;with address 3 in the frame

Concrete addresses occupied by the peripheral units, if they are available, are given in
the manuals for these units.

6. Direct input / output access

47 TXV 001 09.02

Attention! The C, D, E, F unit types usually require a defined way of operation that very
often contradicts the use of the physical address. Therefore, we do not
recommend at all to use the access to physical addresses of these units
without prior careful reading of their functions! If the physical addresses in
the description of these units are not expressly identified, then the units do
not allow direct access!

6.1.2 Physical addresses in PLC TECOMAT TC400, TC500, TC600

Physical address structure

The physical address of binary and analog inputs and outputs has the following
structure:

address upper byte address low byte
A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

A15 - A12 - unit type (fixed)
0xxx (0-7) - spare
1000 (8) - board with max. 8 binary inputs or outputs
1001 (9) - board with max. 16 binary inputs or outputs
1010 (A) - board with max. 24 binary inputs or outputs
1101 (D) - board with analog inputs and outputs

A11 - A8 - always 0
A7 - 0 - input address

1 - output address
A6 - A0 - byte number within unit

Examples of application for physical addresses

LD %UW$9000 ;direct load of input state
WR %UW$9080 ;value direct write into outputs

Concrete addresses occupied by the peripheral units are listed in the manuals:
TECOMAT TC400 TXV 138 12.02 programmable controller handbook,
TECOMAT TC500 TXV 138 07.02 programmable controller handbook and
TECOMAT TC600 TXV 138 08.02 programmable controller handbook.

6.2. DIRECT ACCESS TO INPUTS AND OUTPUTS - MODEL 32 BITS

Systems TECOMAT TC650 and TC700 do not use physical addresses, but for a fast
access to peripheral modules they have a specific RFRM instruction carrying out
immediate data exchange between the central unit scratchpad and the corresponding
peripheral module. Data is then handled by means of standard instructions working with
the scratchpad. In this case automatic link to the scratchpad is ensured unlike the physical
address. A peripheral module, to which we realize direct access, has to have the operation
on (which is an essential difference against the systems using the U-operands).

It is true also in this case that the use of direct access is suitable only with time-critical
reactions. An excessive use results in slowing the program performance down, since
direct access to particular peripheral modules is time-consuming. It is necessary to realize
that immediate data update of a peripheral module breaches the principle of the
constancy of input and output data during the cycle and increases hazard risks. The use

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 48

should be restricted exclusively for such cases when immediate response has to be
ensured, for example for treatment of emergency situations, in the processes of interrupt
operation, etc.

7. Other address spaces

49 TXV 001 09.02

7. OTHER ADDRESS SPACES

7.1. D DATA

The D data has the meaning of the constants of the user program. It is part of the user
program and for the user program is accessible only for reading. The D data can be
entered and changed only when editing the user program.

The D data can be advantageously used as parameters modifying the user program.
For a certain class of control algorithms, just one user program can be created and
debugged which is adopted to the real conditions by entering the corresponding
parameters in the D zone before particular use.

Similarly, the user program can be adopted to the changing requirements of the user,
technology changes, assortment changes, etc. In the D data continuous data sequences
can also be saved, such as tables or patterns for setting the scratchpad and outputs in key
situations.

7.2. T TABLES

T tables are part of the user program. They can be used advantageously as parameters
modifying the user program. For a certain class of control algorithms, just one user
program can be created and debugged which is adopted to the real conditions by entering
the corresponding parameters in the T table. Similarly, the user program can be adopted
to the changing requirements of the user, technology changes, assortment changes, etc.

The T table are accessible only through special instructions that refer to the T address
space (table instructions, block transmission instructions). They have a prescribed
structure - this is always a sequence of values of the same width (1, 8, 16, 32 bits) with
additional data on the length of the sequences in bytes. Each item (each value of the
sequence) is assigned an ordinal number - index. The lowest item has zero index, the
index of the last item is called "limit" (number of items = limit + 1). The T tables thus can
be processed as a sequence of the values of arbitrary type excepting lreal (figure 7.1,
figure 7.2, figure 7.3, figure 7.4). These types can be directly determined by the type of
instruction used, they do not depend on the table. Physically the T tables are saved as a
sequence of values with the information on their length in bytes. For bit processing of the
table the last bits not used are always added zeros to the whole byte. The bit table must
start at bit position 0 (it cannot start in the middle of byte).

The following operations can be carried out over the T tables:

♦ item selection to the index specified (LTB)
♦ item write based on index specified (WTB)
♦ find index to the value of the item specified (FTB, FTBN)
♦ find index to the part of item specified (FTM, FTMN)
♦ find class item - classification of the value specified into one of the classes (groups) that

are determined by the table by the limit in the value sequence (FTS, FTSF, FTSS)
♦ data block transmission between the table and scratchpad (SRC, MOV, MTN, MNT)
♦ working with structured table (LDS, WRS, FIT, FNT)

The structure of table instructions enables easily to realize also very complex functions
with the solution being more economical and faster than traditional solutions (sometimes

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 50

very significantly), but it always is more flexible. The resulting program is understandable
and well-ordered.

Table quantity and size limitations

The central units of series E use the T tables solely for initialisation of peripheral units.
The central units of series M can have 256 tables at most with a length of 255 bytes. As a
consequence of this, 127 items of size word (254 bytes), 255 items of size byte and 256
items of size bit (32 bytes) are processible as maximum through the table instructions.

The central units of series S can have 256 tables at most. The length of the tables is
not limited.

For the central units of series B, C and D only the memory size of the user program is
the only limiting factor.

Table examples

index = 7
↓

6
↓

5
↓

4
↓

3
↓

2
↓

1
↓

0
↓

1 1 1 1 1 0 0 1 byte nr.0
15 → 1 0 1 0 1 1 1 0 ← 8 byte nr.1
23 → 1 1 0 0 0 1 1 1 ← 16 byte nr.2
31 → 0 1 1 1 0 0 0 0 ← 24 byte nr.3

...
0 0 0 0 1 0 0 0 byte nr.7

bit limit = 55
↑
51

↑
50

↑
49

↑
48

.7 .6 .5 .4 .3 .2 .1 .0 numbers of bit in byte

Figure 7.1 Example of bool type table (the last four bits are added zeros to the whole byte)

index = 0 156 byte nr.0
1 255 byte nr.1
2 147 byte nr.2
3 64 byte nr.3
:

21 0 byte nr.21
limit = 22 235 byte nr.22

Figure 7.2 Example of table of byte, usint, sint types

item upper
byte

item low
byte

index = 0 $00 $55 byte nr.1 and 0
1 $12 $FF byte nr.3 and 2
2 $01 $47 byte nr.5 and 4
3 $15 $40 byte nr.7 and 6
:

14 $00 $00 byte nr.29 and 28
limit = 15 $00 $35 byte nr.31 and 30

Figure 7.3 Example of table of word, uint, int types

7. Other address spaces

51 TXV 001 09.02

highest
byte of the

item

lowest
byte of the

item
index = 0 $15 $12 $FF $55 byte nr.3 to 0

1 $47 $11 $08 $00 byte nr.7 to 4
2 $00 $40 $56 $00 byte nr.11 to 8
3 $00 AB $0C $40 byte nr.15 to 12
:

8 $48 $D8 $15 $08 byte nr.31 to 28
limit = 9 $07 $35 $20 $04 byte nr.35 to 32

Figure 7.4 Example of table of dword, udint, dint and real types

7.3. DATABOX ADDITIONAL DATA MEMORY

DataBox is a additional memory designed to work higher amount of data, such as
archiving of data on the controlled process for a longer period of time, etc. In central units
it is realized either through an additional sub-module, or is part of standard equipment.
DataBox is a CMOS RAM memory, backed up through a battery from the central unit.
Data can be written to the memory or read either by the user program of the PLC or via
serial line. In the Mosaic development environment the DataBox memory is accessible in
the same way as the scratchpad memory, thus it can be edited also manually.

Serial communication with DataBox memory

For serial communication, any serial channel working in PC mode can be employed.
The program enabling to load the data from the DataBox memory into a file or write the
data from a file into the DataBox memory is called complc32.exe (Windows 2000, XP), or
complc.exe (DOS, Windows 95, 98). It also provides a possibility to test the size of the
memory accessible as DataBox. Programs complc32.exe and complc.exe are part of the
installation of the Mosaic development environment.

DataBox instructions

The user has three instructions available to work with the DataBox memory. Instruction
RDB for loading data from DataBox into registers R, instruction WDB to write data from
registers R into DataBox and instruction IDB to identify the size of DataBox memory.

IDB instruction function

To detect the size of the occupied DataBox memory, the IDB instruction is used. This
instruction does not require any input parameters. After execution it increases the user
stack by one level and the size of the DataBox memory in kB is written on the stack top,
i.e. the value of 128, 512 etc. If DataBox memory is not found, the instruction resets the
value of 0.

During simulation in the Mosaic development environment, the IDB instruction creates
file databox.$$$ in the project folder (if it already exists). The size of the file we want to
create is passed in layer A0 of the active stack in KB. The newly created file is the binary
one and filled with zeros. Instruction IDB increases the user stack by one level and gives
back the required size of DataBox memory in the following situations:

♦ file databox.$$$ was successfully created

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 52

♦ file databox.$$$ already exists and has required size (or is even bigger)

In the following cases, the IDB instruction will return the value of 0 at A0:

♦ file databox.$$$ was not created (e.g. not enough space on the disk)
♦ file databox.$$$ exists, but an error occurred during file opening (e.g. file structure

failure, a defective sector reported by the disk controller, etc.)
♦ file databox.$$$ exists, but its size is smaller than required, - in this case the content of

the databox.$$$ file remains unchanged. To create a larger databox.$$$ file for
simulation, it is necessary to delete the original file or move it into another directory.

As a consequence of the above is that during simulation, instruction IDB works with file
databox.$$$ in the project directory. The size of the created file corresponds to the
request that will be filled into layer A0 before instruction call. In a real PLC, the size of the
DataBox memory is determined by the size of the memory being fitted, which means it can
be bigger than the request. The example at the end of this chapter resolves this situation
through unsharp inequality so, it can be used both for simulation and a real PLC.
Detection of the DataBox memory size is carried out typically in the process for warm or
cold restart.

Parameter zone structure for RDB and WDB

Before calling the RDB a WDB instructions it is necessary to set a couple of
parameters. These parameters are located in the R registers and must be saved closely
behind each other and their order must be observed. The register number where the first
parameter is saved is passed on the stack when instructions RDB and WDB are called
(see the following text). The parameters are ordered as follows:

Parameter name Type Description
adrDB udint address in DataBox memory
indR uint initial register index in scratchpad
len usint number of bytes transferred

The parameters in the program can be defined symbolically with automatic register
assignment

#reg udint adrDB
#reg uint indR
#reg usint len

For programming, the best definition is through the #struct directive, since it
automatically ensures requirements for succession of parameters:

#struct parDB ;structure name
udint adrDB, ;address in DataBox
uint indR, ;initial register index in scratchpad
usint len ;number of bytes transferred

;
#reg parDB parusi

Function of RDB and WDB instructions

By execution of instructions RDB and WDB, the level of the user stack does not
change. On the stack top it gives back the quantity of really transmitted data. At the same
time, the instructions set the content of system register S1.0 with the following meaning:

S1.0 = log.1 - input parameters OK, the result is valid
S1.0 = log.0 - input parameters out of range, the result is invalid

7. Other address spaces

53 TXV 001 09.02

If S1.0 = log.0, no data is transmitted and at the same time the content of register S34
is set with the following meaning:

S34 = $14 - data source block was defined out of range
S34 = $15 - data target block was defined out of range

Based on the size of DataBox memory, the address space is available, see table 7.1.

Table 7.1 Address space available of particular DataBox memories
DataBox memory size Address space available

128 kB (CPU series D and S) 0 - $01FFFB
128 kB (CPU series B and C) 0 - $01FFFF

512 kB (CPU series D and S) 0 - $07FFEF
1.5 MB (CPU series B) 0 - $17FFFF
3.0 MB (CPU series C) 0 - $2FFFFF

When attempting to load or write out of this available space S1.0 is set to log.0 and at
the same time, corresponding error code is set at S34. During simulation in the user
program, instructions RDB and WDB execute loading or writing as the case may be into
file databox.$$$. If it is not possible to open this file or an error occurs during loading or
writing into this file, the instruction set S1.0 = log.0 as well as A0 = 0 during the simulation.

Example of application

As an example, instructions RDB, WDB and IDB can be used in the user program as
follows:

#reg udint 100,adrDB ;variables controlling RDB activity
#reg uint indR
#reg usint len
#reg bool DataBoxOK ;DataBox flag OK
;
P 63

:
LD 32 ;required size of DataBox in application
IDB ;DataBox size identification
GT
NEG ;DataBox of size required at least?
WR DataBoxOK ;set flag
:

E 63
;
P 0

:
LD DataBoxOK ;DataBox OK ?
JMC endDBX ;no
LD $FC00 ;address in DataBox (32 bit model)

;!! LDL $FC00 ;address in DataBox (16 bit model - long !!!)
WR adrDB
LD 200 ;to which register
WR indR ;data from DataBox are transferred
LD 56 ;number of bytes transferred
WR len
LD 100 ;register number where parameters are stored
RDB ;reading data block from DataBox

;to the scratchpad, block
;56 bytes long is read from address $FC00
;and saved from R200

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 54

endDBX:
:

E 0

or better

#struct parDB ;structure name
udint adrDB, ;address in DataBox
uint indR, ;initial register index in scratchpad
usint len ;number of bytes transferred

;
#reg parDB parusi
#def lenDat 56
#reg usint blockDat[lenDat]
#reg bool DataBoxOK ;DataBox flag OK
;
P 63

:
LD 32 ;required size of DataBox in application
IDB ;DataBox size identification
GT
NEG ;DataBox of size required at least?
WR DataBoxOK ;set flag
:

E 63
;
P 0

:
LD DataBoxOK ;DataBox OK?
JMC endDBX ;no
LD $FC00 ;address in DataBox (32 bit model)

;!! LDL $FC00 ;address in DataBox (16 bit model - long !!!)
WR parusi~adrDB
LD __indx (blockDat);to which register data

;from DataBox
WR parusi~indR
LD lenDat ;number of bytes transferred
WR parusi~len
LD __indx (parusi) ;register number where parameters are stored
RDB ;reading data block from DataBox to the

;scratchpad block
;56 bytes long is read from address $FC00
;and saved in the blockDat field

endDBX:
:

E 0

User instructions

If older types of central units are available that do not have instructions RDB, WDB and
IDB implemented, user instructions READDBX, WRITEDBX and SIZEDBX can be used
(user instruction definition see chapter 12). Their function is identical to the corresponding
instructions including simulation in the Mosaic development environment.

Definition of user instructions

The user instructions are necessary to be defined at the beginning of the user program:

7. Other address spaces

55 TXV 001 09.02

#usi u_readdbx = readdbx ;file path and name
#usi u_writedbx = writedbx ;file path and name
#usi u_sizedbx = sizedbx ;file path and name
#def RDB usi u_readdbx ;USI naming
#def WDB usi u_writedbx ;USI naming
#def IDB usi u_sizedbx ;USI naming

These 6 lines will be inserted into the user program immediately at the beginning of the
program. By doing this we have added the missing information to the PLC. The rest of the
user program remains unchanged.

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 56

8. RESULT STACK

Stack model

During execution of the user program the PLC works with a stack having 8 levels
numbered A0 to A7 (an accumulator). Active level A0 also called the stack top is used for
the most of instructions. TECOMAT PLCs have two stack models that differ from each
other by the width of one layer. Series B, D, E, M and S have particular stack layers 16
bits wide (see figure 8.1), while series C has the stack layers 32 bits wide (see figure 8.2).
This results in some differences in behaviour of particular models.

The stack is used by logic operations, arithmetic operations, transmission operations,
and also logic and numeric parameters of more complex instructions and subroutines are
passed on.

The stack is cyclic (see figure 8.3), we can imagine it as a drum memory as you can
see on figure 8.4.

A set of eight switchable stacks

In total 8 stacks are available (except central units of series E, that has only one stack)
marked A to H. Only one stack is active at a time and it is possible to switch among them
(see figure 8.4). This gives a lot of opportunities in the field of parameter transmission
among the functions in the user program without necessity to use a worse arranged
saving of intermediate parameters in the scratchpad.

dword udint
dint real

upper byte low byteword
uint int

bit 15 . . . 8 bit 7 . . . 0
A01 A0

A1
A23 A2

A3
A45 A4

A5
A67 A6

A7

Figure 8.1 Schematic diagram of A stack structure of 16 bit model

upper word low word
lreal

dword
udint

dint real
highest byte lowest byte

bit 31 . . . 24 bit 25 . . . 16 bit 15 . . . 8 bit 7 . . . 0
A01 A0

A1
A23 A2

A3
A45 A4

A5
A67 A6

A7

Figure 8.2 Schematic diagram of A stack structure of 32 bit model

8. Result stack

57 TXV 001 09.02

stack A stack A
A0 A0
A1 A1
A2 A2
A3 A3
A4 A4
A5 A5
A6 A6
A7 A7

stack
shift forward

stack
shift backward

Figure 8.3 Function of cyclic stack A

Figure 8.4 Stack A as a drum memory

Figure 8.5 Stack switching

8.1. STACK STRUCTURE

Stack top

The stack top (A0 or A01 as the case may be) is the active layer having the meaning of
an accumulator. Other layers (A1 to A7, or A23 to A67 as the case may be) contain
gradually the sequence of the previous values of the stack top.

Stack shift forward

The stack shift forward is executed the read instructions (LD, LDC, etc.) and some
more complex instructions. After each stack shift forward by one level, the values off all of
its layers A0 to A6 are moved to the layers with numbers higher by one and the A0 stack
top is occupied by a new value according to the following procedure:

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 58

A0 ← new data
A1 ← original content A0
A2 ← original content A1
.......
A7 ← original content A6
Original content A7 is lost irrecoverably (it is overwritten by the new content of A0).

Stack shift backward

The stack shift backward is executed by the POP instruction and operand-free
instructions of arithmetic and logic operations. The backward shift is executed by the
following procedure:

A0 ← original content A1 or operation result between A0 and A1
A1 ← original content A2
A2 ← original content A3
.......
A7 ← original content A0

8.2. DATA INTERPRETATION ON THE STACK - 16 BIT MODEL

Each stack layer has the width of 16 bits (2 bytes). The entire layer is marked A0, A1, ...
A7 (see figure 8.1). The data of dword, udint, dint and real types occupy two layers. In this
case we talk about a double-layer numbered A01, A23, A45, A67.

8.2.1. Data of bool type - 16 bit model

If we load bool type data on the stack top (LD %R0.1, for example), then the bit value (0
or 1) will be saved on all sixteen bits of layer A0 (A0 = 0 or A0 = 65 535).

If we save bool type data (WR %R8.5, for example), then in case of the zero value of
A0 we write the zero value of the bit, in case of any non-zero value of A0 we write one.
Thus we save longitudinal logical add (OR operation) of all sixteen bits of stack A0.

This principle enables an easy format conversion, it is possible to combine instructions
with operands of bool, byte, usint, sint, word, uint and int types almost without any
limitation.

When talking about content of the stack top as the bool type value, we will use the
following specification:

log.0 logic zero, A0 = 0
log.1 logic one, A0 ≠ 0

The stack top is understood as the entire layer A0.

upper byte low byte
A0 b b b b b b b b b b b b b b b b

Figure 8.6 Bool type data saving on the stack top
b - bit logic value (log.0 or log.1)

8. Result stack

59 TXV 001 09.02

8.2.2. Data of byte, usint, sint types - 16 bit model

If we load byte, usint or sint types data on the stack top (LD %R0, for example), then
the value of this byte will be saved in the low byte of layer A0, the upper byte of layer A0
will be set to zero.

If we write byte, usint or sint types data (WR %R8, for example), then only the low byte
of layer A0 will be saved in the target address. The upper byte will be ignored.

This principle enables an easy format conversion for positive values, it is possible to
combine instructions with operands of bool, byte, usint, word and uint types almost without
any limitation. For negative values (types sint, int) it is necessary to treat sign
transmission.

The data assumes values of 0 to 255 (byte, usint) or -128 to 127 (sint) when using the
highest bit as sign.

The stack top is understood the entire layer A0.

upper byte low byte
A0 0 B

Figure 8.7 Byte, usint, sint types data saving on the stack top
B - byte value

8.2.3. Data of word, uint, int types - 16 bit model

Data of word, uint, int types occupy 2 bytes.
If we load data of word, uint, int types on the stack top (LD %RW0, for example), the

entire layer A0 will be filled with the data. The content of the register with the lower
number will be saved in the low byte of layer A0, the content of the register with the higher
number will be saved in the upper byte of layer A0.

If we write data of word, uint, int types (WR %RW8, for example), the entire content of
layer A0 will be saved in the target address. The content of the low byte of layer A0 will be
saved in the register with the lower number, the constant of the upper byte of layer A0 will
be saved in the register with the higher number.

The data assumes values of 0 to 65 535 (word, uint) or -32 768 až +32 767 (int) when
using the highest bit as sign.

The stack top is understood the entire layer A0.

upper byte low byte
A0 WH WL

Figure 8.8 Word, uint, int types data saving on the stack top
WH - higher byte value
WL - lower byte value

8.2.4. Data of dword, udint, dint types - 16 bit model

Data of dword, udint, dint types occupy 4 bytes.
If we load data of dword, udint, dint types on the stack top (LD %RL0, for example),

then the entire layers A0 and A1 are filled with the data that together form double-layer
A01. The content of the register with the lowest number will be saved in the low byte of
layer A0, the content of the register with the highest number will be saved in the upper
byte of layer A1.

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 60

If we write data of dword, udint, dint types (WR %RL8, for example), the entire content
of double-layer A01 will be saved in the target address. The content of the low byte of
layer A0 will be saved in the register with the lowest number, the content of the upper byte
of layer A1 will be saved in the register with the highest number.

The data can assume values of 0 to 4 294 967 295 (dword, udint) or -2 147 483 648 to
+2 147 483 647 (dint) when using the highest bit as sign.

The stack top is the entire double-layer A01.

upper byte low byte
A01 A0 L1 L0

A1 L3 L2

Figure 8.9 Dword, udint, dint types data saving on the stack top
L0 - lowest byte value
:

L3 - highest byte value

8.2.5. Data of real type - 16 bit model

Data of real type is 4 bytes wide, which is the same width as the dword type data has.
The same principles as mentioned above are valid for them.

According to IEEE-754 real type data can assume values of approx. ±1,175494x10–38

to ±3,402823x1038. The following four values specify their state:

$7FFFFFFF - invalid number (NaN - not a number)
$FFFFFFFF - invalid number (NaN - not a number)
$7F800000 - exceeding the range of positive numbers (+INF)
$FF800000 - exceeding the range of negative numbers (–INF)

The stack top is the entire double-layer A01.

upper byte low byte
A01 A0 mmmmmmmm mmmmmmmm

A1 s e e e e e e e e mmmmmmm

Figure 8.10 Real type data saving at the stack top
s - sign (1 bit)
e - exponent (8 bits)
m - mantissa (23 bits)

8.3. DATA INTERPRETATION AT THE STACK - 32 BIT MODEL

Each stack layer is 32 bits wide (4 bytes). The entire layer is labelled A0, A1, ... A7 (see
figure 8.2). Lreal types data occupy two layers. Then we talk about so called "double-
layer" labelled A01, A23, A45, A67.

8.3.1. Data of bool type - 32 bit model

If we load data of bool type on the stack top (LD %R0.1, for example), then the bit value
(0 or 1) will be saved in all 32 bits of layer A0 (A0 = 0 or A0 = 4 294 967 295).

8. Result stack

61 TXV 001 09.02

If we write data of bool type (WR %R8.5, for example), then in case of zero value of A0
zero value of the bit will be saved, in case of any non-zero value of A0, number one will be
saved. Thus we write longitudinal logical add (OR) of all 32 bits of stack top A0.

This principle enables an easy format conversion, it is possible to combine instructions
with operands of bool, byte, usint, sint, word, uint, int, dword, udint and dint types almost
without any limitation.

When talking about content of the stack top as the bool type value, we will use the
following specification:

log.0 logic zero, A0 = 0
log.1 logic one, A0 ≠ 0

The stack top is understood the entire layer A0.

highest byte lowest byte
A0 b

Figure 8.11 Bool type data saving on the stack top
b - bit logic value (log.0 or log.1)

8.3.2. Data of byte, usint, sint types - 32 bit model

If we load data of byte, usint, sint types on the stack top (LD %R0, for example), then
the value of this type will be saved in the lowest byte of layer A0, other three bytes of layer
A0 will be set to zero.

If we write data of byte, usint, sint types (WR %R8, for example), then the lowest byte
of layer A0 will be saved to the target address. Other bytes will be ignored.

This principle enables an easy format conversion for positive values, it is possible to
combine instructions with operands of bool, byte, usint, word, uint, dword and udint types
almost without any limitation. For negative values (types sint, int, dint) it is necessary to
treat sign transmission.

The data assumes values of 0 to 255 (byte, usint) or -128 to 127 (sint) when using the
highest bit as sign.

The stack top is understood the entire layer A0.

highest byte lowest byte
A0 0 0 0 B

Figure 8.12 Byte, usint and sint types data saving on the stack top
B - byte value

8.3.3. Data of word, uint, int types - 32 bit model

Data of word, uint, int types occupies 2 bytes.
If we load data of word, uint, int types on the stack top (LD %RW0, for example), then

the value of this word will be saved in the lower word of layer A0, the upper word of layer
A0 will be set to zero. The content of the register with the lower number will be saved in
the lowest byte of layer A0, the content of the register with the higher number will be
saved in the second lowest byte of layer A0.

If we write data of word, uint, int types (WR %R8, for example), then only the low word
of layer A0 will be saved in the target address. The upper word will be ignored. The
content of the lowest byte of layer A0 will be saved in the register with the lower number,

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 62

the content of the second lowest byte of layer A0 will be saved in the register with the
higher number.

This principle enables an easy format conversion for positive values, it is possible to
combine instructions with operands of bool, byte, usint, word, uint, dword a udint types
almost without any limitation. For negative values (types sint, int, dint) it is necessary to
treat sign transmission.

The data assumes values of 0 to 65 535 (word, uint) or -32 768 až +32 767 (int) when
using the highest bit as sign.

The stack top is understood the entire layer A0.

upper word low word
highest byte lowest byte

A0 0 0 WH WL

Figure 8.13 Word, uint and int types data saving on the stack top
WH - higher byte value
WL - lower byte value

8.3.4. Data of dword, udint, dint types - 32 bit model

Data of dword, udint, dint types occupy 4 bytes.
If we load data of dword, udint, dint types on the stack top (LD %RL0, for example), the

entire layer A0 will be filled with the data. The content of the register with the lowest
number will be saved in the lowest byte of layer A0, the content of the register with the
highest number will be saved in the highest byte of layer A0.

If we write data of dword, udint, dint types (WR %RL8, for example), then the entire
content of layer A0 will be saved in the target address. The content of the lowest byte of
layer A0 will be saved in the register with the lowest number, the content of the highest
byte of layer A0 will be saved in the register with the highest number.

The data can assume values of 0 to 4 294 967 295 (dword, udint) or -2 147 483 648 to
+2 147 483 647 (dint) when using the highest bit as sign.

The stack top is understood the entire layer A0.

highest byte lowest byte
A0 L3 L2 L1 L0

Figure 8.14 Dword, udint, dint types data saving on the stack top
L0 - lowest byte value
:

L3 - highest byte value

8.3.5. Data of real type - 32 bit model

The data of real type is 4 bytes wide, having the same length as dword type data. The
same principles as mentioned above are valid for them.

According to IEEE-754 real type data can assume values of approx. ±1,175494x10–38

to ±3,402823x1038. The following four values specify their state:

$7FFFFFFF - invalid number (NaN - not a number)
$FFFFFFFF - invalid number (NaN - not a number)
$7F800000 - exceeding the range of positive numbers (+INF)
$FF800000 - exceeding the range of negative numbers (–INF)

8. Result stack

63 TXV 001 09.02

The stack top is understood the entire layer A0.

highest byte lowest byte
A0 s e e e e e e e e mmmmmmm mmmmmmmm mmmmmmmm

Figure 8.15 Real types data saving at the stack top
s - sign (1 bit)
e - exponent (8 bits)
m - mantissa (23 bits)

8.3.6. Data of lreal type - 32 bit model

The data of lreal type is 8 bytes wide.
If we load data of lreal type on the stack top (LD %RD0, for example), then two layers

A0 and A1 are fully filled with the data. These two layers form a double-layer A01. The
content of the register with the lowest number will be saved in the low byte of layer A0, the
content of register with the highest number will be saved in the upper byte of layer A1.

If we write data of lreal type (WR %RD8, for example), the entire content of double-
layer A01 will be saved in the target address. The content of the low byte of layer A0 will
be saved in the register with the lowest number, the content of the upper byte of layer A1
will be saved in the register with the highest number.

According to IEEE-754, data of lreal type can assume values of approx. ±2,2x10–308 to
±1,8x10308. The following four values specify their state:

$7FFFFFFF FFFFFFFF - invalid number (NaN - not a number)
$FFFFFFFF FFFFFFFF - invalid number (NaN - not a number)
$7FF00000 00000000 - exceeding the range of positive numbers (+INF)
$FFF00000 00000000 - exceeding the range of negative numbers (–INF)

The stack top is the entire double-layer A01.

highest byte lowest byte
A01 A0 mmmmmmmm mmmmmmmm mmmmmmmm mmmmmmmm

A1 s e e e e e e e e e e e mmmm mmmmmmmm mmmmmmmm

Figure 8.16 Lreal type data saving on the stack top
s - sign (1 bit)
e - exponent (11 bits)
m - mantissa (52 bits)

8.4. SWITCHING AMONG STACKS

There are 8 stacks available, marked A, B, C, D, E, F, G, H, each of them having such
a structure as described for stack A in chapter 8.1. Only one stack is active at a time, the
other stacks are hold at the state at which they were when leaving the user program and
no state of the user program can effect them. For example, when opening a new user
process, only the active stack will be set to zero (see chapter 10).

After switching on or restarting the PLC, all stack are set to zero and only the A stack is
active. After cycle I/O scan, the A stack is always set to zero and set as the active one.

Switching among the stack is possible at any time, which means that the user program
leaves the current active stack and works with the newly selected stack. At the same time,
also the state of flag registers S0 and S1 will be backed up.

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 64

Instructions for stack switching

For switching the stacks, the following four instructions are used:

NXT - Activation of next stack in the queue (figure 8.5)
for example if stack C was active, stack D will be activated now

PRV - Activation of previous stack in the queue (figure 8.5)
for example if stack C was active, stack B will be activated now

CHG - activation of any stack
for example, CHG 7 activates stack F, the state of flag registers S0 and S1 is not
changed,

CHGS- activation of any stack with backing-up S0 and S1 registers
for example CHGS 7 writes the state of system registers S0 and S1 to the stack
being still active and activates stack F, in system registers S0 and S1 it refreshes
the state corresponding to their state at the moment, when the last active stack F
was left by means of instruction CHGS n, where n is 0 to 7 (stands for A to H), or
by means of instructions NXT and PRV.

9. Compiler directives

65 TXV 001 09.02

9. COMPILER DIRECTIVES

Directives are commands for the compiler enabling to control compilation optimally. All
directives begin with character #. At the xPRO compiler containing the Mosaic
development environment, the following directives are available:

#program
#unit, #module
#include, #usefile
#def
#reg, #rem
#data, #table
#struct
#if, #elif, #else, #endif
#ifdef, #ifndef
#macro, #endm
#label
#usi
#mnemo, #mnemoend
#useoption

9.1. #program

The #program directive specifies program start.
The syntax is as follows:

#program name [,[V][xyz]]

name - program name, maximum 16 characters (a longer name will be
shorted accordingly)

V - optional prefix program version
xyz - three optional characters characterizing program version

In the Mosaic development environment this directive is not entered manually by the
user, but the user can use a form in folder Sw | Program where he specifies the program
name, its version and other information on application and history of changes to the user
program. This information is part of the project and are handy especially when you come
to this user program later on. If the user does not fill this form, the default name will
correspond to the name of the project within the project group and the version is 1.0.
Based on these information, the compiler itself then generates a program heading that is
in control file xxx.mak, where xxx is the project name within the project group.

The information on the name and version of the user program being executed by the
PLC can be read any tine, if we select option PLC | Get PLC info… For that reason, we
recommend to use the program version in such a way that with each change of the
program its version will also be changed. A very frequent problem in applications is to find
out which program version is loaded in the PLC, therefore conscionable numbering of
version avoids problems during later program modifications.

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 66

9.2. #unit, #module

By means of directives #unit or #module a list of peripheral units is created necessary
for a proper function of the user program. Based on configuration identified PLC
configuration is created by the compiler (see PLC manuals).

The syntax is as follows:

#unit rack,address,type,image_X,image_Y, activation[,tab]
#module TModulE1 version, rack, address, location, length_X, length_Y,
__offset (image_X), __offset (image_Y), __indx (tab)

version - number of description variant (always 1)
rack - rack number in which the module is installed
address - module address in the frame (can be set through jumpers or

determined by position)
location - numeric code denoting location of descripted module part
type - numeric code characterizing module type

This numeric code is not used directly, but through symbolic
names defined standardly in file xpro.sys.

length_X - length of defined module input data
length_Y - length of defined module output data
image_X - operand (does not have to be necessarily in area X) specifying to

which registers data is transmitted from the inputs of the module
defined

image_Y - operand (does not have to be necessarily in area Y) specifying
from which registers data is transmitted to the outputs of the
module defined

activation - code (again replaced by the symbolic name specified in file
xpro.sys) informing on mode
It can assume the following values:
X_on = inputs permitted (copied to image_X)
Y_on = outputs permitted (copied from image_Y)
On = inputs and outputs permitted
Off = inputs and outputs prohibited

tab - optional parameter specifying the name of table (see #table) with
data necessary for unit initialisation
This initialisation is used by some special types of peripheral
modules, system serial channels, etc.

In the Mosaic development environment, the user does not define peripheral units
through manual entry of the #unit directive, but by filing in the tables in the configuration
section (in the Project manager, item Hw | HW Configuration. Based on these instructions,
the compiler then creates an individual file xxx.hwc, where xxx is the name of the project
containing both the #unit directive and corresponding initialisation tables. This file is
automatically attached to the user program by means of the #usefile directive (see
following text) in the control file xxx.mak. If you check option Suppress directive #UNIT in
the configuration section, the #unit directives will be only commentaries in the file
(beginning with semi-colon character).

PLC TECOMAT TC650 and TC700 use #module directive instead of #unit directive.
In the Mosaic environment it is possible to read information from a connected PLC

according to which configuration is automatically filled. This data can be modified by the
user as needed and based on this data, configuration file xxx.hwc will be created during
compilation.

9. Compiler directives

67 TXV 001 09.02

9.3. #include, #usefile

When writing long programs, it is advantageous to arrange the entire program into
smaller, logically compact files. This so-called file threading enables directive #include.

The syntax is as follows:

#include file_name

file_name - identifies the file that is necessary to connect to the program being
compiled. If it is not found in the current working directory, it is
necessary to specify the path to the file.

When the compiler finds the #include directive in the program source text, it interrupts
compilation in the current file and continues compilation of the file specified after the
#include directive. After compilation of this entire file it continues compilation of the text
from the original file. The compiler has the capability of resolving such situations when a
file inserted by the #include directive contains other #include directives.

In the Mosaic development environment it is more advantageous to use file threading
by means of the project. Each file contained in the project is inserted into the control file
xxx.mak in the given order by means of the #usefile directive. This directive is
automatically generated by the compiler and is not intended to be used by the user. If we
add another file into the project it will be automatically connected in the control file during
compilation. The sequence of file compilation is determined by their sequence in the list
and this can be changed by means of move-arrows.

The syntax is as follows:

#usefile file_name

file_name - identifies a file that is inserted into the project being compiled

In the Mosaic development environment, file threading is facilitated because the
compiler supports so called

In the Mosaic development environment, file threading is facilitated by the compiler
supporting so called "process assembling". This means, if we write instructions within the
frame of process P0 (beginning with instruction P 0 and ending with instruction E 0) in one
file, and in another file we again write instructions within the frame of process P0 (we
again begin with instruction P 0 and end with instruction E 0), the compiler creates one
process P0 in which both parts are merged (it does not use excess instructions E 0 and P
0) in the sequence as they were ordered in the project.

But for this reason we do not recommend using of the EC and ED instructions, which
cause premature process termination, this is to say that such parts of the program will not
be executed that are connected by the compiler (this can include also important compilers
generated by the Mosaic environment). A jump to the end of a process within one file is
solved by a jump to a label.

9.4. #def

By means of directive #def symbolic names are defined, that can be used in the
program instead of absolute operands, for example.

The syntax is as follows:

#def symbolic_name substitute_name

symbolic_name - a sequence consisting of arbitrary number of permitted characters
(see directive #program)

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 68

substitute_name - another arbitrary string consisting of permitted characters (an
absolute operand, a constant, etc.)

Directive #def can be used anywhere in the program after its header, but always before
first use of the symbolic name defined. A general principle is applied that says to define
first and then it is possible to use the object defined.

Example 9.1
#def Start_Bit %R5.0 ;bit definition
#def CONSTANT 80 ;delay
#def PAUSE CONSTANT+20
#def sec 2 ;type of timer 1 s
#def Timer_T1 %RW0.sec ;timer 1 s
#def output_word %YW0 ;output

9.5. #reg, #rem

Directive #reg is used for automatic definition of variables from area R. By means of
this directive we assign a symbolic name to the variable and at the same time, we inform
the compiler to reserve this variable in registers R of the PLC scratchpad memory. The
number of registers reserved for the variable is determined by the data type required.

Directive #rem is used for automatic definition of variables from remanent zone R. By
means of this directive, we assign a symbolic name to the variable and at the same time,
we inform the compiler to reserve this variable in remanent registers R of the PLC
scratchpad memory. The number of registers reserved for the variable is determined by
the data type required.

If the remanent zone is too small for the variable, the compiler will warn you using an
error report and offers you automatic change of the size of the remanent zone. If the size
of the remanent zone still was set to its maximum, then the repeated compilation will be in
order.

The syntax is as follows:

#reg [public] [aligned] type [index,]
var_name[[len_array]][,next_var...]

#rem [public] [aligned] type [index,]
var_name[[len_array]][,next_var...]

public - an optional command to generate into the list of public variables
for visualizations in the project manager in folder Sw | Compiler
option Generate file | PUBLIC

aligned - an optional command to assign the variables to the even register
or to the bit 0

type - specifies data type of the variables assigned to the symbolic name
var_name
Permitted types of assigned variables are listed in table 9.1.

var_name, next_var - symbolic names of defined registers
len_array - an optional parameter closed in square brackets [], it specifies the

size of the field in the format corresponding to parameter typ
index - an optional parameter, it specifies the register number assigned to

symbolic name var_name in area R

9. Compiler directives

69 TXV 001 09.02

Table 9.1 Permitted types of variables assigned
Type Range Example

bool R0.0 - Rmax.7* R10.2, R2.15
byte, usint, sint R0 - Rmax* R1, R2001
word, uint, int R0 - Rmax–1* RW2, RW2002
dword, udint, dint R0 - Rmax–4* RL4, RL2004
real R0 - Rmax–4* RF8, RF2008
lreal R0 - Rmax–8* RD12, RD2012
structure**

* Rmax is determined by the series of the central unit used.
** Structure is the name (tag) of the structure defined by means of directive #struct.

The compiler automatically assigns indexes continuously ascending. When specifying
optional parameter index the internal counter is set to its value which is then assigned as
the index to the first symbolic name of the list (var_name). For other names of variables
(next_var) in the list, assignment continues from this set index. The most appropriate thing
is to put the manually indexed operands at the beginning of register definitions.

For one use of #reg and #rem arbitrary number of operands can be created, the names
are separated by commas. If it not possible to put all names on one line, you can continue
on the next line. When using directives #reg and #rem, the programmer does not have to
assign the indexes to the variables with a risk to make mistakes.

Actually assigned values can be checked after program compilation by means of
command View | Symbols or from a file of program dump including also a table with
symbolic names.

If we check item Generate file | Register map in folder Sw | Compiler in the project
manager of the Mosaic development environment, then after program compilation we find
register assignment in file xxx.map, where xxx is the name of the project.

Example 9.2
#reg bool Rbit00, Rbit01, Rbit02 ;Rbit00 ... %R0.0,

;Rbit01 ... %R0.1,
;Rbit02 ... %R0.2

#reg usint Rbyte0, Rbyte1 ;Rbyte0 ... %R1,
;Rbyte1 ... %R2

#reg uint 10, Rword0, Rword1 ;Rword0 ... %RW10,
;Rword1 ... %RW12

#reg udint Rlong0, Rlong1 ;Rlong0 ... %RL14,
;Rlong1 ... %RL18

#reg real Rfloat0, Rfloat1 ;Rfloat0 ... %RF22,
;Rfloat1 ... %RF26

#reg lreal Rdouble0, Rdouble1 ;Rdouble0 ... %RD30,
;Rdouble1 ... %RD38

The #reg and #rem directives enable to declare one-dimensional fields as well. In this
case, the number of field elements will be specified in square brackets after the name of
the variable.

Example 9.3

Let us define variable pole having 20 elements of word type, the first element has index 0
and the last element has index 19. As you can see the field indexes, they begin with zero
as all other at TECOMAT do.

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 70

#reg word array[20] ;array[0] ... %RW14
;array[1] ... %RW16
; ...
;array[19] ... %RW52

If we want to load the value of the field element, for example with index 15, add one and
write it to index 16, we can use the following procedure.

LD array[15]
INR
WR array[16]

If we want to use a bit field in the program to which we will access through table
instructions, this field must begin on bit 0!! For this we will use command aligned. If the
number of the bit items of the field is not a multiple of 8, we recommend not to use the bits
behind this field remaining to the whole byte, for other bit variables.

#reg bool var1, var2 ;%R0.0, %R0.1
#reg aligned bool array[12] ;%R2.0 – %R3.3
#reg aligned bool var3, var4 ;%R4.0, %R5.0
#reg bool var5, var6 ;%R5.1, %R5.2

:
LTB array
:

9.6. #struct

Directive #struct is used for declaration of data structures, which are substantially new
data types derived from basic data types or from previously declared structures. By
declaring a structure there are no requirements to occupy the PLC memory, a new data
type is just loaded that can be used for automatic assignment of variables in directive
#reg, for definition of tables, etc.

Declaration of the structure consists of a name (tag) of the structure and types and
names of particular structure members.

The syntax is as follows:

#struct name_str [aligned] type0[[repeat0] member0[,...]...]
[aligned] typen[[repeatn] membern]

name_str - structure name (tag)
aligned - optional rounding of structure member index to even index
type0 - typen - types of structure members (byte, word...) or tag of another

structure
member0 - membern - names of structure members
repeat0 - repeatn - optional repeating of structure members obligatorily closed in

square brackets, whole numbers > 0

For definition of the structure, the following principles are valid:

♦ if the definition is longer than one line, it is possible to continue on the next line
♦ definitions of particular members are separated with comma (',')
♦ each structure member must have a type and a name assigned that must be unique

within one structure
♦ a one-dimensional field of given type can be also a structure member

9. Compiler directives

71 TXV 001 09.02

♦ structures in T tables and D data are initialized, structure members are initialized from a
listing of values in the order as they are defined, missing initialisation values are
replaced by zeros.

Example 9.4

An easy structure can be defined as follows, for example:

;easy structure declaration
#struct typTime ;structure name

usint Hour, ;first member of structure
usint Minute, ;second member of structure
usint Second ;the last member of structure

The above mentioned definition created a new data type called typTime. This type is 3
bytes long and consists of items Hour, Minute and Second. All items are of usint type.
Now, we can define variables by means of directive #reg, these directives will be of type
typTime.

#reg typTime StartTime

By means of directive #reg we created variable StartTime, which is of type structure
typTime and has items Hour, Minute and Second. The items are of usint type. The access
to the variable from the program show the following instructions.

;access to the items of variables StartTime
LD StartTime~Hour
LD StartTime~Minute
LD StartTime~Second

For structure member references in the program is valid the following:

♦ a structure member is separated by tilde character '~'
♦ multidimensional members can be indexed with indexes 0 to defSize–1, where defSize

is the member dimension
♦ if expansion does not succeed to the final element of the structure, the closest structure

member is considered as operand

In the program we can create an arbitrary number of variables of the new type declared by
means of directive #struct typTime.

;declaration of several variables of type typTime
#reg typTime Leaving, Coming, Time_For_Lunch

The following line shows the declaration of the variable field, the type of which was
defined by the #struct directive in the previous text.

;variable field declaration of type typTime
#reg typTime TimeArray[10] ;variable field

For example, particular field elements can be accessed from the program as follows:

LD TimeArray[0]~Hour
LD TimeArray[0]~Minute
LD TimeArray[0]~Second

In directives #struct, the types defined by previous #struct directives can also be used
when defining types of particular items. In other words structures can be mutually nested
which enables to create also complex derived types.

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 72

Example 9.5
;definition of simple structure
#struct typTime ;structure name

usint Hour ;first member of structure
usint Minute ;second member of structure
usint Second ;the last member of structure

;
;definition of next simple structure
#struct typDate ;structure name

usint Day, ;first member of structure
usint Month, ;second member of structure
uint Year ;the last member of structure

;
;definition of structure, members of which are other structures
(structure nesting)
#struct TimeStamp ;structure name

typTime Time, ;first member of structure
typDate Date, ;second member of structure
uint NumberPcs ;the last member of structure

;
#reg TimeStamp Batch ;variable of type TimeStamp
#reg TimeStamp Record[10] ;variable field of type TimeStamp
;
P 0

LD Batch~Time~Hour
LD Batch~Date~Year
LD Batch~NumberPcs
:
LD Record[1]~Time~Hour
LD Record[9]~Date~Year
LD Record[0]~NumberPcs
:

E 0

Example 9.6

In some cases it is necessary that a field is an structure item. A definition of such structure
can be for example:

#struct typTime ;structure name
usint Hour, ;first member of structure
usint Minute, ;second member of structure
usint Second ;the last member of structure

;
#struct typDate ;structure name

usint Day, ;first member of structure
usint Month, ;second member of structure
uint Year ;the last member of structure

;
#struct complexRecord

typTime[2] Times,
typDate[2] Dates,
uint Pieces

;
#reg complexRecord Workpiece
;

9. Compiler directives

73 TXV 001 09.02

P 0
LD Workpiece~Times[0]~Hour
LD Workpiece~Dates[1]~Year
LD Workpiece~Pieces
:

E 0

It might not be a surprise, that also from such defined structures a variable field can be
created.

#reg complexRecord Workpieces[3]
;
P 0

LD Workpieces[0]~Times[0]~Hour
LD Workpieces[0]~Dates[1]~Year
LD Workpieces[0]~Pieces
:

E 0

In conclusion of the examples let us specify concrete occupation of registers in the PLC
scratchpad memory for this example. The below specified list of register occupation can
be obtained in the file with .map extension after program compilation:

'R' register area map
;* Main file˙C:\XPRO\PRAC\STRUCT.950
;
R 0 : 47 =COMPLEXRECORD WORKPIECES[3] ;

R0 >> WORKPIECES[0]~TIMES[0]~HOUR
R1 >> WORKPIECES[0]~TIMES[0]~MINUTE
R2 >> WORKPIECES[0]~TIMES[0]~SECOND
R3 >> WORKPIECES[0]~TIMES[1]~HOUR
R4 >> WORKPIECES[0]~TIMES[1]~MINUTE
R5 >> WORKPIECES[0]~TIMES[1]~SECOND
R6 >> WORKPIECES[0]~DATES[0]~DAY
R7 >> WORKPIECES[0]~DATES[0]~MONTH
RW8 >> WORKPIECES[0]~DATES[0]~YEAR
R10 >> WORKPIECES[0]~DATES[1]~DAY
R11 >> WORKPIECES[0]~DATES[1]~MONTH
RW12 >> WORKPIECES[0]~DATES[1]~YEAR
RW14 > WORKPIECES[0]~PIECES
R16 >> WORKPIECES[1]~TIMES[0]~HOUR
R17 >> WORKPIECES[1]~TIMES[0]~MINUTE
R18 >> WORKPIECES[1]~TIMES[0]~SECOND
R19 >> WORKPIECES[1]~TIMES[1]~HOUR
R20 >> WORKPIECES[1]~TIMES[1]~MINUTE
R21 >> WORKPIECES[1]~TIMES[1]~SECOND
R22 >> WORKPIECES[1]~DATES[0]~DAY
R23 >> WORKPIECES[1]~DATES[0]~MONTH
RW24 >> WORKPIECES[1]~DATES[0]~YEAR
R26 >> WORKPIECES[1]~DATES[1]~DAY
R27 >> WORKPIECES[1]~DATES[1]~MONTH
RW28 >> WORKPIECES[1]~DATES[1]~YEAR
RW30 > WORKPIECES[1]~PIECES
R32 >> WORKPIECES[2]~TIMES[0]~HOUR
R33 >> WORKPIECES[2]~TIMES[0]~MINUTE
R34 >> WORKPIECES[2]~TIMES[0]~SECOND
R35 >> WORKPIECES[2]~TIMES[1]~HOUR
R36 >> WORKPIECES[2]~TIMES[1]~MINUTE
R37 >> WORKPIECES[2]~TIMES[1]~SECOND

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 74

R38 >> WORKPIECES[2]~DATES[0]~DAY
R39 >> WORKPIECES[2]~DATES[0]~MONTH
RW40 >> WORKPIECES[2]~DATES[0]~YEAR
R42 >> WORKPIECES[2]~DATES[1]~DAY
R43 >> WORKPIECES[2]~DATES[1]~MONTH
RW44 >> WORKPIECES[2]~DATES[1]~YEAR
RW46 > WORKPIECES[2]~PIECES

Map complete.

Directives #struct thus enable to declare new data types. These defined types can be
used not only for variable definition, but also for defining T tables. See also the description
of directive #table.

9.7. #data, #table

Working with tables is strength of TECOMAT PLCs. Therefore a great attention has
also been paid to the tools for their creation in the program. Data area D is also defined in
the same way as the T tables are.

The general structure for table and data definition are as follows:

#data type [index,]name0 = [[val0[repeat0]],]
[name1 =]val1[[repeat1]], ...,
[namen-1 =]val-1[[repeat-1]],
[namen =]val[[repeatn]]

#table type [index,]TabName = [[val0[repeat0]],] val1[[repeat1]],
..., valn-1[[repeatn-1]], valn[[repeatn]]

type - table item type, it can be the same as for #reg (table9.1)
index - optional number setting the index of the table being created

After imposing of the table index by specifying number index other
defined tables are assigned indexes ascendingly, beginning with
index index+1. If index is not used, the other tables are
automatically assigned the index ascendingly (which is the same
as for #reg).

TabName - T table symbolic name
Name0 - Namen - D data symbolic names
Val0 - Valn - table items

They can be specified by means of using an arbitrary and
permitted numeric system. If the value of the element overflows
the maximum value as specified by the type of table (for byte type
it is 255, for example) the number is shortened, in case of
definition of a bit table is its element non-zero, if its value valx is
non-zero, too.

repeat0 - repeatn - optional repeaters
A number closed with a pair of square brackets (characters '[' and
']') and they enable to repeat in the table the previous value valx
repeatx-times before them, if the value valx is a text string, then
only the last character is repeated.

9. Compiler directives

75 TXV 001 09.02

Example 9.7
#def On 1
#def Off 0
#def Auto 1
#def Manual 0
#struct typRecord

bool OnOff,
bool AutMan,
usint MachineNo,
uint TimePreset,
udint CycleCounter

;
#table typRecord Record1 = On, Manual, 20, $3009, 1236789
#table typRecord[2] Record2 = On, Manual, 20, $3009, 1236789,

Off, Auto, 21, 19029, 1236789
#table bool BitTable = 0,1,1,0,1,1,1,0,1[8],0,0
#table usint 10,ByteTable = $12,34,%01010110,60#56
#data uint WordData = 1,2,3,

NextData = 4,$4567[12],8,9,10,0[11],3
;
P 0

:
E 0

9.8. #if, #elif, #else, #endif

These directives are used for conditional compilation.
Their syntax is as follows:

#if condition_if ;initial condition and beginning of the first
;block
;of conditional compilation

: ; a part of program is being translated, if the arithmetic or
: ;logic expression condition_if is non-zero

#elif condition_elif_1 ;beginning of the next block of conditional
;compilation

: ;a part of program is being translated, if the expression
;condition_if is zero

: ;and condition_elif_1 is non-zero

#elif condition_elif_n ;beginning of penultimate block of
;conditional compilation

: ; a part of program is being translated, if the exression
;condition_if is zero
: ;and at the same time the expressions condition_elif_1 to

;condition_elif_n-1
: ;are zero and condition_elif_n is non-zero

#else ;beginning of the last block of conditional compilation

: ; a part of program is being translated, if no conditions
: ;from the previous conditions are fulfilled

#endif ;end of conditional compilation

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 76

condition_if, condition_elif_1, ..., condition_elif_n
- relational or mathematical expressions

Always just one branch is translated at a time, which fulfils its condition as the first one.
Directives #if ... #endif can be mutually nested. The following principles are valid:

♦ each #if must have its #endif
♦ #elif nebo #else is related to the closest previous #if
♦ #elif and #else are optional

Example 9.8

Conditional compilations are very frequently used in such situations, when the
programmer simulates the feedbacks of a real machine, when debugging the program
under simulation. These program parts are almost always compiled conditionally only in
case of debugging under simulation.

#def DEBUG 1 ;1 ... debugging in simulation
;0 ... real machine

;
#if DEBUG == 1
#include simmachine.950 ;compile simmachine.950 during debugging
#endif

Example 9.9

Conditional compilations can be advantageously used also in such situations when the
user program is necessary to be translated for the central units of different series. For this
purpose, internal variable _PLCTYPE_ is used the value of which determines the PLC
series for which the user program is compiled. In the Mosaic development environment,
setting of the compiler is determined by selection of the PLC type in the project manager
in folder Hw | Select type of PLC series.

#if _PLCTYPE_ == CPM1D
INR variable

#else
LD variable
INR
WR variable

#endif

9.9. #ifdef, #ifndef, #else, #endif

These directives are used for conditional compilation.
The condition for compilation is the existence of the symbolic name in the previous

program. Their syntax is as follows:

#ifdef symbolic_name ;condition for compilation

: ;a part of program is translated if the given symbolic name
;is defined in the previous part program

#else ;switch of block of conditional compilation

: ;a part of program is translated, if the given symbolic name
;is not defined in the previous part program

#endif ;end of conditional compilation

9. Compiler directives

77 TXV 001 09.02

Directive #ifndef enables the compilation, when the symbolic name as specified in the
directive does not exist yet. Its application is the same as for directive #ifdef.

#ifndef NUMBER
#def NUMBER 12
#reg byte array[NUMBER]

#endif

9.10. #usi

In the user program, the xPRO compiler enables to use user instructions USI written for
TECOMAT PLCs. Actually, the USI instruction is a function written in language C, its
compiled code is linked by the compiler to the machine code of the user program. In this
way, the instruction file of the PLC central unit can be expanded by the functions that are
not part of the standard instruction file. For definition of the instructions USI in the
program, directive #usi is used. Its syntax is as follows:

#usi [index,]instruction_name = file_name

index - an optional number setting the index of the instruction being
created
After imposing of the instruction index by specifying number index
other defined instructions are assigned indexes ascendingly,
beginning with index index+1. If index is not used, the other
instructions are automatically assigned the index ascendingly.

instruction_name - symbolic name of user instruction index, in case the index is
specified, it is optional, otherwise obligatory.

file_name - obligatory name of the binary disk file containing executive part of
user instructions

Together with the Mosaic development environment, a great number of USI instructions
is supplied which are typically placed in directory Mosaic1\USI after environment
installation. Each USI instruction is compiled several times for various types of the PLC
central units. This means that for each USI instruction usually exist several files in the USI
directory.

The type of central unit for which the file with the USI instruction code is designated
differs by the extension of the file. If we do not specify the extension of the file in directive
#usi, the compiler automatically selects the file with the correct extension based on the
type of central unit for which it is being compiled. For simulations, files with extension *.dll
are used. These file are used automatically by the environment in the mode of the PLC
being simulated independently of for which series of central units compilation was carried
out. Files with the *.dll extension are used only for simulation of the USI instruction. The
file is saved in the machine code of the compiled program with the code corresponding to
the selected type of the central unit. So, during switching from the mode of PLC simulation
into debugging with a real PLC, it is not necessary to do any treatment in connection with
the USI instructions used.

Creation of user instructions is described in chapter 12.

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 78

File extension with USI code For central unit of series
.uia A
.uib B
.uic C
.uid D
.uim M
.uis S
.dll for PLC simulations under Mosaic development

environment

Example 9.10
#usi operatorPanel = ter_id04 ;definition
;
P 0

:
USI operatorPanel ;application in the program
:

E 0

or

#usi operatorPanel = ter_id04 ;definition
#def TERM USI operatorPanel
;
P 0

:
TERM ;application in the program
:

E 0

9.11. #label

By means of directive #label , the initial index for automatic label assignment is set and
symbolic labels for application for example in indexed or relative jumps are reserved. Thus
this directive is applied only in such cases when the programmer of a task needs to
reserve concrete label numbers. If we need to use a label in a PLC program, for example
as the task of a conditional jump, it is not necessary to declare this label in directive
#label. It is enough to write the symbolic name of the label on an individual program line
and terminate it through colon character (see chapter 4.3). The #label directive has the
following form:

#label [index,][name_L0[[repeat0]][,name_L1[[repeat1]],
...name_Ln[[repeatn]]]

index - an optional positive number specifying the first index for automatic
assignment of label

name_L0 - name_Ln - arbitrary label symbolic names to which absolute labels are
assigned, the list of label names can continue on more lines

repeat0 - repeatn - optional repeaters obligatorily closed in square brackets
determining how many label indexes can be left out after the label
defined

9. Compiler directives

79 TXV 001 09.02

Attention! If absolute labels are used in the program, it is necessary to ensure that
they are not assigned to another (symbolic) label. In the programs written
in the Mosaic development environment we recommend not to use
absolute labels. This avoids collisions, such as double declarations, etc.

Example 9.11
;space for m L 0 to L 9 is not occupied
#label 10, FirstLabel [3], ;FirstLabel = L 10

Lab, Label[10], ;La b = L 13, Labe l = L 14
NextLabel ;NextLabe l = L 24

#label 100, LabelHundred ;LabelHundred = L 100

9.12. #macro, #endm

The xPRO compiler disposes also with such a powerful tool as macroinstrustions. A
skilled programmer is able to arrange well a long and very hard-to-read program by means
of macroinstrustions.

Macroinstructions (shortly macros) are used in applications, where there are identical
parts in the program, but which use different operands (such as controlling several
motors). If the part of driver which is identical everywhere (the same instruction sequence
is used) is written as a macroinstrustion, then each operation of the motor will be written in
the program as a macroinstrustion. Only the parameters passed to this macroinstrustion
will be different. The macroinstrustions can be mutually nested, which means in the body
of a macroinstrustion, another macroinstrustion can be used.

Example 9.12

Let us define a short macroinstruction that logically adds two bits and the result will be
written into another bit:

#reg bool input, output, va, vb, vc
;
;macroinstruction definition
#macro first_macro (first, second, third)

LD first
OR second ;logical add
WR third ;result

#endm ;end of macroinstruction definition
;
P 0

:
LDC input
first_macro (va, vb, vc)
WRC output
:

E 0

It is obvious that the following principles must be followed when defining
macroinstructions:

♦ The definition of a macroinstruction begins with directive #macro and ends with
directive #endm.

♦ After the name of the macroinstruction, there is a list of so called formal macro
parameters and is closed in parenthesis. Even if the macroinstruction does not use any
parameters, the parenthesis must be used.

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 80

♦ If it not possible to put the list of formal parameters on one line, it is possible to continue
on the next line, for example:

#macro long_macroinstruction (first_parameter,
second_parameter)

♦ The body of a macroinstruction consists of a sequence of instructions. Inside the
macroinstruction, key words #def, #reg, #label, #table and #data can be used. Such
defined symbolic names are local ones, which means they are known only in the body
of the macroinstruction. If a local symbolic name is identical to the one defined in the
main program, then the local one is valid.
The application of the macroinstruction in the text is as follows:

first_macro (Block_M1, Starter_M1, Output_M1)

When using a macroinstruction, the name of the macroinstruction is written down and
the passed, i.e. real parameters are put in brackets. These parameters replace the formal
parameters of the macroinstruction during macro expansion. The number of parameters in
the definition of the macroinstruction (i.e. the number of formal parameters) must be
identical to the number of the parameters passed (i.e. real parameters).

How are macroinstructions processed?

If the compiler encounters a macroinstruction name, it will expand it. This means, the
name of the macroinstruction will be replaced with a sequence of instructions forming the
body of the macroinstruction. The formal parameters will be replaced with the real ones.

In case of previously defined macro first_macro

LDC input
first_macro (va, vb, vc)
WRC output

the program will look after expansion of macroinstruction first_macro by the compiler as
follows:

LDC input
LD va ;macro expansion starts here
OR vb
WR vc ;last instruction of macro expansion
WRC output

9.13. #mnemo, #mnemoend

Directive #mnemo informs the editor of relay diagrams that all instructions following for
this directive be written in their text form, not in the form of a relay diagram. Return to the
relay diagrams will be carried out after using directive #mnemoend.

Their syntax is as follows:

#mnemo
: ;program section, which is written in instructions

#mnemoend

When programming relay diagrams it is sometimes necessary to create a sequence of
instructions, interpretation of which is not logical in relay symbols. This part of the program
can be enclosed by the pair of #mnemo / #mnemoend and it will always be displayed in its
text form.

9. Compiler directives

81 TXV 001 09.02

Note: Directives should used in pairs which means that directive #mnemo must
have its directive #mnemoend in pair to end.

9.14. #useoption

In the Mosaic development environment, directives #useoption are generated, based
on the setting of the compiler, into control file xxx.mak, where xxx is the name of the
project, during compilation. By doing this, setting of the compiler is implemented in the
project and it is not necessary to change it manually. Changes to the setting of the
compiler become effective in the next compilation. Thanks to the generation of directive
#useoption into the control file xxx.mak we have additionally visual check of compiler
parameters available.

The syntax of directive #useoption is as follows:

#useoption mod = n ;comment

where mod is one of the following parameters:
CPM - PLC central unit series

0 ... series A
1 ... series S
2 ... series M
3 ... series E
4 ... series D
5 ... series B
6 ... series C
This value is saved into internal variable _PLCTYPE_, which can
be used anywhere in the user program, for example for conditional
compilation (see example 9.11).

BlockOut - external locking of PLC outputs
0 ... off
1 ... active at log.0
2 ... active at log.1

EnableRun - external permission RUN
0 ... off
1 ... active at log.0
2 ... active at log.1

AlarmTime - cycle length for warning [ms]
MaxCycleTime - maximum cycle length [ms]
RemZone - remanent zone length

0 ... no register backed up
≠0 ... number of backed up registers R beginning from R0

PlcStart - type of start of PLC after switching power supply on
0 ... warm (the content of backed up registers is hold)
1 ... cold (all registers R set to zero after switching on)

ProtTable - protected T tables - is significant only in the case that user
program is backed up in the EEPROM memory
0 ... off (after switching on PLC supply, the whole user program
including T tables will be loaded from the EEPROM memory)
1 ... on (after switching on PLC supply, the whole user program
including T tables will be loaded from the EEPROM memory)

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 82

Example 9.13
; Warning: This file is managed by Mosaic development environment.
; It is not recommended to change it manually!

#program Plc1 , V1.0
;**************************************
;<ActionName/>
;<Programmer/>
;<FirmName/>
;<Copyright/>
;**************************************
;<History>
;</History>
;**************************************
#useoption CPM = 5 ;CPM type: B
#useoption RemZone = 2 ;the remanent zone length
#useoption AlarmTime = 150 ;first alarm [ms]
#useoption MaxCycleTime = 250 ;maximum cycle ms]
#useoption PLCstart = 1 ;cold start
#useoption BlockOut = 0 ;external outputs blocking off
#useoption EnableRun = 0 ;external program execution blocking

; is off
#useoption ProtTable = 0 ;tables are not saved while PLC is

; restarting
;**************************************
#usefile "Plc1.hwc"
#usefile "Plc1.mos"
#usefile "..\action.sym"
#usefile "Plc1.sym"

The above-mentioned example shows the control file Plc1.mak in the Mosaic
development environment for the central unit of series B and cold restart after switching
on PLC supply with backing up the contents of registers R0 and R1. After switching on,
the registers have the same content as before switching off, the other registers are set to
zero. The name of project group is action and the name of the project is Plc1.

10. User processes

83 TXV 001 09.02

10. USER PROCESSES

10.1. GENERAL PRINCIPLES OF ACTIVATION

The user program consists of user processes. Theoretically, there can be 65 of these
processes (P0 to P64), but practically there are significantly fewer of them used. Contrary
to traditional operation systems of real time for computers, the user does not have so
many possibilities to control the processes.

The processes are activated according to pre-defined rules. Within these rules we can
additionally effect the activation of the most of the processes in the user program when it
is running.

Table 10.1 Overview of user program processes and their assignment
Processes Assignment

P0 basic process
P1 to P4 four-phase activated processes
P5 to P9 time-activated processes

P10 to P40 user-activated processes
P41 to P48 interrupt processes

P49 system process – do not use!
P50 to P57 breakpoint treatment
P58, P59 system process – do not use!

P60 subroutine package
P61 system process – do not use!
P62 warm restart
P63 cold restart
P64 final process of cycle

In central units of series E, only process P0 can be programmed. A list of process
activations is in figure 10.1. System actions are thin-framed, user processes are thick

Process elimination

The user does not have to use all processes. If the user is satisfied with conventional
one-loop control, he can specify only process P0. The processes can be eliminated as
follows:

♦ The process is not programmed, i.e. bracket instructions P and E of the particular
process are not used. Process P0 cannot be eliminated in this way, but it can be empty.

♦ The process is empty, i.e. no other instruction is between bracket instructions P and E.
Its activation will appear as no operation.

♦ The activation mask of the process is set to zero. Activation masks of processes P10 to
P48 are contained in system registers S25 to S29 (see chapter 5.3.). The process with
the activation mask set to zero will be suppressed in the next cycle or immediately as
the case may be, when talking about processes P41 to P48. The processes P0 to P9
managed by the system cannot be eliminated in this way.

Caution: When entering into of any of processes P0 to P40, P62, P63, P64 being
solved, the active user stack is set to zero (when entering into process P0
being solved, stack A is always active).

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 84

Figure 10.1 Process activation flow chart

10. User processes

85 TXV 001 09.02

Jump among processes

It is not excluded (even if it is not recommended directly) to convert control from one
process to another one by means jump or call instructions. But the closest instruction E or
ED, EC ordinarily ends the activated process - the user can switch among programs of
any processes, the system program does not register these changes as the changes of
process activation and it understands the evaluation of the process end as return from the
process activated by the system program (not by user transitions). If, for example, we
jump from process P0 to the label positioned in the last process P64, then E64 does not
cause the I/O scan but closing P0 (the same as E0) and its return to the system program
that calls the following user process. In this case, the stack will be set to zero after closing
process P0, thus the transition between the processes of jump or call instructions does not
result in any change of the stack values.

Premature cycle end

Only the EOC instruction is able to violate the sequence of the processes planned for
the actual loop and directly (and unconditionally) carry out the I/O scan. This can be
advantageously used for example for treating interrupts or ensuring a fast feedback to
critical situations. When planning processes for the next cycle at such I/O scan, it is not
respected that some of the originally planned processes were not activated - the planning
starts again.

Interrupt processes

Any of the loop processes can be interrupted by some of the interrupt processes P41 to
P48. The instruction being processed at the moment of interrupt will be finished and after
that, the first instruction of the interrupt process will be executed. After its instruction E (or,
ED, EC), the interrupted process will continue. The interrupt process does not change the
state of any level of the active stack.

Cycle time of interrupt processes

The cycle time is increased by the sum of the times of interrupt processes that were
activated when passing the loop. Therefore, utility programs should contain only
necessary instructions to ensure a fast feedback to the situation that caused the interrupt.
Otherwise, the cycle time could be significantly longer. The extreme situation could be that
the execution of other processes could be stopped and the system would operate only this
interrupt. This state is limited by a system condition that limits duration of the interrupt
process to 5 ms. For the same reason, it is not possible to use interrupt nesting
(interruption of the interrupt process).

The mechanism of interrupt is a very effective system enabling to shorten significantly
the system feedback to critical situations, but is must be used carefully.

10.2. I/O SCAN

After the activation sequence (see chapter 2.1), after finishing the last process planned
for the active cycle or after instruction EOC, so called I/O scan is carried out. The duration
of the I/O scan depends on system configuration, remanent zone length and range of
other system services (see appendix).

At the cycle I/O scan, the state of registers Y is sent to the outputs, registers X are
updated according to the state of the inputs, system time is updated, processes for the
activation of the next cycle are planned, leading and trailing edges are generated, and it is

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 86

decided on the mode of the system (mode RUN - HALT, output blocking, type of restart if
necessary). Further to this, the valid state of system registers S is set and stack A is
activated and set to zero.

10.3. RESTART TREATMENT - PROCESSES P62, P63

P62 - warm restart
P63 - cold restart

At the first cycle after restarting, one of the processes P62 or P63 can be activated.
These processes serve to initiate variables. If one of the processes P62 or P63 is
executed, no other process is executed at this cycle (not the P0 process). Central units of
series S, D, B and C have the activation of interrupt processes hold during the execution
of processes P62 or P63 to avoid hazards connected with working with non-initiated data
structures.

Note: For distinguishing the first cycle after restart (SP = 1 or change of mode
HALT → RUN without restart), bit S2.6 is used, that is set to log.1, when
the system is started by this cycle without restart.

Warm restart – 16 bit model

If warm restart is set, process P62 is executed and in the following cycle process P0 as
well as other programmed processes will be started. If process P62 is not programmed,
process P63 will be executed instead of it. If no of the processes P62, P63 is
programmed, process P0 as well as other processes will be directly executed.

Warm restart – 32 bit model

If warm restart is set, process P62 is executed and in the following cycle process P0 as
well as other programmed processes will be started. If process P62 is not programmed,
process P0 as well as other processes will be directly executed.

The central units with the 32 bit stack width do not have automatic restart treatment
process doubling. If we want to run the same algorithm at cold as well as warm restart, we
will write it as a subroutine into process P60 and call it from both processes P62 and P63.

Cold restart – 16 bit model

If cold restart is set, process P63 will be executed and in the following cycle process P0
as well as other programmed processes will be started. If process P63 is not programmed,
process P62 will be executed instead of it. If no of the processes P62, P63 is
programmed, process P0 as well as other processes will be directly executed.

Cold restart – 32 bit model

If cold restart is set, process P63 will be executed and in the following cycle process P0
as well as other programmed processes will be started. If process P63 is not programmed,
process P0 as well as other processes will be directly executed.

The central units with the 32 bit stack width do not have automatic restart treatment
process doubling. If we want to run the same algorithm at cold as well as warm restart, we
will write it as a subroutine into process P60 and call it from both processes P62 and P63.

10. User processes

87 TXV 001 09.02

No restart

If a mode is set without restart, no of the processes P62, P63 will be executed, but
process P0 as well as other processes will be directly executed.

Example 10.1
#reg byte register
;
P 0

:
E 0
;
P 62 ;warm restart

LD $10
WR register ;initial value

E 62
;
P 63 ;cold restart

LD $20
WR register ;initial value

E 63

10.4. LOOP PROCESSES

As you can see on picture 10.1 it is obvious that only the processes P0 and P64 are
activated at every cycle, processes P1 to P9 are activated in selected cycles, processes
P10 P40 are activated by the user through control masks.

As the result of this is that these processes seam to be different loops of the user
program each of them having a different cycle time. Therefore it is possible to call this way
of activation as multi-loop control.

10.4.1. Basic process P0

P0 - initial process of every cycle

Basic process P0 is obligatory part of the basic structure of the user program. Even if
we do not want to use process P0, we have to program it (obligatory instructions P 0, E 0).

Basic process P0 is activated at every cycle as the first one excluding restart, when one
of the processes P62 or P63 is activated. It is useful to implement here all initial
operations and the user scheduler of processes. Since it is always activated, only such
tasks should be implemented in it, where a short feedback time is required. It should not
be filled with tasks of a lower priority.

Example 10.2
#reg byte input,output
;
P 0

LD input
:
WR output

E 0

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 88

10.4.2. Four-phase activated processes P1, P2, P3, P4

P1 - process implemented at every first cycle of four
P2 - process implemented at every second cycle of four
P3 - process implemented at every third cycle of four
P4 - process implemented at every fourth cycle of four

The processes change cyclically in the order P1, P2, P3, P4, P1, ... (figure 10.2). Their
basic property is that at each cycle just one of these processes is active. This enables to
use these processes to program collision actions that must not be executed at the same
cycle or for distribution of one long algorithm into four parts to reduce the cycle time of the
user program and accelerate PLC feedback. With these simple means it is possible to
carry out consequent algorithm synchronization and avoid hazardous synchronous
situations, faulty transitions and undesirable transition processes.

Processes P1 to P4 are activated always after the basic process P0 is finished. The
activation of processes P1 to P4 is derived from the state of the cycle counter at S4. As a
consequence of this is, if we use, for example, processes P1, P2 and P3 only, then at the
cycle that would belong to process P4, none of the processes of this group will be
activated. At the first cycle, process P1 will always be activated after system restart.

Figure 10.2 Time course of activations of P0 to P4 processes

Example 10.3
#reg byte input,output
;
P 0

LD input
: ;executed in every cycle
WR output

E 0
;
P 1

: ;executed in 1., 5., 9., ... cycle
E 1
;
P 2

: ;executed in 2., 6., 10., ... cycle
E 2
;
P 3

: ;executed in 3., 7., 11., ... cycle
E 3
;
P 4

: ;executed in 4., 8., 12., ... cycle
E 4

10. User processes

89 TXV 001 09.02

10.4.3. Time-activated processes P5, P6, P7, P8, P9

P5 - process implemented every 400 ms
P6 - process implemented every 3,2 s (shift by 200 ms against P5)
P7 - process implemented every 25,6 s (shift by 400 ms against P6)
P8 - process implemented every 204,8 s, i.e. 3,4 min. (shift by 800 ms against P7)
P9 - process implemented every 1638,4 s, i.e. 27,2 min. (shift by 1,6 s against P8)

Processes P5, P6, P7, P8, P9 are activated always after a certain period of time has
elapsed. The accuracy of this time slice is determined by thy cycle time.

Additionally, the activations of the particular processes are shifted against each other in
such a way that maximally one of these processes is activated in one cycle (see Fig.
10.3).

Processes P6 to P9 are activated after four-phase activated processes P1 to P4. The
activations of the processes are derived from the counter of time units SW14. The
frequency of the activation of the higher number process is always eight times less than
the frequency of the activation of the process with the number smaller by one (the interval
is eight times longer). The condition for correct activations of processes P5 to P9 is a cycle
time shorter than 200 ms. After exceeding this cycle time, more processes of this group
could be activated in one cycle and the activations of the P5 process could fail.

Processes P5 to P9 are advantageously used especially in the following cases:
“execute several times a second...”,
“execute after several seconds...”,
“several times a minute ...”,
“after several minutes...”,
“approximately in half an hour...”.
Then, it is not necessary to work with timers or time-measuring registers and it is

enough to implement the task i the appropriate process.

Figure 10.3 Possible moments of activation of processes P5 to P9

Example 10.4
#reg byte input,output
;
P 0

LD input
: ;executed in every cycle
WR input

E 0
;
P 5

: ;executed every 400 ms
E 5
;
P 6

: ;executed every 3,2 s
E 6

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 90

;
P 7

: ;executed every 25,6 s
E 7
;
P 8

: ;executed every 3,4 min
E 8
;
P 9

: ;executed every 27,2 min
E 9

10.4.4. User-activated processes P10 to P40

P10 to P40 - user-inserted processes

Processes P10 to P40 are activated by the user by setting the control bits in system
registers S25 to S28. By setting the particular bit to log.1, the given user program is
activated in the following cycle. The assignment of the processes to the masks is ordinal:
P10 - S25.1, P11 - S25.2, ..., P40 - S28.7. The values in positions S25.1 to S28.7 are
influenced only by the user, the system program does not influence them. Processes P10
to P40 are thus active from the moment when they were inserted by the user, till the
moment when they were disabled. The processes are activated in the order according to
figure 10.1 (ascendingly) and this order cannot be changed neither forward nor backward.
After restarting the PC, all bits are set to zero and processes P10 to P40 are not activated.

.7 .6 .5 .4 .3 .2 .1 .0
S24 P8 P7 P6 P5 P4 P3 P2 P1
S25 P16 P15 P14 P13 P12 P11 P10 P9
S26 P24 P23 P22 P21 P20 P19 P18 P17
S27 P32 P31 P30 P29 P28 P27 P26 P25
S28 P40 P39 P38 P37 P36 P35 P34 P33

Masks S24.0 to S25.0 are assigned to processes P1 to P9 and are managed by the
system program at the I/O scan (it does not change them during the cycle). The mask
values are designated to indicate the processes planned to activate this cycle. By rewriting
the masks by the user program the activations of processes P1 to P9 cannot be
influenced. Processes P10 to P40 can be used widely. They can be used to realize
conditional execution of various activities when the individual activities are programmed in
particular processes, in the P0 basic process are evaluated conditions and based on them
particular processes are activated. It is the userיs choice what meaning he assigns to
processes P10 to P40 and according to which rules he will activate them and how long
they will stay activated (from one-shot activations to a long-term mode selection).

Processes P10 to P40 are activated after time-inserted processes P5 to P9
ascendingly. The change of the particular control bit will become visible always in the
following cycle.

Example 10.5
#reg bool input0, input1, input2, input3,test1,test2,test3
;
P 0

LD input0

10. User processes

91 TXV 001 09.02

WR %S25.1 ;P10 active at input0 = log.1
LD input1
LET test1 ;P11 activated once at leading edge
SET %S25.2 ;input1
LD input2
LET test2 ;P12 activated at leading edge
SET %S25.3 ;input2
LD input3
LET test3 ;P12 deactivated at leading edge
RES %S25.3 ;input3

E 0
;
P 10

:
E 10
;
P 11

:
LD 0
WR %S25.2 ;P11 activated once, it will be auto-cancelled

E 11
;
P 12

:
E 12

10.4.5. Cycle final process P64

P64 - process always inserted at the end of cycle

Process P64 is executed always as the last user process of the cycle. It is suitable for
programming of such algorithms that are necessary to be executed after processes P1 to
P40 have been executed. Programming of this process is not obligatory.

Example 10.6
P 0

: ;executed at the beginning of every cycle
E 0
;
P 5

: ;executed in the middle of the cycle every 400 ms
E 5
;
P 64

: ;executed at the end of every cycle
E 64

10.5. INTERRUPT PROCESSES

Behaviour of interrupt processes

Any of the loop processes can be interrupted at any instruction. The system program
ensures that the instruction being processed will be finished, it postpones the state of the

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 92

active stack, system registers S0, S1 and passes control to the beginning of the interrupt
process. Its last instruction (E or ED, EC with fulfilled condition) returns the undamaged
state of the stack and returns control to the interrupted process behind the position of
interruption. The interrupt process does not execute neither the start nor end phase of the
cycle. As a consequence of this is that it is not possible to carry the parameters from the
process being interrupted to the process interrupting at the active stack.

Duration limitation of interrupt processes

Interrupt processes should be as short as possible, they should not exceed 5 ms,
otherwise the PLC will stop due to a critical error 80 31 PC PC. Generally speaking, the
interrupt processes are used to treat critical situations and fast events. Here, it is
necessary to realize the difference between the image of inputs and output in the
scratchpad, which is updated only at the I/O scan, and direct access to inputs and outputs,
which allows reading of the current state and react immediately. An excessive use of
direct access results in dragging out of a cycle and a higher risk of time hazards (see
chapter 6).

Interrupt cannot be nested

An interrupting process cannot be interrupted any more (it is not possible to nest
another interrupt). If another request for interrupt comes during the interrupting process, it
is not lost and the particular interrupting process will be activated consecutively. If more
requests come, they are logically added (not as for quantity) and the following priorities for
the implementation of interrupt processes are respected:

Interrupt priorities

1st priority - error-activated interrupt (P43)
2nd priority - input-activated interrupt (P42)
3rd priority - time-activated interrupt (P41)
4th and next priorities - other interrupt sources ascendingly according to numbers (P44

to P48)

Forbidden activation of the interrupt process

The central units of series S, D, B and C allow a temporary interrupt process disable.
After restart, the bits in register S29 related to the processes programmed set to log.1. By
setting of any bit to zero, the applicable interrupt process will be stopped (it is not
executed till the I/O scan). By resetting of this bit, the process in question will be called
immediately after a request. When an interrupt request comes at the moment, when the
process in question is disconnected, this request is lost, thus it is not possible to realize
this possibility to defer the interrupt process. After restart, during the execution of
processes P62 and P63, the interrupt processes are temporarily disabled to avoid the risk
due to non-initialised values.

The system releases them before the first entry to the P0 process. If we do not want the
interrupt to take place, we disable the interrupt process by setting the S29 bit in question
to zero already in process P62, or P63 as the case may be.

.7 .6 .5 .4 .3 .2 .1 .0
S29 P48 P47 P46 P45 P44 P43 P42 P41

10. User processes

93 TXV 001 09.02

10.5.1. Time-activated interrupt P41

Process P41 is activated regularly every 10 ms. It is suitable to treat events that require
shorter reaction times than the cycle time is. When working with inputs and outputs, we
have to use the direct access, not images in the scratchpad, that do not change during the
cycle (see chapter 6).

Process P41 has the third highest priority of interrupt process sequencing that is
applied when there are more requests for more interrupt processes.

Example 10.7

16 bit model

#reg bool state
#reg udint counter
;
P 0

:
E 0
;
P 41

LD %U$9000 ;X0 input physical address
AND %1000 ;input X0.3
LET state ;leading edge test
EC
INR counter ;pulse incrementation

E 41

32 bit model

#reg bool state
#reg udint counter
;
P 0

:
E 0
;
P 41

LD 1 ;PAR – read inputs
LD 1 ;RM - rack number
LD 4 ;POS – position of the module in the rack
RFRM ;actual data loading to the structure r1_p4_DI
LD r1_p4_DI~DI3 ;input 3
LET state ;leading edge test
EC
INR counter ;increase number of pulses

E 41

10.5.2. Input-activated interrupt P42

Process P42 is activated at the change of interrupt input. The concrete solution
depends on the type of PLC.

Process P42 can be advantageously used to treat events that require shorter reaction
times that the cycle time is. When working with inputs and outputs, we have to use direct
access, not images in the scratchpad, that do not change within the cycle (see chapter 6).

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 94

Process P42 has the second highest priority of interrupt process sequencing that is
applied when there are more requests for more interrupt processes.

Activation of P42 in NS950

In PLC NS950 the P42 process is activated at any change of inputs 0.0 of those input
units that have the interrupt activated through a jumper (units IB-36 to IB-47). If the active
interrupt has more input units than one, this differentiation must be done by the user as
follows:

In the user program and at each cycle, X images of those units are copied, from which
we can expect interrupt. In the P42 interrupt process, we will find out by comparison of the
direct inputs U with the copies of corresponding X images, in which unit the change of
value and the lowest bit took place which resulted in the interrupt.

The reason for copying the X images is that if any either of the units initiates the
interrupt during the I/O scan, then it is more than likely that the new state of the inputs of
this unit will be written in the X images in the scratchpad, but the interrupt process will be
called after a new cycle is started. This "time risk" is eliminated just through the
comparison of the direct inputs with X images being one cycle older.

The minimum time between the interrupts from the same unit must be corresponding
with this and it must be a little bit longer than the time of the longest cycle.

Example 10.8a

16 bit model

#def byte output
#reg bool state,aux
;
P 0

:
E 0
;
P 42

LD %U$9000 ;X0 input physical address
AND 1 ;input X0.0
LET state ;leading edge test
SET aux ;output value
LD aux
AND %100 ;output bit 2
LD output
AND %11111011 ;clearing old value of bit 2
OR ;adding new value of bit 2
WR output ;copy to scratchpad
WR %U$9100 ;write to physical address

E 42

Activation of P42 in TC500 and TC600

In PLCs TC500 and TC600 the P42 process is activated at any change of the logic
level of inputs DI0 to DI3. The activation of process P42 allow the following versions:
TC503 to TC507, TC513 to TC517, TC603 to TC607.

Detailed information for the operation of the P42 interrupt process can be found in the
following manuals:

TECOMAT TC500 programmable logic controllers, order number TXV 138 07.02 and
TECOMAT TC600 programmable logic controllers, order number TXV 138 08.02.

10. User processes

95 TXV 001 09.02

Activation of P42 in TC700

In the TC700 PLC, the P42 process can be initiated by a module having in the panel
Module Setup accessible from the project manager in folder Hw | HW Configuration
through icon , with enabled option Module can initiate interrupt. If the option is disabled,
this module does not initiate the interrupt. If this option is not in the panel, this means that
this module type can not initiate the interrupt at all.

If the interrupt is enabled for more than one module, system registers S56 and S57 are
used to distinguish these interrupts. After passing through the instruction P42, the register
S56 contains the module position in the rack that initiated the interrupt, and the register
S57 contains the number of this rack (set by the switch on the rack). By this, the
interrupting module is unequivocally determined. It is up to the user to make a decision by
means of these registers at the beginning of the process how to treat the interrupt.

If the interrupt is initiated by two peripheral modules at the same time, the P42 process
is initiated twice after each other, individually for each module. This means that during
each of interrupt initiation, we always operate one module only.

To speed up the operation, those inputs or the whole module objects are updated
before passing through the P42 instruction, which are allowed to initiate interrupt by
means of a detailed setup, while another inputs are frozen, so as they do not change their
value during the cycle. If, for example, we have on an input peripheral module the initiation
of interrupt set from the leading edge of the input DI0 and from the trailing edge DI6, only
the values of these two inputs and interrupt flags will be updated at the moment of
interrupt initiation from this module, while the values of another inputs not.

Thanks to this function, it is possible to work with other inputs in interrupted processes
without any risk of time hazard.

Details relating to the interrupt initiation for particular modules are given in the relevant
manuals.

Example 10.8b

Model 32 bits

P 0
:

E 0
;
P 42

LD r1_p4_INT~INT0 ;flag of input 0 leading edge interrupt
WR r1_p5_DO~DO2 ;output 2
LD 2 ;PAR – write outputs
LD 1 ;RM - rack number
LD 5 ;POS – position of the module in the rack
RFRM ;actual data writing from structure r1_p5_DO

E 42

10.5.3. Error-activated interrupt P43

Process P43 is activated when an error occurs that does not stop running the PLC (it
writes into register S34).

Process P43 can be advantageously used for bulk treatment of error states.
Process P43 has the highest priority of interrupt process sequencing that is applied

when there are more requests for more interrupt processes.

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 96

Example 10.9
#reg bool error
#reg uint va,vb,vc
;
P 0

LD va
LD vb
DID ;when dividing by zero, process P43 is called
WR vc

E 0
;
P 43

LD 1
WR error ;setting error flag

E 43

10.5.4. HW counter-activated interrupt or incremental encoder-activated interrupt
P44

In PLC TC500 and TC600 the P44 process is activated when reaching preset or when
the range of the hw counter is overflowed. The activation of process P44 allow the
following versions: TC503 to TC507, TC513 to TC517, TC603 to TC607.

Detailed information for the operation of the P44 interrupt process can be found in the
following manuals:

TECOMAT TC500 programmable logic controller hardware, order number
TXV 138 07.02 and TECOMAT TC600 programmable logic controller hardware, order
number TXV 138 08.02.

Process P44 has the fourth highest priority of interrupt process sequencing that is
applied when there are more requests for more interrupt processes.

10.5.5. CH2 serial channel-activated interrupt P45

If serial channel CH2 in PLC TC400, TC500, TC600 and NS950 CPM-2S, CPM-1D set
to UNI mode, the reception of a message calls the P45 process. Immediately before
starting this process, the data received are written into the receiving zone. The data is
changed here during the user program cycle, and so it is necessary to treat a possible
manipulation with the data in the loop processes.

Process P45 serves especially to process a smaller data volume immediately. In case
of larger data volumes or when it is not necessary to process the data immediately, we will
leave the operation of the serial channel in the loop processes. The data received will
always be passed at the cycle I/O scan.

Process P45 has the fifth. highest priority of interrupt process sequencing that is
applied when there are more requests for more interrupt processes.

10.6. BREAKPOINT TREATMENT - PROCESSES P50 TO P57

After instructions BP 0 to BP 7 are executed, control is passed to processes P50 to P57
(the last digit in the number is identical to the operand of the BP instruction). In this
process, it is possible to treat receiving of information from this position in the program.

10. User processes

97 TXV 001 09.02

When entering the P5x process, the stack is kept. After the process is finished, the stack
and registers S0 to S1 are restored to their original values. This function facilitates
debugging of the user program without confusing interventions in the program body.

Example 10.10
#reg uint debug[128],aux, index
;
P 0

:
BP 0 ;debugging instruction inserted
:
BP 0 ;debugging instruction inserted
:

E 0
;
P 50

WR aux ;postponing of stack top value
LD 127 ;limit
LD index
LD aux
WTB debug

E 50

10.7. P60 SUBROUTINE PACKAGE

This process is not activated from the system program and serves only for storage of
the file of subroutines called from various processes.

If the subroutines are positioned inside the active process, then they have to be
skipped, since they can be neither at the beginning nor at the end of the process. This
additionally requires instruction JMP and label L and the program becomes worse
arranged.

Example 10.11
P 0

:
CAL subroutine_name ;subroutine call
:

E 0
;
P 10

:
CAL subroutine_name ;subroutine call
:

E 10
;
P 60
subroutine_name:

:
RET

E 60

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 98

11. INSTRUCTION SET

The TECOMAT PLC central units of a particular series have an instruction set of
various ranges depending on the performance of the central unit.

Instruction set of E series

The central units of series E have stack layers 16 bits wide and contain an instruction
set with the following features:

♦ bit logical operations
♦ basic operations of counters and timers
♦ basic operating instructions and transitions in the program
♦ comparison within 16 bit operands
♦ one-loop control

Instruction set of M and S series

Central units of series M and S have stack layers 16 bits wide and contain an
instruction set, having additionally the following features as compared to series E:

♦ logic operations in 8 and 16 bit format
♦ advanced counter, timer and shift register operations
♦ arithmetic instructions, conversion and comparisons in 16 bit format
♦ expanded operating instructions, transitions in programs
♦ table instructions over the T tables and scratchpad memory
♦ sequencer instructions
♦ instructions realizing the set of logic operations, including counting of one-bits in the

operand of 16 bit width
♦ the system contains 8 user stacks and the instructions for their switching - this is

suitable to pass more parameters among functions not following each other, saving of
the immediate state of the stack

♦ automatic conversion of operand length and intermediate results when combining
instructions of various types or when combining logic instructions with arithmetic ones

♦ a set of system variables, in which the system time, system time units and their edges,
communication variables, flag and command variables and system messages are
realized

♦ Multiprogramming (multi-loop control) including interrupt processes contribute to
reducing the feedback time and making programming easier

♦ the USI instructions optimally realize complex and special tasks (on the level of
microprocessor instructions)

Instruction set of D and B series

Central units of series D and B have stack layers 16 bits wide and contain an instruction
set, having additionally the following features as compared to series M and S:

♦ logic operations in 32 bit format
♦ arithmetic instructions, conversions and comparisons in 32 bit format
♦ conditional jumps according to comparison flags
♦ single precision floating point arithmetic instructions (real type)
♦ expanded table instructions with table of great range

11. Instruction set

99 TXV 001 09.02

♦ table instructions with structured access
♦ PID controller instructions
♦ system instructions for optimising the central units performance and supporting special

services

Instruction set of C series

Central units of series C have stack layers 32 bits wide and contain an instruction set
having additionally the following features, compared to the D and B series:

♦ load and write instructions with indirect addressing
♦ arithmetic instructions, conversions and comparisons with sign (negative numbers in

binary complement)
♦ double precision floating point arithmetic instructions (lreal type)
♦ table instructions with tables of 32 bit format
♦ counters, shift registers and step sequencer in 32 bit format
♦ limit functions, value shift
♦ operator instructions of the operator panel

A detailed description of the instruction set is in the manuals TECOMAT PLC instruction
set – 16 bit model (B, D, E, M, S series), order number TXV 001 05.02, and TECOMAT
PLC instruction set – 32 bit model (C series), order number TXV 004 01.02.

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 100

12. USER INSTRUCTIONS

User instructions USI is a PLC instruction defined by the user that can be used for such
operations, realization of which by means of other PLC instructions would be very difficult
or impossible. This means the TECOMAT PLC instruction file is not closed and new
instructions can be added when necessary without changing system software of central
units.

User instructions support all central units except series E.

12.1. APPLICATION OF USI IN A USER PROGRAM

Deklarace #usi

Before application in the user program, instructions USI require a definition containing
information in which directory and in which file the binary code of the USI instruction is
saved. For this purposes, directive #usi is used. Its syntax is as follows:

#usi [index,] instruction_name = file_name

index - an optional number seetig the index of the instruction being created
After imposing of the index of the instruction by specifying this number,
the other defined instructions are assigned indexes ascendingly
beginning with number index+1. If item index is not used, the following
instructions are automatically assigned the index ascendingly.

instruction_name - an optional symbolic name of the user instruction
file_name - the name of the binary disk file containing the executive part of the user

instruction (it can contain the whole path)

Other applications are identical to the PLC standard instructions.

Example 12.1
#usi UserInstr = instfile ;definition of USI
;
P 0

:
USI UserInstr ;application of USI in the program

:
E 0

12.2. USI FOR PARTICULAR SERIES OF CENTRAL UNITS

The machine codes of the USI instructions are not transferable among the series of the
central units due to various processors used and different mapping of system memory.

Part of each machine code of the USI instructions is the marking of the series of central
unit for which the code is designated. If we initiate by mistake a USI instruction on a wrong
central unit, for which the instruction is not designated, then the unit reports an error of
false user instruction ($80 17 PC PC) and the program stops. Part of the installation of the
Mosaic development environment is a series of the USI instructions already created and

12. User instructions

101 TXV 001 09.02

that can be used in your own programs. The description of these functions is part of
installation.

The files containing the machine codes of the USI instructions have extensions ui-,
where the last letter of the extension specifies the series of central unit for which the code
is designated (see table 12.1). The files with extension *.dll are the machine codes of the
USI instructions for the PLC simulator in the Mosaic development environment.

Table 12.1 List of file extensions with USI instruction code
Central unit series File extension

A .uia
B .uib
C .uic
D .uid
E not supported
M .uim
S .uis

PLC simulator in Mosaic environment .dll

The work with the USI instructions is supported by a compiler that additionally supports
the assignment of the extension of the binary file in #usi declarations. In practice it means,
that if the extension in the name of the file is not specified in the #usi declaration, it will be
assigned automatically based on the central unit for which the code is generated.

12.3. CREATING A USER-DEFINED USI

The USI declaration is carried out in the C language. When programming it is
recommended to come out from the publication The C Programming Language by Brian
W. Kernighan and Dennis M. Ritchie published by Prentice-Hall Inc. To enter the function,
there is a header available describing and making accessible the stack and scratchpad of
the PLC. The input parameters as well as the USI function outputs can be positioned
anywhere in these structures. The USI function must be programmed by the user as
follows:

#include "usi.h" /* file pertaining to used CPU */

void NameUSI(p1, p2)
struct notePLC *p1;
struct accPLC *p2;
{

:
USI function body ;
:
return;

};

From the above mentioned declaration of the USI instruction it is obvious, that pointers
to structures notePLC (PLC scratchpad) and accPLC (PLC stack) are passed to the USI
function by the PLC system program. The declaration of these structures contains the
usi.h file, a listing of which is shown in chapter 12.5. In case the program for the USI
instruction comprises of more functions, it is necessary to declare the main function first,
as it can be seen in the following example:

#include "usi.h"
int aux_function1(); /* prototype of auxiliary function for USI */

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 102

int aux_function2(); /* prototype of other auxiliary function */

void functionUSI(p1,p2)
struct notePLC *p1;
struct accPLC *p2;
{

p2->a[0]=aux_function1() + aux_function2();
return();

}
int aux_function1()
{

/* particular enumeration for main function */
}
int aux_function2()
{

/* other auxiliary function */
}

12.4. C LANGUAGE COMPILERS USED

For compilation of the USI instructions, the following compilers can be used:
For CPU of series A, B Microware OS-9 / 68000 C Compiler

Microware Systems Corporation
For CPU of series C GNU 68K C Compiler

Free Software Foundation, Inc.
For CPU of series D, M, S Keil C-Compiler-51

Keil Elektronik GmbH

These compilers use the data types as mentioned in table 12.2. As it can be seen from
the table, in case of the int type, the compilers for various processor types use a different
size of the object being created which results in different ranges of number representation.
If we want to write functions that could be used for all series of the PLC central units, it is
therefore better to use in the functions the types declared in the usi.h file by means of the
#typedef directive.

Table 12.2 Data types used by the compilers of the C language
Data type Byte number Internal representation

Microware
GNU

Keil

char 1 1 two's complement binary
unsigned char 1 1 unsigned binary
short 2 2 two's complement binary
unsigned short 2 2 unsigned binary
int 4 2 two's complement binary
unsigned int 4 2 unsigned binary
long 4 4 two's complement binary
float 4 4 binary floating point
pointer to ... 4 3 address

The user instructions can also be written in the environments for application
development for PCs in the C language (C++ Builder, as an example), that can be
advantageously used for its debugging capability and only the final compilation will be
executed with particular compilers.

12. User instructions

103 TXV 001 09.02

Attention! For user instructions written for central units of series M, S and D the following
limitations are valid: it is not possible to use initialisation of local variables when
declaring a variable, for example:

char array[4] = {{1,2,3,4}};

The variables must be initiated by their assignment during the function
calculation, for example:

array[0]=1; array[1]=2; array[2]=3; array[3]=4;

This inconvenience is connected with the relocation of the USI instruction when
being incorporated into the user program. Disrespecting of this procedure can
result in unpredictable consequences!!!

12.5. EXAMPLE OF CREATION OF A USER-DEFINED USI INSTRUCTION

/* usi.h file for CPU of D series */
typedef unsigned long long_word;
typedef unsigned short word;
typedef signed short signed_word;
typedef unsigned char byte;
typedef signed char signed_byte;

/* structure declaration for access to PLC stack */
struct accPLC { /* PLC stack structure */

word a[8]; /* stack levels */
};

/* constants for PLC stack zone size definition */
#define MAXX 128 /* number of X bytes in the stack */
#define MAXY 128 /* number of Y bytes in the stack */
#define MAXS 64 /* number of S bytes in the stack */
#define REZS 64 /* reserve in S zone */
#define MAXD 256 /* number of D bytes in the stack */

/* copied from program code */
#define MAXR 8192 /* number of R bytes in the stack */
struct notePLC { /* PLC scratchpad memory structure */

u_char x[MAXX], /* X inputs image */
y[MAXY], /* Y outputs image */
s[MAXS], /* S system registers */

rs[REZS], /* reserve for system zone */
d[MAXD], /* copy of data D from user program */
r[MAXR]; /* R user registers */

};
/* end of usi.h file for CPU of D series */

The MUL 16 instruction multiplies the value in A0 of the PLC stack by the value from
the A1 layer, the result is saved into the A01 double-layer.

The source text of the MUL 16 instruction:

#include "usi.h"

void Mul16(p1, p2) /* binary multiplication A0 * A1 = A01 */
struct notePLC *p1;
struct accPLC *p2;

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 104

{
union {

long_word l;
word w[2];

} result;

result.l=((long_word)p2->a[0])*((long_word)p2->a[1]);
p2->a[0]=result.w[1]; /* A0 lower bytes of result */
p2->a[1]=result.w[0]; /* A1 higher bytes of result */
return;

}

The program of the MUL 16 function is necessary to compile through the compiler of
the language C into the machine code of the particular processor.

12.6 APPLICATION EXAMPLE FOR USI INSTRUCTION

The application of the user instruction into the PLC user program will be realized in the
xPRO program by directive #usi that assigns a file with a binary instruction code to the
symbolic name of the instruction.

Example 12.2
#usi MUL16 = mul16 ;definition of USI with automatic assignment

;of file extension with instruction code according
;to CPU series

#reg uint va, vb
#reg udint vc
;
P 0

LD va ;load first multiplicant
LD vb ;load second multiplicant
USI MUL16 ;A01 = a.b
WR vc ;write (save) result

E 0

12.7. COMMENTS

When writing user instructions it is necessary to respect a couple of rules resulting from
the way of PLC operation. Especially, it is necessary to realize the following restrictions:

USI computation time - any USI instruction defined by user will consume the PLC
processor time when it is called, as the other instructions do. This time
is added to the execution time of one PLC cycle. The function that need
a great number of iterations to get results, there is a risk of a
disproportionate prolongation of the PLC cycle time and significant
slowdown of its reaction for a unit change on the input which can result
in stopping the PLC activity due to the exceeding of the maximum cycle
time. These functions can be programmed in such a way that during
each USI call, only the defined number of iterations is executed so that
the processor time consumed is acceptable. Such programmed USI

12. User instructions

105 TXV 001 09.02

instruction then produces the result once a several PLC cycles, which is
an acceptable solution in a great number of cases.

Memory requirements - the machine code of the USI instruction is part of the user
program as well as the structures are to make the user program
accessible for the PLC processor. From this point of view it is advisable
to avoid such algorithms during programming that result in large
machine codes. It concerns especially when using the libraries of the C
language. A skilled programmer and well optimising compiler are a
great contribution in this.

PLC processor type - the processor used brings certain limitations concerning, for
example, main memory size, stack space, utilization of processor
hardware, etc. From this point of view we recommend to consult the
USI instructions with the developers of company TECO a.s.

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 106

A. APPENDIX

A.1. INSTRUCTION EXECUTION TIME FOR CENTRAL UNIT CPM-1E TECOMAT
NS950

The instruction execution times do not include the effects of system processes that
interrupt the execution of the user program. These processes are serial communications
and services of some peripheral units. Due to their effect the cycle time becomes longer.

Overview of operand symbols used:

Z - scratchpad X, Y, S, R A - no operand (works only on the stack)
- constant n - numeric parameter

Data load and write instructions
Execution time [µs]
(Code length [B])

Z #

Mnemo
code

bool byte
usint
sint

word
uint
int

word
uint
int

Instruction description

LD 63 (3) 53 (3) 61 (3) 50 (3) Load direct data
LDC 64 (3) 54 (3) 63 (3) 52 (3) Load complement data
WR 67 (3) 50 (3) 57 (3) - Write direct data
WRC 67 (3) 51 (3) 59 (3) - Write data complement
PUT 77 (3)

51
60 (3)
46

66 (3)
46

-
-

Conditional data write - condition fulfilled
- condition not fulfilled

Logical instructions
Execution time [µs]
(Code length [B])

Z A

Mnemo
code

bool word
uint
int

Instruction description

AND 66 (3) 50 (1) AND with immediate operand
ANC 67 (3) - AND with negated operand
OR 66 (3) 50 (1) OR with immediate operand
ORC 67 (3) - OR with negated operand
XOR 66 (3) 50 (1) XOR with immediate operand
XOC 67 (3) - XOR with negated operand
SET 66 (3) - Conditional set
RES 67 (3) - Conditional reset
LET 79 (3) - Leading edge pulse

Counters, timers
Mnemo

code
Execution time [µs]
(Code length [B])

Instruction description

CTU 186 (3) Forward counter
CTD 186 (3) Backward counter
TON 220 (3) Timer on delay

Arithmetic instructions
Execution time [µs]
(Code length [B])

A

Mnemo
code

word uint int

Instruction description

EQ 92 (1) Comparison (equality)

Appendix

107 TXV 001 09.02

Stack operations
Mnemo

code
Execution time [µs]
(Code length [B])

Instruction description

POP n 42 + 7n (3) Stack shift (rotation) backwards by n levels

Jump and call instructions
Execution time [µs]
(Code length [B])

Mnemo
code

Transit Jump

Instruction description

JMP - 114 (3) Unconditional jump
JMD 42 120 (3) Jump conditional on non-zero stack top value
L 36 (3) - Label n (jump and call target)

Operating instructions
Execution time [µs] (Code length [B])Mnemo

code Transit Jump P41 - P49 P50 - P57 P62 - P64
Instruction description

P 151 (3) - 76 73 143 Process start
E - 54 (3) 229 77 54 Unconditional process end
NOP 36 (3) - - - - No operation

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 108

A.2. INSTRUCTION EXECUTION TIME FOR CENTRAL UNIT CPM-1M TECOMAT
NS950

The instruction execution times do not include the effects of system processes that
interrupt the execution of the user program. These processes are serial communications
and services of some peripheral units. Due to their effect the cycle time becomes longer.

Overview of operand symbols used:

Z - scratchpad X, Y, S, D, R T - tables
- constant A - no operand (works only on the stack)
U - peripheral unit physical address n - numeric parameter
Data load and write instructions

Execution time [µs] (Code length [B])
Z # U

Mnemo
code

bool byte
usint
sint

word
uint
int

word
uint
int

byte
usint
sint

word
uint
int

Instruction description

LD 63 (3) 53 (3) 61 (3) 50 (3) 81 (3) 109 (3) Load direct data
LDC 64 (3) 54 (3) 63 (3) 52 (3) - - Load complement data
WR 67 (3) 50 (3) 57 (3) - 80 (3) 113 (3) Write direct data
WRC 67 (3) 51 (3) 59 (3) - - - Write data complement
PUT

77 (3)
51

60 (3)
46

66 (3)
46

-
-

-
-

-
-

Conditional data write
- condition fulfilled
- condition not fulfilled

Logical instructions
Execution time [µs] (Code length [B])

Z # A
Mnemo

code
bool byte

usint
sint

word
uint
int

word
uint
int

Instruction description

AND 66 (3) 53 (3) 49 (3) 50 (1) AND with immediate operand
ANC 67 (3) 54 (3) - - AND with negated operand
OR 66 (3) 49 (3) 49 (3) 50 (1) OR with immediate operand
ORC 67 (3) 50 (3) - - OR with negated operand
XOR 66 (3) 49 (3) 49 (3) 50 (1) XOR with immediate operand
XOC 67 (3) 50 (3) - - XOR with negated operand
NEG - - - 42 (1) Stack top negation
SET 66 (3) 50 (3) - - Conditional set
RES 67 (3) 53 (3) - - Conditional reset
LET 79 (3) 55 (3) - - Leading edge pulse
FLG - - - 192 (1) Logical functions A0
STK - - - 152 (1) Swap of stack levels to A0
ROL n - - - 81+10n (3) Number rotation left
SWP - - - 39 (1) Swap of top and low byte in A0

Timers, shift registers, counters, step controller
Mnemo

code
Execution time [µs] (Code length [B]) Instruction description

CTU 186 (3) Forward counter
CTD 186 (3) Backward counter
CNT 219 (3) Bi-directional counter
SFL 190 (3) Shift register left
SFR 190 (3) Shift register right
TON 220 (3) Timer on delay
TOF 221 (3) Timer off delay
RTO 235 (3) Integrating timer, time measurement
IMP 222 (3) Timer - specified pulse length generator
STE 129 (3)

106
Step sequencer (stepper) - state change

- state not changed

Appendix

109 TXV 001 09.02

Arithmetic instructions
Execution time [µs] (Code length [B]) Instruction description
Z # A

Mnemo
code

byte
usint

word
uint

byte
usint

word
uint

byte
usint

word
uint

ADD - 99 (3) - 88 (3) - 88 (1) Addition with carry
SUB - 101 (3) - 90 (3) - 90 (1) Subtraction with carry
MUL 59 (3) - 50 (3) - 51 (1) - Multiplication
DIV 74 (3) - 65 (3) - 66 (1) - Division
INR - - - - - 79 (1) Incrementation (+ 1)
DCR - - - - - 79 (1) Decrementation (– 1)
EQ - 103 (3) - 92 (3) - 92 (1) Comparison (equality)
LT - 103 (3) - 92 (3) - 92 (1) Comparison (less than)
GT - 104 (3) - 93 (3) - 93 (1) Comparison (greater than)
BIN - - - - - 80 (1) Conversion of number to binary format
BCD - - - - - 226 (1) Conversion of number to BCD

Stack operations
Mnemo

code
Execution time [µs]
(Code length [B])

Instruction description

POP n 42 + 7n (3) Stack shift (rotation) backwards by n levels
NXT 375 (3) Activation of next stack in the queue
PRV 375 (3) Activation of previous stack in the queue
CHG 356 (3) Change active stack without backing S1 and S1
CHGS 373 (3) Change active stack with backing up S1 and S1

Jump and call instructions
Execution time [µs]
(Code length [B])

Mnemo
code

Transit Jump

Instruction description

JMP - 114 (3) Unconditional jump
JMD 42 120 (3) Jump conditional on non-zero stack top value
JMC 42 120 (3) Jump conditional on zero stack top value
JMI - 115 (1) Indirect jump
CAL - 138 (3) Unconditional subroutine call
CAD 42 144 (3) Call conditional on non-zero stack top value
CAC 42 144 (3) Call conditional on zero stack top value
CAI - 137 (1) Indirect subroutine call
RET - 48 (1) Unconditional return from subroutine
RED 40 54 (1) Return from subroutine conditional on non-zero stack top

value
REC 40 54 (1) Return from subroutine conditional on zero stack top value
L 36 (3) - Label n (jump and call target)

Operating instructions
Execution time [µs] (Code length [B])Mnemo

code Transit Jump P41 - P49 P50 - P57 P62 - P64
Instruction description

P 151 (3) - 76 73 143 Process start
E - 54 (3) 229 77 54 Unconditional process end
ED 42 (1) 65 240 88 65 Process end conditional on non-zero result
EC 42 (1) 65 240 88 65 Process end conditional on zero result
EOC - 35 (1) - - - End of cycle (exceptional cycle end)
NOP 36 (3) - - - - No operation
BP - 189 (3) - - - Breakpoint

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 110

Table instructions
Execution time [µs] (Code length [B])

Z T
Mnemo

code
bool byte

usint
sint

word
uint
int

bool byte
usint
sint

word
uint
int

Instruction description

LTB 136 (3) 118 (3) 131 (3) 258 (3) 225 (3) 250 (3) Load item from table
WTB 151 (3) 126 (3) 140 (3) - - - Write item to table
LMS - - - - - 248 (3) Item sequential load
WMS - - - - - 362 (3)

+11
Item sequential write
- time addition for 1 table item

FTB - 68 (3)
+49

75 (3)
+55

- 182 (3)
+39

203 (3)
+46

Find item in table
- time addition for 1 item being searched

FTM - 66 (3)
+61

66 (3)
+90

- 192 (3)
+51

192 (3)
+80

Find part of item in table
- time addition for 1 item being searched

FTS - 71 (3)
+51

64 (3)
+74

- 184 (3)
+41

191 (3)
+64

Find item with sorting
- time addition for 1 item being searched

Block operations
Execution time [µs]
(Code length [B])

Mnemo
code

Z T

Instruction description

SRC 99 (3) 195 (3) Specification of data source for transfer
MOV 188 (3)

+17
392 (3)

+28
Data block move
- time addition for 1 block item

FIL 69 (3)
+48

- Fill block with constant
- time addition for 1 block item

Appendix

111 TXV 001 09.02

A.3. INSTRUCTION EXECUTION TIME FOR CENTRAL UNIT CPM-2S TECOMAT
NS950

The instruction execution times do not include the effects of system processes that
interrupt the execution of the user program. These processes are serial communications
and services of some peripheral units. Due to their effect the cycle time becomes longer.

Overview of operand symbols used:

Z - scratchpad X, Y, S, D, R T - tables
- constant A - no operand (works only on the stack)
U - peripheral unit physical address n - numeric parameter
Data load and write instructions

Execution time [µs] (Code length [B])
Z # U

Mnemo
code

bool byte
usint
sint

word
uint
int

word
uint
int

byte
usint
sint

word
uint
int

Instruction description

LD 12,8 (3) 12,8 (3) 13,9 (3) 11,2 (3) 18,3 (3) 25,5 (3) Load direct data
LDC 13,0 (3) 13,0 (3) 14,3 (3) 11,6 (3) - - Load complement data
WR 13,4 (3) 11,6 (3) 13,0 (3) - 17,5 (3) 25,7 (3) Write direct data
WRC 13,4 (3) 11,8 (3) 13,4 (3) - - - Write data complement
PUT

15,0 (3)
8,9

13,2 (3)
10,5

14,6 (3)
10,5

-
-

-
-

-
-

Conditional data write
- condition fulfilled
- condition not fulfilled

Logical instructions
Execution time [µs] (Code length [B])

Z # A
Mnemo

code
bool byte

usint
sint

word
uint
int

word
uint
int

Instruction description

AND 12,1 (3) 12,5 (3) 11,0 (3) 10,7 (1) AND with immediate operand
ANC 12,3 (3) 12,7 (3) - - AND with negated operand
OR 12,5 (3) 11,8 (3) 11,0 (3) 10,7 (1) OR with immediate operand
ORC 12,5 (3) 11,9 (3) - - OR with negated operand
XOR 13,0 (3) 11,8 (3) 11,0 (3) 10,7 (1) XOR with immediate operand
XOC 13,2 (3) 11,9 (3) - - XOR with negated operand
NEG - - - 9,2 (1) Stack top negation
SET 11,9 (3) 11,9 (3) - - Conditional set
RES 13,6 (3) 12,5 (3) - - Conditional reset
LET 15,7 (3) 12,8 (3) - - Leading edge pulse
FLG - - - 44,1 (1) Logical functions A0
STK - - - 36,5 (1) Swap of stack levels to A0
ROL n - - - 17,5+2n (3) Number rotation left
SWP - - - 8,7 (1) Swap of top and low byte in A0

Timers, shift registers, counters, step controller
Mnemo

code
Execution time [µs]
(Code length [B])

Instruction description

CTU 40,3 (3) Forward counter
CTD 40,3 (3) Backward counter
CNT 48,3 (3) Bidirectional counter
SFL 41,4 (3) Shift register left
SFR 41,4 (3) Shift register right
TON 47,0 (3) Timer on delay
TOF 47,2 (3) Timer off delay
RTO 50,3 (3) Integrating timer, time measurement
IMP 46,7 (3) Timer - specified pulse length generator
STE 29,7 (3)

23,7
Step sequencer (stepper) - state change

- state not changed

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 112

Arithmetic instructions
Execution time [µs] (Code length [B]) Instruction description
Z # A

Mnemo
code

byte
usint

word
uint

byte
usint

word
uint

byte
usint

word
uint

ADD - 19,5 (3) - 18,1 (3) - 16,8 (1) Addition with carry
SUB - 20,1 (3) - 18,6 (3) - 17,4 (1) Subtraction with carry
MUL 13,6 (3) - 11,4 (3) - 11,0 (1) - Multiplication
DIV 15,9 (3) - 14,5 (3) - 13,4 (1) - Division
INR - - - - - 14,6 (1) Incrementation (+ 1)
DCR - - - - - 14,6 (1) Decrementation (– 1)
EQ - 21,0 (3) - 19,5 (3) - 18,3 (1) Comparison (equality)
LT - 21,0 (3) - 19,5 (3) - 18,3 (1) Comparison (less than)
GT - 20,8 (3) - 19,4 (3) - 18,1 (1) Comparison (greater than)
BIN - - - - - 17,5 (1) Conversion of number to binary format
BCD - - - - - 47,6 (1) Conversion of number to BCD

Stack operations
Mnemo

code
Execution time [µs]
(Code length [B])

Instruction description

POP n 10,7 + 1,4n (3) Stack shift (rotation) backwards by n levels
NXT 92,4 (3) Activation of next stack in the queue
PRV 92,4 (3) Activation of previous stack in the queue
CHG 87,9 (3) Change active stack without backing S1 and S1
CHGS 92,1 (3) Change active stack with backing up S1 and S1

Jump and call instructions
Execution time [µs]
(Code length [B])

Mnemo
code

Transit Jump

Instruction description

JMP - 22,2 (3) Unconditional jump
JMD 10,1 23,5 (3) Jump conditional on non-zero stack top value
JMC 10,1 23,5 (3) Jump conditional on zero stack top value
JMI - 21,7 (1) Indirect jump
CAL - 25,3 (3) Unconditional subroutine call
CAD 10,1 26,6 (3) Call conditional on non-zero stack top value
CAC 10,1 26,6 (3) Call conditional on zero stack top value
CAI - 24,2 (1) Indirect subroutine call
RET - 10,3 (1) Unconditional return from subroutine
RED 9,0 11,6 (1) Return from subroutine conditional on non-zero stack top val
REC 9,0 11,6 (1) Return from subroutine conditional on zero stack top value
L 8,9 (3) - Label n (jump and call target)

Operating instructions
Execution time [µs] (Code length [B])Mnemo

code Transit Jump P41 - P49 P50 - P57 P62 - P64
Instruction description

P 30,6 (3) - 14,8 14,1 28,2 Process start
E - 11,2 (3) 53,2 51,4 11,2 Unconditional process end
ED 9,0 (1) 12,8 54,8 53,0 12,8 Process end conditional on non-zero result
EC 9,0 (1) 12,8 54,8 53,0 12,8 Process end conditional on zero result
EOC - 8,1 (1) - - - End of cycle (exceptional cycle end)
NOP 8,9 (3) - - - - No operation
BP - 72,0 (3) - - - Breakpoint

Appendix

113 TXV 001 09.02

Table instructions
Execution time [µs] (Code length [B])

Z T
Mnemo

code
bool byte

usint
sint

word
uint
int

bool byte
usint
sint

word
uint
int

Instruction description

LTB 30,6 (3) 25,1 (3) 27,5 (3) 46,8 (3) 37,6 (3) 40,5 (3) Load item from table
WTB 33,1 (3) 26,0 (3) 28,8 (3) - - - Write item to table
LMS - - - - - 47,9 (3) Item sequential load
WMS - - - - - 61,7 (3) Item sequential write

- time addition for 1 table item
FTB - 19,7 (3)

+3,1
22,1 (3)

+3,6
- 32,2 (3)

+3,1
34,7 (3)

+3,6
Find item in table
- time addition for 1 item being searched

FTM - 20,3 (3)
+4,3

21,9 (3)
+7,4

- 32,9 (3)
+4,3

35,1 (3)
+7,4

Find part of item in table
- time addition for 1 item being searched

FTS - 19,7 (3)
+3,6

21,0 (3)
+6,3

- 32,7 (3)
+3,6

33,6 (3)
+6,3

Find item with sorting
- time addition for 1 item being searched

Block operations
Execution time [µs]
(Code length [B])

Mnemo
code

Z T

Instruction description

SRC 21,3 (3) 35,4 (3) Specification of data source for transfer
MOV 49,0 (3)

+3,1
74,3 (3)

+5,4
Data block move
- time addition for 1 block item

FIL 20,4 (3)
+2,2

- Fill block with constant
- time addition for 1 block item

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 114

A.4. INSTRUCTION EXECUTION TIME FOR CENTRAL UNITS CPM-1D TECOMAT
NS950 AND TECOMAT TC400, TC500, TC600

The instruction execution times do not include the effects of system processes that
interrupt the execution of the user program. These processes are serial communications
and services of some peripheral units. Due to their effect the cycle time becomes longer.

Overview of operand symbols used:

Z - scratchpad X, Y, S, D, R T - tables
- constant A - no operand (works only on the stack)
U - peripheral unit physical address n - numeric parameter
Data load and write instructions

Execution time [µs] (Code length [B]) Instruction description
Z # U

Mnemo
code

bool byte
usint
sint

word
uint
int

dword
udint
dint
real

word
uint
int

dword
udint
dint
real

byte
usint
sint

word
uint
int

LD 12,8 (3) 12,8 (3) 13,9 (3) 18,6 (4) 11,2 (3) - 18,3 (3) 25,5 (3) Load direct data
LDL - - - - - 16,1 (6) - - Load direct data
LDC 13,0 (3) 13,0 (3) 14,3 (3) 19,4 (4) 11,6 (3) - - - Load complement data
WR 13,4 (3) 11,6 (3) 13,0 (3) 17,9 (4) - - 17,5 (3) 25,7 (3) Write direct data
WRC 13,4 (3) 11,8 (3) 13,4 (3) 18,6 (4) - - - - Write data complement
WRA - 13,6 (4) 15,0 (4) 19,0 (4) - - - - Write direct data with alternation
PUT

15,0 (3)
8,9

13,2 (3)
10,5

14,6 (3)
10,5

19,5 (4)
11,4

-
-

-
-

-
-

-
-

Conditional data write
- condition fulfilled
- condition not fulfilled

Logical instructions
Execution time [µs] (Code length [B])
Z # A

Mnemo
code

bool byte
usint
sint

word
uint
int

word
uint
int

dword
udint
dint

word
uint
int

dword
udint
dint

Instruction description

AND 12,1 (3) 12,5 (3) 15,2 (4) 11,0 (3) - 10,7 (1) - AND with immediate operand
ANL - - - - 17,0 (6) - 15,4 (2) AND with immediate operand
ANC 12,3 (3) 12,7 (3) 15,6 (4) - - - - AND with negated operand
OR 12,5 (3) 11,8 (3) 15,2 (4) 11,0 (3) - 10,7 (1) - OR with immediate operand
ORL - - - - 17,0 (6) - 15,4 (2) OR with immediate operand
ORC 12,5 (3) 11,9 (3) 15,6 (4) - - - - OR with negated operand
XOR 13,0 (3) 11,8 (3) 15,2 (4) 11,0 (3) - 10,7 (1) - XOR with immediate operand
XOL - - - - 17,0 (6) - 15,4 (2) XOR with immediate operand
XOC 13,2 (3) 11,9 (3) 15,6 (4) - - - - XOR with negated operand
NEG - - - - - 9,2 (1) - Stack top negation
NGL - - - - - - 13,0 (2) Stack top negation
SET 11,9 (3) 11,9 (3) 14,6 (4) - - - - Conditional set
RES 13,6 (3) 12,5 (3) 15,7 (4) - - - - Conditional reset
LET 15,7 (3) 12,8 (3) 16,5 (4) - - - - Leading edge pulse
BET 15,4 (3) 13,6 (4) 16,1 (4) - - - - Pulse from any edge
FLG - - - - - 44,1 (1) - Logical functions A0
STK - - - - - 36,5 (1) - Swap of stack levels to A0
ROL n - - - - - 17,5+2n (3) - Number rotation left
ROR n - - - - - 18,1+2n (3) - Rotation of number right
SWP - - - - - 8,7 (1) - Swap of top and low byte in A0
SWL - - - - - - 12,7 (2) Swap of layers A0 and A1

Appendix

115 TXV 001 09.02

Timers, shift registers, counters, step controller
Mnemo

code
Execution time [µs]
(Code length [B])

Instruction description

CTU 40,3 (3) Forward counter
CTD 40,3 (3) Backward counter
CNT 48,3 (3) Bidirectional counter
SFL 41,4 (3) Shift register left
SFR 41,4 (3) Shift register right
TON 47,0 (3) Timer on delay
TOF 47,2 (3) Timer off delay
RTO 50,3 (3) Integrating timer, time measurement
IMP 46,7 (3) Timer - specified pulse length generator
STE 29,7 (3)

23,7
Step sequencer (stepper) - state change

- state not changed

Arithmetic instructions
Execution time [µs] (Code length [B]) Instruction description

Z # A
Mnemo

code
byte
usint

word
uint

dword
udint

byte
usint

word
uint

dword
udint

byte
usint

word
uint

dword
udint

ADD - 19,5 (3) - - 18,1 (3) - - 16,8 (1) - Addition with carry
ADX 13,6 (4) 14,3 (4) 18,6 (4) - - - - - - Addition
ADL - - - - - 17,0 (6) - - 16,3 (2) Addition
SUB - 20,1 (3) - - 18,6 (3) - - 17,4 (1) - Subtraction with carry
SUX 14,1 (4) 14,8 (4) 19,5 (4) - - - - - - Subtraction
SUL - - - - - 17,4 (6) - - 16,5 (2) Subtraction
MUL 13,6 (3) - - 11,4 (3) - - 11,0 (1) - - Multiplication
MUD - 54 (4) - - 52 (4) - - 51 (2) - Multiplication
DIV 15,9 (3) - - 14,5 (3) - - 13,4 (1) - - Division
DID - 314 (4) - - 313 (4) - - 311 (2) - Division
INR 12,8 (4) 13,6 (4) 13,6 (4) - - - - 14,6 (1) - Incrementation (+ 1)
DCR 14,5 (4) 15,4 (4) 15,4 (4) - - - - 14,6 (1) - Decrementation (– 1)
EQ - 21,0 (3) - - 19,5 (3) - - 18,3 (1) - Comparison (equality)
LT - 21,0 (3) - - 19,5 (3) - - 18,3 (1) - Comparison (less than)
GT - 20,8 (3) - - 19,4 (3) - - 18,1 (1) - Comparison (greater than)
CMP 17,5 (4) 18,8 (4) 24,1 (4) - 17,5 (4) - - 17,5 (2) - Comparison
CML - - - - - 23,3 (6) - - 21,2 (2) Comparison
BIN - - - - - - - 17,5 (1) - Conv. of number to bin. f.
BIL - - - - - - - - 173 (2) Conv. of number to bin. f.
BCD - - - - - - - 47,6 (1) - Conversion of number to

BCD
BCL - - - - - - - - 314 (2) Conversion of number to

BCD

Stack operations
Mnemo

code
Execution time [µs]
(Code length [B])

Instruction description

POP n 10,7 + 1,4n (3) Stack shift (rotation) backwards by n levels
NXT 92,4 (3) Activation of next stack in the queue
PRV 92,4 (3) Activation of previous stack in the queue
CHG 87,9 (3) Change active stack without backing S0 and S1
CHGS 92,1 (3) Change active stack with backing up S0 and S1
LAC 23,9 (4) Load values from top of chosen stack
WAC 22,6 (4) Write value on top of chosen stack

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 116

Jump and call instructions
Execution time [µs]
(Code length [B])

Mnemo
code

Transit Jump

Instruction description

JMP - 22,2 (3) Unconditional jump
JMD 10,1 23,5 (3) Jump conditional on non-zero stack top value
JMC 10,1 23,5 (3) Jump conditional on zero stack top value
JMI - 21,7 (1) Indirect jump
JZ 11,4 24,8 (4) Jump conditional on non-zero value of flag ZR
JNZ 11,4 24,8 (4) Jump conditional on zero value of flag ZR
JC 11,4 24,8 (4) Jump conditional on non-zero value of flag CO
JNC 11,4 24,8 (4) Jump conditional on zero value of flag CO
JS 11,4 24,8 (4) Jump conditional on non-zero value of flag S1.0
JNS 11,4 24,8 (4) Jump conditional on zero value of flag S1.0
CAL - 25,3 (3) Unconditional subroutine call
CAD 10,1 26,6 (3) Call conditional on non-zero stack top value
CAC 10,1 26,6 (3) Call conditional on zero stack top value
CAI - 24,2 (1) Indirect subroutine call
RET - 10,3 (1) Unconditional return from subroutine
RED 9,0 11,6 (1) Return from subroutine conditional on non-zero stack top

value
REC 9,0 11,6 (1) Return from subroutine conditional on zero stack top value
L 8,9 (3) - Label n (jump and call target)

Operational instructions
Execution time [µs] (Code length [B])Mnemo

code Transit Jump P41 - P49 P50 - P57 P62 - P64
Instruction description

P 30,6 (3) 49,0 * 14,8 14,1 28,2 Process start (*jump to label of given SEQ)
E - 11,2 (3) 53,2 51,4 11,2 Unconditional process end
ED 9,0 (1) 12,8 54,8 53,0 12,8 Process end conditional on non-zero result
EC 9,0 (1) 12,8 54,8 53,0 12,8 Process end conditional on zero result
EOC - 8,1 (1) - - - End of cycle (exceptional cycle end)
NOP 8,9 (3) - - - - No operation
BP - 72,0 (3) - - - Breakpoint
SEQ 14,5 (3) 18,8 - - - Conditional process interrupt

Table instructions
Execution time [µs] (Code length [B])

Z T
Mnemo

code
bool byte

usint
sint

word
uint
int

bool byte
usint
sint

word
uint
int

Instruction description

LTB 30,6 (3) 25,1 (3) 27,5 (3) 46,8 (3) 37,6 (3) 40,5 (3) Load item from table
WTB 33,1 (3) 26,0 (3) 28,8 (3) 52,3 (4) 45,0 (4) 50,1 (4) Write item to table
LMS - - - - - 47,9 (3) Item sequential load
WMS - - - - - 61,7 (3) Item sequential write

- time addition for 1 table item
FTB 23,0 (4)

+4,1
19,7 (3)

+3,1
22,1 (3)

+3,6
38,7 (4)

+4,1
32,2 (3)

+3,1
34,7 (3)

+3,6
Find item in table
- time addition for 1 item being searched

FTM - 20,3 (3)
+4,3

21,9 (3)
+7,4

- 32,9 (3)
+4,3

35,1 (3)
+7,4

Find part of item in table
- time addition for 1 item being searched

FTS - 19,7 (3)
+3,6

21,0 (3)
+6,3

- 32,7 (3)
+3,6

33,6 (3)
+6,3

Find item with sorting
- time addition for 1 item being searched

Appendix

117 TXV 001 09.02

Block operations
Execution time [µs]
(Code length [B])

Mnemo
code

Z T A

Instruction description

SRC 21,3 (3) 35,4 (3) - Specification of data source for transfer
MOV 49,0 (3)

+3,1
74,3 (3)

+5,4
- Data block move

- time addition for 1 block item
MTN - - 35,6 (2)

+3,1
Move table to scratchpad
- time addition for 1 table item

MNT - - 40,5 (2)
+4,0

Fill table from scratchpad
- time addition for 1 table item

FIL 20,4 (3)
+2,2

- - Fill block with constant
- time addition for 1 block item

Operations with structured tables
Mnemo

code
Execution time [µs]
(Code length [B])

Instruction description

LDS 47,6 (2)
+3,1

Load item from T structured table
- time addition for 1 byte of item

WRS 57,1 (2)
+5,2

Write item to T structured table
- time addition for 1 byte of item

FIS 28,0 (2)
+2,2

Fill item of structured table in scratchpad
- time addition for 1 byte of item

FIT 51,4 (2)
+4,3

Fill item of T structured table
- time addition for 1 byte of item

FNS 23,9 (2)
+4,3

Find item of structured table in scratchpad
- time addition for 1 item

FNT 36,2 (2)
+6,9

Find item of T structured table
- time addition for 1 item

Floating point arithmetic instructions (time data is orientational only, depending on input value)
Execution time [µs]
(Code length [B])

Mnemo
code

Z # A

Instruction description

ADF 83 (4) 81 (6) 79 (2) Addition
SUF 83 (4) 81 (6) 79 (2) Subtraction
MUF 125 (4) 123 (6) 121 (2) Multiplication
DIF 332 (4) 329 (6) 328 (2) Division
CMF 54 (4) 52 (6) 50 (2) Comparison
CEI - - 550 (2) Round up
FLO - - 520 (2) Round down
ABS - - 11,6 (2) Absolute value
LOG - - 1580 (2) Decimal logarithm
LN - - 1580 (2) Natural logarithm
EXP - - 4200 (2) Exponential function
POW - - 4200 (2) Power
SQR - - 710 (2) Square root
HYP - - 980 (2) Euclidean distance
SIN - - 1320 (2) Sine
ASN - - 2590 (2) Arcsine
COS - - 1650 (2) Cosine
ACS - - 2770 (2) Arccosine
TAN - - 2410 (2) Tangent
ATN - - 1650 (2) Arctangent
UWF - - 40 ÷ 170 (2) Conversion of uint to real
IWF - - 40 ÷ 170 (2) Conversion of int to real
ULF - - 40 ÷ 170 (2) Conversion of udint to real
ILF - - 40 ÷ 170 (2) Conversion of dint to real
UFW - - 110 ÷ 200 (2) Conversion of real to uint
IFW - - 110 ÷ 200 (2) Conversion of real to int
UFL - - 110 ÷ 200 (2) Conversion of real to udint
IFL - - 110 ÷ 200 (2) Conversion of real to dint

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 118

PID controller instructions (time data is orientational, they depend on selected functions and input values)
Mnemo

code
Execution time [µs]
(Code length [B])

A

Instruction description

CNV 900 (2) Data conversion and processing from analog units
PID 2000 ÷ 10000 (2) PID controller

Operations with ASCII characters
Execution time [µs]
(Code length [B])

A

Mnemo
code

word float

Instruction description

BAS 21,7 (2) - Conversion of number to ASCII
ASB 22,4 (2) - Conversion of number from ASCII
STF 2000 (2) Conversion of ASCII string to float format
FST 1000 (2) Conversion of float format to ASCII string

Appendix

119 TXV 001 09.02

A.5. INSTRUCTION EXECUTION TIME FOR CENTRAL UNITS CPM-1B, CPM-2B
TECOMAT NS950

The instruction execution times do not include the effects of system processes that
interrupt the execution of the user program. These processes are serial communications
and services of some peripheral units. Due to their effect the cycle time becomes longer.

Overview of operand symbols used:

Z - scratchpad X, Y, S, D, R T - tables
- constant A - no operand (works only on the stack)
U - peripheral unit physical address n - numeric parameter

Data load and write instructions
Execution time [µs] (Code length [B]) Instruction description

Z # U
Mnemo

code
bool byte

usint
sint

word
uint
int

dword
udint
dint
real

word
uint
int

dword
udint
dint
real

byte
usint
sint

word
uint
int

LD 4,0 (4) 3,2 (4) 4,2 (4) 5,0 (4) 2,8 (4) - 200 (4) 210 (4) Load direct data
LDL - - - - - 3,6 (6) - - Load direct data
LDC 4,0 (4) 3,4 (4) 4,4 (4) 5,2 (4) 2,9 (4) - - - Load complement data
WR 3,1 (4) 2,1 (4) 3,7 (4) 4,2 (4) - - 130 (4) 130 (4) Write direct data
WRC 3,1 (4) 2,3 (4) 3,9 (4) 4,4 (4) - - - - Write data complement
WRA - 4,1 (4) 4,4 (4) 6,0 (4) - - - - Write direct data with alternation
PUT

4,2 (4)
2,8

3,2 (4)
2,8

4,8 (4)
2,8

5,3 (4)
2,8

-
-

-
-

-
-

-
-

Conditional data write
- condition fulfilled
- condition not fulfilled

Logical instructions
Execution time [µs] (Code length [B])

Z # A
Mnemo

code
bool byte

usint
sint

word
uint
int

word
uint
int

dword
udint
dint

word
uint
int

dword
udint
dint

Instruction description

AND 3,2 (4) 3,1 (4) 3,5 (4) 2,6 (4) - 3,2 (2) - AND with immediate operand
ANL - - - - 3,7 (6) - 4,9 (2) AND with immediate operand
ANC 3,6 (4) 3,3 (4) 3,5 (4) - - - - AND with negated operand
OR 3,2 (4) 3,1 (4) 3,5 (4) 2,6 (4) - 3,2 (2) - OR with immediate operand
ORL - - - - 3,7 (6) - 4,9 (2) OR with immediate operand
ORC 3,6 (4) 3,3 (4) 3,5 (4) - - - - OR with negated operand
XOR 3,2 (4) 3,1 (4) 3,5 (4) 2,6 (4) - 3,2 (2) - XOR with immediate operand
XOL - - - - 3,7 (6) - 4,9 (2) XOR with immediate operand
XOC 3,6 (4) 3,3 (4) 3,5 (4) - - - - XOR with negated operand
NEG - - - - - 2,6 (2) - Stack top negation
NGL - - - - - - 3,6 (2) Stack top negation
SET 3,3 (4) 2,9 (4) 3,3 (4) - - - - Conditional set
RES 3,3 (4) 2,9 (4) 3,3 (4) - - - - Conditional reset
LET 5,0 (4) 3,5 (4) 4,3 (4) - - - - Leading edge pulse
BET 4,8 (4) 3,9 (4) 4,3 (4) - - - - Pulse from any edge
FLG - - - - - 16,1 (2) - Logical functions A0
STK - - - - - 16,4 (2) - Swap of stack levels to A0
ROL n - - - - - 4,2 (4) - Number rotation left
ROR n - - - - - 4,2 (4) - Rotation of number right
SWP - - - - - 3,4 (2) - Swap of top and low byte in A0
SWL - - - - - - 4,3 (2) Swap of layers A0 and A1

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 120

Timers, shift registers, counters, step controller
Mnemo

code
Execution time [µs]
(Code length [B])

Instruction description

CTU 12,7 (4) Forward counter
CTD 13,1 (4) Backward counter
CNT 16,4 (4) Bidirectional counter
SFL 12,6 (4) Shift register left
SFR 12,6 (4) Shift register right
TON 15,6 (4) Timer on delay
TOF 17,1 (4) Timer off delay
RTO 17,6 (4) Integrating timer, time measurement
IMP 16,8 (4) Timer - specified pulse length generator
STE 4,8 (4) Step sequencer (stepper)

Arithmetic instructions
Execution time [µs] (Code length [B]) Instruction description

Z # A
Mnemo

code
byte
usint

word
uint

dword
udint

byte
usint

word
uint

dword
udint

byte
usint

word
uint

dword
udint

ADD - 6,2 (4) - - 5,8 (4) - - 6,5 (2) - Addition with carry
ADX 3,1 (4) 3,4 (4) 6,4 (4) - - - - - - Addition
ADL - - - - - 5,5 (6) - - 6,7 (2) Addition
SUB - 6,0 (4) - - 5,7 (3) - - 6,6 (2) - Subtraction with carry
SUX 3,1 (4) 3,2 (4) 5,9 (4) - - - - - - Subtraction
SUL - - - - - 5,5 (6) - - 6,7 (2) Subtraction
MUL 4,6 (4) - - 4,4 (4) - - 5,2 (2) - - Multiplication
MUD - 5,7 (4) - - 5,5 (4) - - 5,5 (2) - Multiplication
DIV 6,2 (4) - - 6,0 (4) - - 6,8 (2) - - Division
DID - 32,1 (4) - - 31,9 (4) - - 31,9 (2) - Division
INR 3,0 (4) 3,8 (4) 4,5 (4) - - - - 5,8 (2) - Incrementation (+ 1)
DCR 4,2 (4) 4,7 (4) 5,3 (4) - - - - 5,8 (2) - Decrementation (– 1)
EQ - 6,5 (4) - - 6,2 (4) - - 6,9 (2) - Comparison (equality)
LT - 6,5 (4) - - 6,2 (4) - - 6,9 (2) - Comparison (less than)
GT - 6,5 (4) - - 6,2 (4) - - 6,9 (2) - Comparison (greater than)
CMP 5,1 (4) 5,1 (4) 6,5 (4) - 4,7 (4) - - 4,8 (2) - Comparison
CML - - - - - 5,9 (6) - - 7,6 (2) Comparison
BIN - - - - - - - 6,7 (2) - Conv. of number to bin. f.
BIL - - - - - - - - 17,8 (2) Conv. of number to bin. f.
BCD - - - - - - - 21,3 (2) - Conversion of number to

BCD
BCL - - - - - - - - 42,9 (2) Conversion of number to

BCD

Stack operations
Mnemo

code
Execution time [µs]
(Code length [B])

Instruction description

POP n 3,1 (4) Stack shift (rotation) backwards by n levels
NXT 11,0 (4) Activation of next stack in the queue
PRV 10,9 (4) Activation of previous stack in the queue
CHG 10,1 (4) Change active stack without backing S0 and S1
CHGS 10,5 (4) Change active stack with backing up S0 and S1
LAC 6,4 (4) Load values from top of chosen stack
WAC 5,6 (4) Write value on top of chosen stack

Appendix

121 TXV 001 09.02

Jump and call instructions
Execution time [µs]
(Code length [B])

Mnemo
code

Transit Jump

Instruction description

JMP - 4,7 (4) Unconditional jump
JMD 2,0 5,2 (4) Jump conditional on non-zero stack top value
JMC 2,0 5,2 (4) Jump conditional on zero stack top value
JMI - 5,0 (2) Indirect jump
JZ 2,0 5,2 (4) Jump conditional on non-zero value of flag ZR
JNZ 2,0 5,2 (4) Jump conditional on zero value of flag ZR
JC 2,0 5,2 (4) Jump conditional on non-zero value of flag CO
JNC 2,0 5,2 (4) Jump conditional on zero value of flag CO
JS 2,0 5,2 (4) Jump conditional on non-zero value of flag S1.0
JNS 2,0 5,2 (4) Jump conditional on zero value of flag S1.0
CAL - 6,4 (4) Unconditional subroutine call
CAD 2,0 7,9 (4) Call conditional on non-zero stack top value
CAC 2,0 7,9 (4) Call conditional on zero stack top value
CAI - 7,7 (2) Indirect subroutine call
RET - 3,0 (2) Unconditional return from subroutine
RED 1,8 3,5 (2) Return from subroutine conditional on non-zero stack top

value
REC 1,8 3,5 (2) Return from subroutine conditional on zero stack top value
L 1,5 (4) - Label n (jump and call target)

Operating instructions
Execution time [µs] (Code length [B])Mnemo

code Transit Jump P41 - P49 P50 - P57 P62 - P64
Instruction description

P 1,5 (4) 5,5* 4,5 4,5 1,5 Process start (*jump to label of given SEQ)
E - 2,2 (4) 16,9 16,9 2,2 Unconditional process end
ED 1,8 (2) 3,7 18,5 18,5 3,7 Process end conditional on non-zero result
EC 1,8 (2) 3,7 18,5 18,5 3,7 Process end conditional on zero result
EOC - 3,4 (2) - - - End of cycle (exceptional cycle end)
NOP 1,5 (4) - - - - No operation
BP - 19,5 (4) - - - Breakpoint
SEQ 4,5 (4) 6,0 - - - Conditional process interrupt

Table instructions
Execution time [µs] (Code length [B])

Z T
Mnemo

code
bool byte

usint
sint

word
uint
int

bool byte
usint
sint

word
uint
int

Instruction description

LTB 11,2 (4) 9,5 (4) 10,6 (4) 10,7 (4) 8,9 (4) 10,3 (4) Load item from table
WTB 10,5 (4) 8,7 (4) 9,9 (4) 14,5 (4) 12,5 (4) 15,3 (4) Write item to table
FTB 10,9 (4)

+1,0
7,8 (4)
+1,0

9,1 (4)
+1,1

9,4 (4)
+1,0

8,6 (4)
+1,0

10,2 (4)
+1,1

Find item in table
- time addition for 1 item being searched

FTM - 8,3 (4)
+1,5

9,0 (4)
+3,5

- 9,4 (4)
+1,5

10,0 (4)
+3,5

Find part of item in table
- time addition for 1 item being searched

FTS - 7,8 (4)
+1,0

8,3 (4)
+2,1

- 8,6 (4)
+1,0

9,4 (4)
+2,1

Find item with sorting
- time addition for 1 item being searched

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 122

Block operations
Execution time [µs]
(Code length [B])

Mnemo
code

Z T A

Instruction description

SRC 5,1 (4) 6,0 (4) - Specification of data source for transfer
MOV 7,8 (4)

+1,0
10,4 (4)

+1,0
- Data block move

- time addition for 1 block item
MTN - - 7,5 (2)

+1,0
Move table to scratchpad
- time addition for 1 table item

MNT - - 7,5 (2)
+1,5

Fill table from scratchpad
- time addition for 1 table item

FIL 7,5 (4)
+1,0

- - Fill block with constant
- time addition for 1 block item

Operations with structured tables
Mnemo

code
Execution time [µs]
(Code length [B])

Instruction description

LDS 12,5 (2)
+1,0

Load item from T structured table
- time addition for 1 byte of item

WRS 14,0 (2)
+1,5

Write item to T structured table
- time addition for 1 byte of item

FIS 8,5 (2)
+1,0

Fill item of structured table in scratchpad
- time addition for 1 byte of item

FIT 8,9 (2)
+1,2

Fill item of T structured table
- time addition for 1 byte of item

FNS 8,5 (2)
+1,2

Find item of structured table in scratchpad
- time addition for 1 item

FNT 8,9 (2)
+1,4

Find item of T structured table
- time addition for 1 item

Floating point arithmetic instructions (time data is orientational only, depending on input value)
Execution time [µs]
(Code length [B])

Mnemo
code

Z # A

Instruction description

ADF 93 (4) 97 (6) 97 (2) Addition
SUF 94 (4) 98 (6) 98 (2) Subtraction
MUF 79 (4) 83 (6) 83 (2) Multiplication
DIF 80 (4) 84 (6) 84 (2) Division
CMF 57 (4) 61 (6) 61 (2) Comparison
CEI - - 83 (2) Round up
FLO - - 78 (2) Round down
ABS - - 5,1 (2) Absolute value
LOG - - 220 (2) Decimal logarithm
LN - - 220 (2) Natural logarithm
EXP - - 4500 (2) Exponential function
POW - - 8000 (2) Power
SQR - - 1050 (2) Square root
HYP - - 1200 (2) Euclidean distance
SIN - - 3300 (2) Sine
ASN - - 4200 (2) Arcsine
COS - - 3000 (2) Cosine
ACS - - 4200 (2) Arccosine
TAN - - 5800 (2) Tangent
ATN - - 2800 (2) Arctangent
UWF - - 40 ÷ 100 (2) Conversion of uint to real
IWF - - 40 ÷ 100 (2) Conversion of int to real
ULF - - 40 ÷ 100 (2) Conversion of udint to real
ILF - - 40 ÷ 100 (2) Conversion of dint to real
UFW - - 50 ÷ 130 (2) Conversion of real to uint
IFW - - 50 ÷ 130 (2) Conversion of real to int
UFL - - 50 ÷ 130 (2) Conversion of real to udint
IFL - - 50 ÷ 130 (2) Conversion of real to dint

Appendix

123 TXV 001 09.02

PID controller instructions (time data is orientational, it depends on selected functions and input values)
Mnemo

code
Execution time [µs]
(Code length [B])

A

Instruction description

CNV 500 (2) Data conversion and processing from analog units
PID 1000 ÷ 2000 (2) PID controller

Operations with ASCII characters
Execution time [µs]
(Code length [B])

A

Mnemo
code

word uint int real

Instruction description

BAS 8,9 (2) - Conversion of number to ASCII
ASB 3,6 (2) - Conversion of number from ASCII
STF 650 (2) Conversion of ASCII string to float format
FST 340 (2) Conversion of float format to ASCII string

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 124

A.6. INSTRUCTION EXECUTION TIME FOR CENTRAL UNITS CP-7001, CP-7002
TECOMAT TC700 AND TECOMAT TC650

The instruction execution times are orientational and do not include the effects of
system processes that interrupt the execution of the user program. These processes are
serial communications and operation of cash memories. Due to their effect the cycle time
becomes longer.

Overview of operand symbols used:

Z - scratchpad X, Y, S, D, R T - tables
- constant A - no operand (works only on the stack)
n - numeric parameter

Data load and write instructions
Execution time [µs] (Code length [B]) Instruction description

Z #
Mnemo

code
bool byte

usint
sint

word
uint
int

dword
udint
dint
real

lreal dword
udint
dint
real

lreal

LD 0,9 (4) 0,8 (4) 1,0 (4) 1,3 (4) 2,1 (4) 0,9 (6) - Load direct data
LDQ - - - - - - 1,3 (10) Load direct data
LDC 0,9 (4) 0,9 (4) 1,0 (4) 1,3 (4) - - - Load complement data
WR 0,8 (4) 0,6 (4) 0,7 (4) 1,1 (4) 1,9 (4) - - Write direct data
WRC 0,9 (4) 0,6 (4) 0,7 (4) 1,1 (4) - - - Write data complement
WRA - 0,9 (4) 1,1 (4) 1,8 (4) - - - Write direct data with alternation
PUT

1,0 (4)
0,7

0,8 (4)
0,7

0,9 (4)
0,7

1,3 (4)
0,7

-
-

-
-

-
-

Conditional data write
- condition fulfilled
- condition not fulfilled

LEA 0,8 (6) 0,7 (6) 0,7 (6) 0,7 (6) 0,7 (6) - - Load address

Execution time [µs]
(Code length [B])

Instruction description

A

Mnemo
code

bool byte
usint
sint

word
uint
int

dword
udint
dint
real

lreal

LDIB 1,0 (2) - - - - Load data of 1 bit width from address at A0
LDI - 0,9 (2) - - - Load data of 8 bit width from address at A0
LDIW - - 1,0 (2) - - Load data of 16 bit width from address at A0
LDIL - - - 1,3 (2) - Load data of 32 bit width from address at A0
LDIQ - - - - 2,2 (2) Load data of 64 bit width from address at A0
WRIB 1,1 (2) - - - - Write data of 1 bit width to address at A0
WRI - 0,8 (2) - - - Write data of 8 bit width to address at A0
WRIW - - 0,9 (2) - - Write data of 16 bit width to address at A0
WRIL - - - 1,3 (2) - Write data of 32 bit width to address at A0
WRIQ - - - - 2,2 (2) Write data of 64 bit width to address at A0

Appendix

125 TXV 001 09.02

Logical instructions
Execution time [µs] (Code length [B])

Z # A
Mnemo

code
bool byte

usint
sint

word
uint
int

dword
udint
dint

dword
udint
dint

word
uint
int

dword
udint
dint

Instruction description

AND 0,9 (4) 0,8 (4) 0,9 (4) 1,3 (4) 0,9 (6) - 0,8 (2) AND with immediate operand
ANC 0,9 (4) 0,9 (4) 1,0 (4) 1,4 (4) - - 0,9 (2) AND with negated operand
OR 0,9 (4) 0,8 (4) 0,9 (4) 1,3 (4) 0,9 (6) - 0,8 (2) OR with immediate operand
ORC 0,9 (4) 0,9 (4) 1,0 (4) 1,4 (4) - - 0,9 (2) OR with negated operand
XOR 0,9 (4) 0,8 (4) 0,9 (4) 1,3 (4) 0,9 (6) - 0,8 (2) XOR with immediate operand
XOC 0,9 (4) 0,9 (4) 1,0 (4) 1,4 (4) - - 0,9 (2) XOR with negated operand
NEG - - - - - - 0,7 (2) Stack top negation
SET 0,6 (4) 0,6 (4) 0,6 (4) 0,6 (4) - - - Conditional set
RES 0,6 (4) 0,6 (4) 0,6 (4) 0,6 (4) - - - Conditional reset
LET 1,2 (4) 1,0 (4) 1,1 (4) 2,0 (4) - - - Leading edge pulse
BET 1,2 (4) 1,0 (4) 1,1 (4) 2,0 (4) - - - Pulse from any edge
FLG - - - - - 2,9 (2) - Logical functions A0
STK - - - - - - 3,6 (2) Swap of stack levels to A0
ROL n - - - - - 1,1 (4) - Rotation of number left n-times
ROL - - - - - - 1,4 (2) Rotation left
ROR n - - - - - 1,1 (4) - Rotation of number right n-times
ROR - - - - - - 1,4 (2) Rotation right
SHL - - - - - - 1,2 (2) Shift of number left n-times
SHR - - - - - - 1,2 (2) Shift of number right n-times
SWP - - - - - 0,9 (2) - Swap of top and low byte in A0
SWL - - - - - - 0,7 (2) Swap of layers A0 and A1

Timers, shift registers, counters, step controller
Execution time [µs]
(Code length [B])

Instruction description

#

Mnemo
code

word
uint

dword
udint

CTU 3,2 (4) 3,4 (4) Forward counter
CTD 3,3 (4) 3,5 (4) Backward counter
CNT 4,1 (4) 4,3 (4) Bi-directional counter
SFL 3,2 (4) 3,4 (4) Shift register left
SFR 3,2 (4) 3,4 (4) Shift register right
TON 3,9 (4) - Timer on delay
TOF 4,3 (4) - Timer off delay
RTO 4,4 (4) - Integrating timer, time measurement
IMP 4,2 (4) - Timer - specified pulse length generator
STE 1,2 (4) 1,4 (4) Step sequencer (stepper)

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 126

Arithmetic instructions
Execution time [µs] (Code length [B]) Instruction description

Z # A
Mnemo

code
byte
usint

word
uint

dword
udint

byte
usint

dword
udint

byte
usint

dword
udint

ADD 1,0 (4) 1,1 (4) 1,5 (4) - 0,9 (6) - 0,9 (2) Addition
SUB 1,0 (4) 1,1 (4) 1,5 (4) - 0,9 (6) - 0,9 (2) Subtraction
MUL 1,2 (4) 1,3 (4) 1,7 (4) - 1,0 (6) - 1,0 (2) Multiplication
MULS 1,2 (4) 1,3 (4) 1,7 (4) - 1,0 (6) - 1,0 (2) Multiplication with sign
DIV 1,8 (4) - - 1,4 (4) - 1,6 (2) - Division (byte / byte = byte)
DID 2,6 (4) 2,7 (4) 3,1 (4) - 2,4 (6) - 2,1 (2) Division with reminder
DIVL 2,0 (4) 2,1 (4) 2,5 (4) - 1,8 (6) - 1,9 (2) Division
DIVS 2,0 (4) 2,1 (4) 2,5 (4) - 1,8 (6) - 1,9 (2) Division with sign
MOD - - - - - - 1,8 (2) Division reminder
MODS - - - - - - 1,8 (2) Division reminder with sign
INR 1,0 (4) 1,2 (4) 2,0 (4) - - - 0,8 (2) Incrementation (+ 1)
DCR 1,0 (4) 1,2 (4) 2,0 (4) - - - 0,8 (2) Decrementation (– 1)
EQ 1,6 (4) 1,7 (4) 2,1 (4) - 1,6 (6) - 1,5 (2) Comparison (equality)
LT 1,6 (4) 1,7 (4) 2,1 (4) - 1,6 (6) - 1,5 (2) Comparison (less than)
LTS 1,6 (4) 1,7 (4) 2,1 (4) - 1,6 (6) - 1,5 (2) Comparison with sign (less than)
GT 1,6 (4) 1,7 (4) 2,1 (4) - 1,6 (6) - 1,5 (2) Comparison (greater than)
GTS 1,6 (4) 1,7 (4) 2,1 (4) - 1,6 (6) - 1,5 (2) Comparison with sign (greater than)
CMP 1,4 (4) 1,5 (4) 1,9 (4) - 1,4 (6) - 1,4 (2) Comparison
CMPS 1,4 (4) 1,5 (4) 1,9 (4) - 1,4 (6) - 1,4 (2) Comparison with sign
MAX - - - - - - 1,0 (2) Maximum
MAXS - - - - - - 1,0 (2) Maximum with sign
MIN - - - - - - 1,0 (2) Minimum
MINS - - - - - - 1,0 (2) Minimum with sign
ABSL - - - - - - 0,8 (2) Absolute value
CSGL - - - - - - 0,8 (2) Change sign
EXTB - - - - - - 0,9 (2) Extend sign from 8 bits to 32 bits
EXTW - - - - - - 0,9 (2) Extend sign from 16 bits to 32 bits
BIN - - - - - - 2,1 (2) Conversion of number to bin. form (8

digits BCD)
BIL - - - - - - 3,1 (2) Conversion of number to bin. form (10

digits BCD)
BCD - - - - - - 12,6 (2) Conversion of number to BCD (8 digits

BCD)
BCL - - - - - - 14,7 (2) Conversion of number to BCD (10 digits

BCD)

Stack operations
Mnemo

code
Execution time [µs]
(Code length [B])

Instruction description

POP n 0,8 (4) Stack shift (rotation) backwards by n levels
NXT 2,8 (4) Activation of next stack in the queue
PRV 2,8 (4) Activation of previous stack in the queue
CHG 2,7 (4) Activation of selected stack without backing S0 and S1
CHGS 2,6 (4) Activation of selected stack with backing S0 and S1
LAC 1,6 (4) Load values from top of chosen stack
WAC 1,4 (4) Write value on top of chosen stack
PSHB 1,4 (2) Saving of data of 8 bit width on the stack acc. to SP
PSHW 1,4 (2) Saving of data of 16 bit width on the stack acc. to SP
PSHL 1,4 (2) Saving of data of 32 bit width on the stack acc. to SP
PSHQ 1,4 (2) Saving of data of 64 bit width on the stack acc. to SP
POPB 1,6 (2) Popping of data of 8 bit width to the stack acc. to SP
POPW 1,6 (2) Popping of data of 16 bit width to the stack acc. to SP
POPL 1,6 (2) Popping of data of 32 bit width to the stack acc. to SP
POPQ 1,6 (2) Popping of data of 64 bit width to the stack acc. to SP

Appendix

127 TXV 001 09.02

Jump and call instructions
Execution time [µs]
(Code length [B])

Mnemo
code

Transit Jump

Instruction description

JMP Ln - 1,2 (4) Unconditional jump
JMD Ln 0,5 1,3 (4) Jump conditional on non-zero stack top value
JMC Ln 0,5 1,3 (4) Jump conditional on zero stack top value
JMI Ln - 1,3 (4) Indirect jump
JMI - 1,3 (2) Indirect jump
JZ Ln 0,5 1,3 (4) Jump conditional on non-zero value of flag ZR
JNZ Ln 0,5 1,3 (4) Jump conditional on zero value of flag ZR
JC Ln 0,5 1,3 (4) Jump conditional on non-zero value of flag CO
JNC Ln 0,5 1,3 (4) Jump conditional on zero value of flag CO
JB Ln 0,5 1,3 (4) Jump conditional on non-zero value of equality flag S0.2
JNB Ln 0,5 1,3 (4) Jump conditional on zero value of equality flag S0.2
JS Ln 0,5 1,3 (4) Jump conditional on non-zero value of flag S1.0
JNS Ln 0,5 1,3 (4) Jump conditional on zero value of flag S1.0
CAL Ln - 1,7 (4) Unconditional subroutine call
CAD Ln 0,5 2,0 (4) Call conditional on non-zero stack top value
CAC Ln 0,5 2,0 (4) Call conditional on zero stack top value
CAI Ln - 2,0 (4) Indirect subroutine call
CAI - 2,0 (2) Indirect subroutine call
RET - 1,8 (2) Unconditional return from subroutine
RED 0,5 1,9 (2) Return from subroutine conditional on non-zero result
REC 0,5 1,9 (2) Return from subroutine conditional on zero result
L n 0,4 (4) - Label n (jump and call target)

Operating instructions
Execution time [µs] (Code length [B])Mnemo

code Transit Jump P41 - P49 P50 - P57 P62 - P64
Instruction description

P 0,4 (4) 1,4* 1,2 1,2 0,4 Process start (*jump to label of given SEQ)
E - 0,6 (4) 4,3 4,3 0,6 Unconditional process end
ED 0,5 (2) 0,9 4,7 4,7 0,9 Process end conditional on non-zero result
EC 0,5 (2) 0,9 4,7 4,7 0,9 Process end conditional on zero result
NOP 0,4 (4) - - - - No operation
BP - 4,9 (4) - - - Breakpoint
SEQ 1,2 (4) 1,5 - - - Conditional process interrupt

Table instructions
Execution time [µs] (Code length [B])

Z
Instruction descriptionMnemo

code
bool byte

usint
sint

word
uint
int

dword
udint
dint

real

LTB 3,8 (4) 2,4 (4) 2,7 (4) 3,0 (4) 3,0 (4) Load item from table
WTB 2,7 (4) 2,2 (4) 2,5 (4) 2,8 (4) 2,8 (4) Write item to table
FTB 2,8 (4)

+0,2
2,0 (4)
+0,2

2,3 (4)
+0,3

2,6 (4)
+0,4

2,6 (4)
+0,4

Find item in table
- time addition for 1 item being searched

FTBN 2,8 (4)
+0,2

2,0 (4)
+0,2

2,3 (4)
+0,3

2,6 (4)
+0,4

2,6 (4)
+0,4

Find next item in table
- time addition for 1 item being searched

FTM - 2,1 (4)
+0,4

2,3 (4)
+0,8

2,6 (4)
+1,2

2,6 (4)
+1,2

Find part of item in table
- time addition for 1 item being searched

FTMN - 2,1 (4)
+0,4

2,3 (4)
+0,8

2,6 (4)
+1,2

2,6 (4)
+1,2

Find next part of item in table
- time addition for 1 item being searched

FTS - 2,0 (4)
+0,2

2,1 (4)
+0,5

2,2 (4)
+0,8

- Find item with sorting
- time addition for 1 item being searched

FTSF - - - - 2,2 (4)
+1,0

Find item with sorting
- time addition for 1 item being searched

FTSS - 2,0 (4)
+0,2

2,1 (4)
+0,5

2,2 (4)
+0,8

- Find item with sorting
- time addition for 1 item being searched

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 128

Execution time [µs] (Code length [B])
T

Instruction descriptionMnemo
code

bool byte
usint
sint

word
uint
int

dword
udint
dint

real

LTB 3,8 (4) 2,4 (4) 2,7 (4) 3,0 (4) 3,0 (4) Load item from table
WTB 3,7 (4) 3,2 (4) 3,6 (4) 4,0 (4) 4,0 (4) Write item to table
FTB 2,6 (4)

+0,2
2,3 (4)
+0,2

2,7 (4)
+0,3

3,1 (4)
+0,4

3,1 (4)
+0,4

Find item in table
- time addition for 1 item being searched

FTBN 2,6 (4)
+0,2

2,3 (4)
+0,2

2,7 (4)
+0,3

3,1 (4)
+0,4

3,1 (4)
+0,4

Find next item in table
- time addition for 1 item being searched

FTM - 2,4 (4)
+0,4

2,8 (4)
+0,8

3,2 (4)
+1,2

3,2 (4)
+1,2

Find part of item in table
- time addition for 1 item being searched

FTMN - 2,4 (4)
+0,4

2,8 (4)
+0,8

3,2 (4)
+1,2

3,2 (4)
+1,2

Find next part of item in table
- time addition for 1 item being searched

FTS - 2,3 (4)
+0,2

2,5 (4)
+0,5

2,7 (4)
+0,8

- Find item with sorting
- time addition for 1 item being searched

FTSF - - - - 2,7 (4)
+1,0

Find item with sorting
- time addition for 1 item being searched

FTSS - 2,3 (4)
+0,2

2,5 (4)
+0,5

2,7 (4)
+0,8

- Find item with sorting
- time addition for 1 item being searched

Block operations
Execution time [µs]
(Code length [B])

Mnemo
code

Z T A

Instruction description

SRC 1,3 (4) 1,5 (4) - Specification of data source for transfer
MOV 1,9 (4)

+0,2
2,6 (4)
+0,2

- Data block move
- time addition for 1 block item

MTN - - 1,9 (2)
+0,2

Move table to scratchpad
- time addition for 1 table item

MNT - - 1,9 (2)
+0,4

Fill table from scratchpad
- time addition for 1 table item

FIL 1,9 (4)
+0,2

- - Fill block with constant
- time addition for 1 block item

BCMP 1,9 (2)
+0,4

- - Comparison of blocks
- time addition for 1 block item

Operations with structured tables
Mnemo

code
Execution time [µs]
(Code length [B])

Instruction description

LDSR 3,1 (2)
+0,2

Load item from structured table in scratchpad
- time addition for 1 byte of item

LDS 3,2 (2)
+0,2

Load item from T structured table
- time addition for 1 byte of item

WRSR 3,4 (2)
+0,3

Write item to structured table in scratchpad
- time addition for 1 byte of item

WRS 3,5 (2)
+0,3

Write item to T structured table
- time addition for 1 byte of item

FIS 2,2 (2)
+0,2

Fill item of structured table in scratchpad
- time addition for 1 byte of item

FIT 2,3 (2)
+0,3

Fill item of T structured table
- time addition for 1 byte of item

FNS 2,2 (2)
+0,3

Find item of structured table in scratchpad
- time addition for 1 item

FNT 2,3 (2)
+0,3

Find item of T structured table
- time addition for 1 item

Appendix

129 TXV 001 09.02

Floating point arithmetic instructions (time data is orientational only, depending on input value)
Execution time [µs] (Code length [B])
Z # A

Mnemo
code

real real real lreal

Instruction description

ADF 23 (4) 24 (6) 24 (2) - Addition
ADDF - - - 24 (2) Addition
SUF 23 (4) 24 (6) 24 (2) - Subtraction
SUDF - - - 24 (2) Subtraction
MUF 20 (4) 21 (6) 21 (2) - Multiplication
MUDF - - - 21 (2) Multiplication
DIF 20 (4) 21 (6) 21 (2) - Division
DIDF - - - 21 (2) Division
EQF 18 (4) 19 (6) 19 (2) - Comparison (equality)
EQDF - - - 19 (2) Comparison (equality)
LTF 18 (4) 19 (6) 19 (2) - Comparison (less then)
LTDF - - - 19 (2) Comparison (less then)
GTF 18 (4) 19 (6) 19 (2) - Comparison (greater then)
GTDF - - - 19 (2) Comparison (greater then)
CMF 15 (4) 16 (6) 16 (2) - Comparison
CMDF - - - 16 (2) Comparison
MAXF - - 24 (2) - Maximum
MAXD - - - 24 (2) Maximum
MINF - - 24 (2) - Minimum
MIND - - - 24 (2) Minimum
CEI - - 21 (2) - Round up
CEID - - - 21 (2) Round up
FLO - - 19 (2) - Round down
FLOD - - - 19 (2) Round down
RND - - 23 (2) - Arithmetic round
RNDD - - - 23 (2) Arithmetic round
ABS - - 0,5 (2) - Absolute value
ABSD - - - 0,5 (2) Absolute value
CSG - - 0,5 (2) - Sign change
CSGD - - - 0,5 (2) Sign change
LOG - - 55 (2) - Decimal logarithm
LOGD - - - 55 (2) Decimal logarithm
LN - - 55 (2) - Natural logarithm
LND - - - 55 (2) Natural logarithm
EXP - - 1100 (2) - Exponential function
EXPD - - - 1100 (2) Exponential function
POW - - 2000 (2) - Power
POWD - - - 2000 (2) Power
SQR - - 260 (2) - Square root
SQRD - - - 260 (2) Square root
HYP - - 300 (2) - Euclidean distance
HYPD - - - 300 (2) Euclidean distance
SIN - - 800 (2) - Sine
SIND - - - 800 (2) Sine
ASN - - 1000 (2) - Arcsine
ASND - - - 1000 (2) Arcsine
COS - - 800 (2) - Cosine
COSD - - - 800 (2) Cosine
ACS - - 1000 (2) - Arccosine
ACSD - - - 1000 (2) Arccosine
TAN - - 1500 (2) - Tangent
TAND - - - 1500 (2) Tangent
ATN - - 700 (2) - Arctangent
ATND - - - 700 (2) Arctangent
UWF - - 10 ÷ 25 (2) - Conversion of uint to real
IWF - - 10 ÷ 25 (2) - Conversion of int to real
ULF - - 10 ÷ 25 (2) - Conversion of udint to real
ILF - - 10 ÷ 25 (2) - Conversion of dint to real

PLC TECOMAT Programmer´s Manual

TXV 001 09.02 130

Execution time [µs] (Code length [B])
Z # A

Mnemo
code

real real real lreal

Instruction description

ULDF - - - 10 ÷ 25 (2) Conversion of udint to lreal
ILDF - - - 10 ÷ 25 (2) Conversion of dint to lreal
FDF - - - 10 ÷ 25 (2) Conversion of real to lreal
UFW - - 10 ÷ 30 (2) - Conversion of real to uint
IFW - - 10 ÷ 30 (2) - Conversion of real to int
UFL - - 10 ÷ 30 (2) - Conversion of real to udint
IFL - - 10 ÷ 30 (2) - Conversion of real to dint
UDFL - - - 10 ÷ 30 (2) Conversion of lreal to udint
IDFL - - - 10 ÷ 30 (2) Conversion of lreal to dint
DFF - - - 10 ÷ 30 (2) Conversion of lreal to real

PID controller instructions (time data is orientational, it depends on selected functions and input values)
Mnemo

code
Execution time [µs]
(Code length [B])

A

Instruction description

CNV 120 (2) Data conversion and processing from analog units
PID 250 ÷ 500 (2) PID controller

Operations with ASCII characters
Execution time [µs]
(Code length [B])

A

Mnemo
code

word
uint

dword
udint

real lreal

Instruction description

TER - 200 (2) - - Terminal instruction
BAS 2,3 (2) - - - Conversion of number in binary format to ASCII
ASB 0,9 (2) - - - Conversion of number in binary format from ASCII
STF - - 170 (2) - Conversion of ASCII string to float format
STDF - - - 170 (2) Conversion of ASCII string to double format
FST - - 90 (2) - Conversion of float format to ASCII string
DFST - - - 90 (2) Conversion of double format to ASCII string

For more information please contact:
Teco a. s. Havlíčkova 260, 280 58 Kolín 4, Czech Republic
tel.: +420 321 737 611, fax: +420 321 737 633, teco@tecomat.cz, www.tecomat.com

TXV 001 09.02

The manufacturer reserves the right of changes to this documentation. The latest edition of this document is
available at www.tecomat.cz

	Table of contents
	1. INTRODUCTION
	2. PLC AND USER PROGRAM
	2.1. ACTIVATION SEQUENCE
	2.2. PLC OPERATING MODES
	2.3. USER PROGRAM RESTARTS

	3. USER PROGRAM STRUCTURE
	4. INSTRUCTION AND OPERAND STRUCTURE
	4.1. IMMEDIATE OPERAND
	4.2. ADDRESS OPERAND
	4.3. TRANSITION DESTINATION
	4.4. INSTRUCTION PARAMETER

	5. SCRATCHPAD MEMORY STRUCTURE
	5.1. INPUT IMAGES X
	5.2. OUTPUT IMAGES Y
	5.3. SYSTEM REGISTERS S
	5.4. USER REGISTERS R

	6. DIRECT INPUT/OUTPUT ACCESS
	6.1. DIRECT INPUT/OUTPUT ACCESS - 16 BIT MODEL
	6.2. DIRECT INPUT/OUTPUT ACCESS - 32 BIT MODEL

	7. OTHER ADDRESS SPACES
	7.1. D DATA
	7.2. T TABLES
	7.3. DATABOX ADDITIONAL DATA MEMORY

	8. RESULT STACK
	8.1. STACK STRUCTURE
	8.2. DATA INTERPRETATION ON THE STACK - 16 BIT MODEL
	8.3. DATA INTERPRETATION ON THE STACK - 32 BIT MODEL
	8.4. SWITCHING AMONG STACKS

	9. COMPILER DIRECTIVES
	9.1. #program
	9.2. #unit, #module
	9.3. #include, #usefile
	9.4. #def
	9.5. #reg, #rem
	9.6. #struct
	9.7. #data, #table
	9.8. #if, #elif, #else, #endif
	9.9. #ifdef, #ifndef, #else, #endif
	9.10. #usi
	9.11. #label
	9.12. #macro, #endm
	9.13. #mnemo, #mnemoend
	9.14. #useoption

	10. USER PROCESSES
	10.1. GENERAL PRINCIPLES OF ACTIVATION
	10.2. I/O SCAN
	10.3. RESTART TREATMENT - PROCESSES P62, P63
	10.4. LOOP PROCESSES
	10.5. INTERRUPT PROCESSES
	10.6. BREAKPOINT TREATMENT - PROCESSES P50 TO P57
	10.7. P60 SUBROUTINE PACKAGE

	11. INSTRUCTION SET
	12. USER INSTRUCTIONS
	12.1. APPLICATION OF USI IN A USER PROGRAM
	12.2. USI FOR PARTICULAR SERIES OF CENTRAL UNITS
	12.3. CREATING A USER - DEFINED USI
	12.4. C LANGUAGE COMPILERS USED
	12.5. EXAMPLE OF CREATION OF A USER - DEFINED USI INSTRUCTION
	12.6. APPLICATION EXAMPLE FOR USI INSTRUCTION
	12.7. COMMENTS

	A. APPENDIX
	A.1. INSTRUCTION EXECUTION TIME FOR CENTRAL UNIT CPM-1E TECOMAT NS950
	A.2. INSTRUCTION EXECUTION TIME FOR CENTRAL UNIT CPM-1M TECOMAT NS950
	A.3. INSTRUCTION EXECUTION TIME FOR CENTRAL UNIT CPM-2S TECOMAT NS950
	A.4. INSTRUCTION EXECUTION TIME FOR CENTRAL UNITS CPM-1D TECOMAT NS950, TC400, TC500, TC600
	A.5. INSTRUCTION EXECUTION TIME FOR CENTRAL UNITS CPM-1B, CPM-2B TECOMAT NS950
	A.6. INSTRUCTION EXECUTION TIME FOR CENTRAL UNITS CP-7001, CP-7002 TECOMAT TC700 AND TECOMAT TC650

