Contents

1.	Abbreviations and Terms	. 3
2.	Description	. 5
2.1	1 The Specification	. 5
2.2	2 Compatibility	. 5
2.3	3 Communication	. 5
2.4	Distributed Control	5
2.5		. 6
2.(2	Perametera Overview	. /
ງ. ຊຸ	raialleters Overview	O
3.3	2 Operational Conditions	
3.3	Basic Parameters	. 9
4.	Central Unit	10
4.1	Basic Parts and Parameters	10
4.2	2 User Accessible Memories	10
4.3	3 Analog Outputs	12
4.4	Serial Communication Channels	.13
	4.4.1 Serial Communication Channel 1 (CH1)	.13
	4.4.2 Serial Communication Channel 2 (CH2)	16
1 4	4.4.3 Serial Communication Channel 3 (CH3)	10
4.0	4.5.1 Setting of Parameters of Serial Communication Channels CH1 CH2 CH3	17
	4.5.2 Management of the user program source memory	20
5.	Input and Output Unit	21
5.1	Basic Functions	21
	5.1.1 Binary Inputs	.21
	5.1.2 Binary Transistor Outputs	.22
	5.1.3 Binary Relay Outputs	.23
	5.1.4 Analog Inputs of TC605, TC606, TC625, TC626 Modules	24
	5.1.5 Analog Inputs of the TC634 Module	.25
J.2	5 2 1 Interrupt Inpute	29
	5.2.1 Interrupt inputs	29
	5.2.3 Admeasurement of Position by the Incremental Encoder.	30
	5.2.4 Measurement of the Signals Period and Phase Shift	31
6.	Packaging	32
7.	Transport	32
8.	Storage	32
9.	Installation	32
9.1	Principles of Proper Installation	32
9.2	2 Ensuring of the Required Operational Temperature	.33
9.3	3 The Mounting	.34
9.4	Arrangement of Connecting of Terminal Boards	36
9.5	5 Connection of the PLC Inputs and Outputs	.45
	9.5.1 Connection of the Protective Connector	45
	9.5.2 FLC FOWER Supply	40
	9.5.4 Connection of Binary Transistor Outputs	47
	9.5.5 Connection of Binary Relay Outputs	48
	9.5.6 Connection of Analog Inputs of TC605, TC606, TC625, TC626	49
	9.5.7 Connection of TC634 Analog Inputs	49
	9.5.8 Connection of Analog Outputs	51
	9.5.9 Connection of the CH1 Interface	52
	9.5.10 Connection of the CH2 Interface	54
	9.5.1 Connection of Interrupt Inputs	00
	9.5.12 Connection of the Type 3 Counter	56
	9.5.14 Incremental Encoder Connection	57

	9.5.15 Connection of Inputs for Measurement of the Period and Phase Shift	57
10.	Attendance	58
10.	1 Instructions for Safe Attendance	58
10.2	2 Putting into Operation	58
10.3	3 PLC Initialization	58
10.4	4 Operational Modes	59
	10.4.1 Change of Operational Modes	59
	10.4.2 Activities Performed at Changing of the PLC Mode on the Standard Basis	59
	10.4.3 Optionally Performed Activities at Change of the PLC Mode	60
	10.4.4 Restarts of the User Program	60
10.	5 Programming and Debugging of the PLC Program	61
	10.5.1 Configuration Constants in the User Program	62
	10.5.2 Software Configuration	63
	10.5.3 Servicing of Binary Inputs	65
	10.5.4 Servicing of Binary Outputs	66
	10.5.5 Servicing of Analog Inputs	66
	10.5.6 Servicing of Analog Outputs	70
	10.5.7 Servicing of Serial Channels	70
	10.5.8 Servicing of Interrupt Inputs	71
	10.5.9 Servicing of the Type 3 Counter	76
	10.5.10 Incremental Encoder Servicing	79
	10.5.11 Measurement of the Signal Period and Phase Shift	81
	10.5.12 Physical Addresses of Inputs and Outputs	84
10.0	6 Testing of Input and Output Signals	84
10.1	7 Instruction Set	85
11.	Diagnostics and Removal of Faults	86
11.	1 Conditions for Proper Function of the Diagnostics	86
11.3	2 Indication of Errors	86
11.:	3 Serious Errors	86
	11.3.1 User Program Errors	87
	11.3.2 Errors in the Peripheral System	89
11.4	4 Other Errors	90
	11.4.1 Errors of Serial Communication	91
	11.4.2 System Errors	91
	11.4.3 User Program Errors	92
	11.4.4 Errors in the Peripheral System	92
11.	5 Solution of Communication Problems with the Superior System	92
12.	Removal of Faults	95
13.	Maintenance	95
13.	1 Demounting of the PLC Parts	95
13.2	2 Checking of PE Connectors Interconnection	95
13.3	3 Checking of the Power Supply	95
13.4	4 Checking of Voltage of Binary Inputs	95
13.	5 Checking of Voltage of Binary Transistor Outputs	96
13.0	6 Battery Exchange	96
13.	7 Fuse Exchange	96
13.8	8 Cleaning	96
14.	The Guarantee	96

Introduction

The manual Technical equipment of TC600 programmable logic controllers provides information necessary for proper application, operation and maintenance of basic modules of programmable logic controllers Tecomat TC601 to TC607, extension modules TC621 to TC626 and half extension modules TC631 to TC634. It describes possibilities of the building, differences in technical equipment of individual types, technical parameters of electronic circuits, control and diagnostics and it determines requirements for transportation, storage and installation of the system. Out of data necessary for programming, the manual contains only description of the way of declaration of individual types in an integrated development environment and servicing of inputs and outputs. The very description of the development environment for programming of Tecomat programmable logic controllers is a part of the development environment. The principle of the programmable logic controller function, programming principles and the instruction file of Tecomat programmable logic controllers are described in detail in the Handbook of the Tecomat PLC programmer, TXV 001 09.02 and Instruction set of the Tecomat PLC, TXV 001 05.02. Detailed description of modes of serial communication channels is given in the handbook Serial communication of Tecomat programmable logic controllers, TXV 001 06.02.

With regard to high inheritance of properties of individual types of this series, majority of data is given together for the whole series. Parameters are given individually in the case that parameters of a series type differ.

1. Abbreviations and Terms

PLC	Programmable Logic Controller
	PLC Central Processor Unit
	PLC Serial Ch annels
RIC circuit	Real Time Clock, circuit for generation of real time
Tecomat	registered trademark of PLC Teco a. s.
Tecomat TC600	marking of PLC of the TC600 series
	(TC601-TC607, TC621-TC626, TC631-TC634)
Tecoreg	registered trademark of Teco a. s. regulators
Programmable Lo	gic Controller (PLC)
	freely distributable programmable system designed for logic control of work machines, technological processes, etc.
Basic Module (BM)
,	smallest fully functional set of the PLC
Extension Module	(EM. EM/2)
	module designed for extension of functional possibilities of the PLC basic module by additional inputs and outputs
RAM Memory	Random Access Memory, memory type for reading and writing
EEPROM Memory	Electrically Erasable and Programmable Read Only
	Memory, memory type for reading
User Program Mei	nory
	part of the PLC RAM memory assigned for storage of the user program, data and tables
User Program Sou	Irce Memory
-	power independent PLC memory designed for storage of
	the source (backup) user program, data and tables
User Process	
	part of the user algorithm assembled by the user from
	instructions of the problem oriented language of the PLC.
	Every user process is inclosed in instructions P and E of
	a common number (0 to 64)

User Program	set of all user processes designed for control of the given application
Multiprogramming	set of rules according to which individual user processes
	are activated
Program Cycle	set of user processes which are activated cyclically ac- cording to rules of multiprogramming
Cycle Turn	phase of the system program between the last process of the past cycle and the first process of the new cycle. In the cycle turn, values of outputs are transmitted from re- gisters Y, new values of inputs are scanned into registers X, time data in timers and system registers are updated, and data received by communication channels and new data for transmission are transferred
Cycle Interruption	by User
	ses may be activated in arbitrary position of the user program cycle.
Initialization Proce	esses
	system (P62 after warm reboot, P63 after cold reboot)
User D Data	constants of the upper program stored in memory of the
	user program
User T Tables	door program
Ocation of	most often constants of the user program concentrated in integrated sets (T tables). They are usually used for defi- nition of subsystems (decoders, combination, sequential, time or numeric subsystems).
Configuration Cor	isianis, r. Dala set of data in the user program memory designed for
	sett of data in the dsci program memory designed for setting of the system configuration and modification of the system activity. Not available to the user program, are edited from within the development environment. If not edited, the system shows standard behaviour.
Scratchpad, Regis	sters X, Y, S, R
	images (registers X), output images (registers Y), system (S) and user (R) registers.
Remanent Part of	the Scratchpad
	part of registers R the contents of which is retained dur- ing warm reboot. The extent may be selected by the configurational constant of remanent registers R. Other registers R and registers X and Y are not remanent and are reset in every reboot or turning on. The user has the possibility to store actual output values in remanent reg- isters R.
Warm Reboot	way of activation of the system and user program in which the contents of the scratchpad remanent part are retained. The rest of the scratchpad is reset
Cold Reboot	way of activation of the system and user program in which all registers of the scratchpad are reset. Cold re- boot is performed in the case that an attempt at warm reboot has been non-successful (the system has detec- ted damage of the stored data).

2. Description

2.1 The Specification

PLC's of the TC600 series are freely programmable logic systems designed for control of work machines and technological processes in various and diverse areas of production. They complement the integrated series of modular and compact Tecomat PLC's with a small modular system equipped with the drive for mounting on a U strip.

2.2 Compatibility

Although PLC's of the TC600 series are designed for the smallest applications, use properties of large Tecomat PLC's remain retained. Significant property is uniformness of technical and program means for creation and debugging of the user program and uniformness of the highly efficient instruction set and system services with other Tecomat PLC's allowing for evaluation of experience gained in applications of other Tecomat systems.

2.3 Communication

Two serial communication channels fitted in a standard manner with optional interfaces and possibility of addition of a third communication channel allow for simultaneous local connection of intelligent peripheries equipped with a serial communication channel (readers of the bar code, printers, frequency converters etc.), connection of the operation board and connection to a computer with the development environment or interconnection of individual PLC's in the EPSNET industrial network. Up to 32 Tecomat PLC's, Tecoreg regulators or other devices can participate in the network which meet requirements of the EPSNET network (data terminals, laboratory apparatuses etc.).

2.4 Distributed Control

Using the communication possibilities, it is possible to create extensive systems with distributed control by gradual connecting of autonomous systems to the network and by completion of the program shell without the necessity to intervene in the PLC's technical equipment. Another possibility is additional interconnection of PLC's and collection of data for the central monitoring purposes.

2.5 The Building

The smallest fully functional PLC unit of the TC600 series is formed by the basic module (BM). It is produced in six designs which differ in the number and type of inputs and outputs.

Order numbers for BM PLC of the TC600 series

Туре	Order Number ¹⁾	Note			
		Binary inputs	Analog inputs	Transist. outputs	Relay outputs
TC601	TXN 061 51	12	-	8	-
TC602	TXN 061 52	20	-	16	-
TC603	TXN 061 53	12	-	4	4
TC604	TXN 061 54	16	-	-	10
TC605	TXN 061 55	12	4	-	8
TC606	TXN 061 56	16	4	4	10
TC607	TXN 061 57	20	-	20	-

¹⁾ In types TC603 to TC607, the after-number (two digits after the dot) determine the special BM function:

- .00 common function of binary inputs (after-number need not be given) .01 4 interruption binary inputs
- .03 measuring by incremental position scanner
- .05 counter of type 3 (unidirectional 16 bit counter with pre-selection)
- .06 period and phase shift measurement

Optional part of all BM types are interfaces of two serial communications channels (CH1, CH2) fitted in the standard design, additional data memory (DataBox), and a third serial communication channel (CH3) or analog outputs.

Туре	Order number	Note
MR-02	5XK 068 91	Interface RS-232 without galvanic separation from internal control circuits
MR-04	5XK 068 93	Interface RS-485 without galvanic separation from internal control circuits
MR-09	TXK 085 03	Interface RS-485 with galvanic separation from internal control circuits
MR-17	TXK 085 11	Interface RS-422 without galvanic separation from internal control circuits
IM-70	TXK 080 10.00	DataBox, additional data memory 128 kB ¹⁾
IM-70	TXK 080 10.02	DataBox, additional data memory 512 kB ¹⁾
MR-14	TXK 085 08.02	CH3 with interface RS-485 without galvanic separation from internal control circuits ²⁾
MR-15	TXK 085 09.02	CH3 with RS-232 without galvanic separation from internal control circuits ²⁾
OT-13	TXK 082 60	4 analog outputs without galvanic separation from internal control circuits ²⁾
OT-14	TXK 082 61	8 analog outputs without galvanic separation from internal control circuits ²⁾

¹⁾ DataBox is added in the production plant exclusively

²⁾ Only 1 piggyback MR-xx or 1 piggyback OT-xx may be fitted

Number of binary and analog inputs and binary outputs of the BM can be extended by connecting one extension module (EM), two half extension modules (EM/2) or by combination of EM, EM/2.

Order numbers of optional BM piggybacks Order numbers of EM and EM/2, PLC of the TC600 series

Туре	Order number	Note			
		Binary inputs	Analog inputs	Transist. outputs	Relay outputs
TC621	TXN 061 71	12	-	8	-
TC622	TXN 061 72	20	-	16	-
TC623	TXN 061 73	12	-	4	4
TC624	TXN 061 74	16	-	-	10
TC625	TXN 061 75	12	4	-	8
TC626	TXN 061 76	16	4	4	10
TC631	TXN 061 81	8	-	8	-
TC632	TXN 061 82	8	-	-	8
TC633	TXN 061 83	16	-	-	-
TC634	TXN 061 84	-	8	-	-

2.6 Design

Modules of PLC's of the TC600 series are designed as devices to be built in, designed to be mounted on a U strip, norm ČSN EN 50022 (idt EN 50022:1977). Metal jacket of the modules and mechanical arrangement guarantees higher resistance against interferences.

BM electronic circuits are realized on two printed wiring boards; the central unit and input and output unit.

EM's are fitted with the input and output unit only.

3. Parameters Overview

3.1 Basic Properties

TC601 TC621 TC602 TC622 TC606 TC626 TC604 TC605 TC603 TC607 TC623 TC624 TC625 **Binary inputs** Total number of inputs 12 20 12 16 12 16 20 Arrangement 1x8, 2x8, 1x8, 2x8 1x8, 2x8 2x8, (no. of groups x no. of inputs) 1x4 1x4 1x4 1x4 1x4 Binary transistor outputs 8 16 4 4 20 Total number of outputs _ Arrangement 1x8 2x8 1x4 1x4 2x8, (no. of groups x no. of outputs) 1x4 Binary relay outputs Total number of outputs 4 10 8 10 _ 1x4 2x4, Arrangement 2x4 2x4, (no. of groups x no. of outputs) 2x1 2x1 Analog inputs Total number of inputs 4 4 _ Arrangement 1x4 1x4 (no. of groups x no. of inputs) TC601 to TC606 Analog outputs Total number of outputs 4 or 8 - optional Arrangement 1x4 or 1x8 (no. of group x no. of outputs)

	TOCOL	TOCOO	TOCOD	TOCOA
	10631	10632	10633	10634
Binary inputs				
Total number of inputs	8	8	16	-
Arrangement	2x4	2x4	4x4	
(no. of groups x no. of inputs)				
Binary transistor outputs				
Total number of outputs	8	-	-	-
Arrangement	1x8			
(no. of groups x no. of outputs)				
Binary relay outputs				
Total number of outputs	-	8	-	-
Arrangement		2x4		
(no. of groups x no. of outputs)				
Analog inputs				
Total number of inputs	-	-	-	8

Number of inputs and outputs of PLC TC600 series

Class of environment effect	normal according to ČSN 33 2000-3 (mod JEC 364-3:1993)
Range of operational tempera-	0 °C to +55 °C
Average temperature during 24 hours	max. +50 °C
Allowed transportation tem- perature	-25 °C to +70 °C
Relative air humidity	50 % to 95 % without condensation
Degree of pollution	1 according to ČSN EN 61131-2 (idt EN 61131-2:1992, IEC 1131-2:1992)
Overvoltage category of in- stallation	II according to ČSN 33 0420 (eqv IEC 664:1980, IEC 664A:1981)
Immunity against disturbances	levels according to ČSN EN 61131-2 (idt EN 61131-2:1992, IEC 1131-2:1992) (tab. 16)
Emitted disturbance	levels for group 1, class A according to ČSN EN 55011 (mod CISPR 11:1997)
Vibrations	Fc 10 Hz to 150 Hz, 0.15 mm, 10 cycles according to ČSN EN 60068-2-6 (idt EN 60068-2-6:1995, IEC 68-2-6:1995+Corr.1995)
Operating position	vertical
Type of operation	permanent

3.2 Operational Conditions

Basic Parameters 3.3

	BM	EM	EM/2		
Type of appliance	to be built-in				
Class of el. object	l according to ČSN 33 0600 (mod IEC 536-1:1976, IEC 536-2:1992)				
Coverage	IP-10B				
Supply voltage (SELV)	24 V~ ±20 %, 50-60 Hz ±5 % or 24 V- ±20 %				
Power input	max. 20 VA or 13 W ¹⁾				
Mass	about 0.8 kg	about 0.4 kg	about 0.2 kg		
Size (h x w x d) $^{2)}$	141x182x69	141x157x44	141x89x44		

 $^{1)}_{^{2)}} \;$ Power input of BM extended by one EM and one EM/2 See figs. 9.1, 9.2, 9.3

4. Central Unit

4.1 Basic Parts and Parameters

Central unit ensures the majority of PLC control functions. Due to its properties, it is ranked among Tecomat CPU D series. It contains especially the supply voltage converter, microcontroller, memories RAM and EEPROM, RTC circuit, lithium battery to supply voltage to the RAM memory and RTC circuit in the case that the PLC power supply is turned off, two serial communication channels and optional additional data memory and analog output circuits or a third serial communication channel.

Central unit series	D
Real time circuit (RTC)	fitted in standard design
User program source memory	fitted in standard design
Memory type	EEPROM (FLASH)
Memory size	32 kB
User program and data memory	fitted in standard design
Memory type	RAM
Memory size	32 kB
Additional data memory, DataBox	optional
Memory type	RAM
Memory size	128 kB or 512 kB
Backup of the RAM memory and RTC	min. 20 000 h
Cycle period per 1k of logic instructions	13 ms
Total number of user registers	8 192
Number of remanent registers	optional 0 to 512
Total number of timers and counters	4 096
Range of timers	65 536 x 10 ms to 10 s, possibility of cascading
Range of counters	65 536, possibility of cascading
Instruction set	extended
Instruction length	1 to 6 bytes
Number of serial communication chan- nels	2 + 1, optional
Transmission speed of CH1, CH2, CH3	0.3 to 230.4 kBd ¹⁾
Number of analog outputs	optionally 0, 4 or 8

¹⁾ Maximum transmission speed is limited by the maximum allowed transmission speed of the set communication channel mode.

4.2 User Accessible Memories

Memory of the user program is formed by a part of the RAM memory of CPU assigned for the user program, data and tables. When PLC is turned off, the memory is supplied by the built-in lithium battery.

Source memory of the user program is formed by a part of the EEPROM memory of CPU assigned for saving of a copy of the user program. The memory power-independent, that is, contents of the memory remain retained even after the power supply of the PLC is turned off or when the battery is discharged. Use of the source memory is controlled by the user by setting a parameter in the PLC SET mode (see Article 4.5).

When the source memory is allowed, after exiting the SET mode, turning on of the PLC power supply or restart, contents of the user program source memory is moved to the user program memory with which CPU works. The function is used especially for backup of the user program. The memory is programmed from within the development environment directly in the PLC.

CPU Basic parameters

User program memory

User program source memory

Memory of CPU parameters

Scratchpad memory

The DataBox

Support of working with the DataBox

Backup of the RAM memory and RTC circuit power supply

Detection of state of the backup battery

Memory of CPU parameters is power-independent memory designed for storage of parameters that can be set in the PLC SET mode. Contents of the memory remain retained even when the PLC power supply is turned off or if the battery is discharged.

The scratchpad memory is a part of the CPU RAM memory accessible to the user in the form of input images (registers X), outputs images (registers Y), system (S) and user registers (R). Preserving of the scratchpad contents after turning off of the PLC power supply and restarts is program-controlled. The behaviour is described in detail in Chapter 10.

The DataBox is an optional complement of the CPU, fitted by the producer on the basis of an order. It extends the user accessible RAM memory by 128kB or the data memory by 512kB. When the PLC is turned off, the memory is supplied from a built-in lithium battery. It is designed for working with greater amounts of data, for example for archiving of data on the controlled process for a longer time period etc. The data can be written to the memory or read, respectively, either by using the PLC user program or through the serial line.

For support of the DataBox program attendance, there are three user instructions available. The READDBX instruction is intended for reading of data from DataBox into R registers, the WRITEDBX instruction is intended for writing of data from R registers to the DataBox, and the SIZEDBX instruction serves for identification of the DataBox size. Detailed description of function of instructions, their definitions, structures of the parameters zone for instructions READDBX and WRITEDBX and way of calling of instructions in the user program are given on the distribution diskette xPRO which forms a part of the PLC delivery.

For serial communication with the DataBox, either CH1 can be used which always operates in the PC mode or channels CH2, CH3 set in the PC mode. To support serial communication with the DataBox, the COMPLC.EXE program is available which allows for reading data from DataBox into a file or write data from a file to DataBox, respectively, and test size of memory accessible in the form of the DataBox. Working with the DataBox is possible starting from the COMPLC.EXE program version 1.6. The program, which is found on the xPRO distribution diskette, must be run under the MS DOS operating system.

When the PLC power is turned off, the RAM memory and RTC circuit are supplied from a built-in lithium battery. Parameters of the used battery allow for backup with the power supply turned off for the minimum time of 20000 hours. In common operating conditions (operating temperature of 20 °C, unidirectional operation at least) and typical power take-off of the backing circuits, the backup time is limited by battery life (5 years at the minimum).

Voltage of the backup battery is evaluated by the diagnostic system. In the case the voltage drops under 2.5 V, bit .0 of the S35 system register is set to the state log. 1. PLC continues with its activity until the voltage drops under the minimum supply voltage of the RTC circuit. Evaluation of the RTC circuit failure leads to bringing the PLC in the HALT mode and announcing the error message 80 0C 00 00.

4.3 Analog Outputs

Analog outputs are used for control of voltage-control action elements of the controlled object. They are arranged in a group with a common terminal of the analog ground. Analog outputs are galvanically connected with the CPU control circuits. Physically, the analog outputs are realised on small plug-in units, the so called piggybacks, fitted on the CPU if ordered. Number of outputs depends on the type of the chosen piggyback (see Article 2.5).

	OT-13	OT-14	
Number of output channels	4	8	
Arrangement of outputs	1x4	1x8	
Common group conductor	mir	nus	
Galvanic separation from internal control circuits	no		
Type of output	volt	age	
Voltage range/resolution (1 LSB ¹⁾)	≐0 to 9.96 V/ 39 mV		
Error of output voltage	typ. ± 1 LSB		
	max. ±	max. \pm 4 LSB	
Binary output representation	8 b	8 bits	
Output current	max. 10 mA		
Setting time of the output	max. 30 μs		
Output load resistance	>1 kΩ		
Resistance against short-circuit	min. 5 s		

¹⁾ LSB (Least Significant Bit) - lowest bit of the binary value

$$1 \text{ LSB} = \frac{10 \text{V}}{2^8}$$

Parameters of analog

outputs

4.4 Serial Communication Channels

Standard design of all PLC's of the TC600 series is equipped with two communication channels. Third communication channel is added per order (see Article 2.5).

4.4.1 Serial Communication Channel 1 (CH1)

CH1 is designed for connection of the PLC to a superior system. The superior system most often represents a computer of the PC class performing the function of a programming device, visualisation station or control device of the PLC network. It contains a complete set of the EPSNET network services. Detailed description of the services is given in the handbook *Serial Communication of Tecomat Programmable Logic Controllers*, *TXV 001 06.02*.

CH1 is equipped with fixed fitted interface RS-232 without galvanic separation from internal circuits. Besides this, in all types of BM, CH1 can be complemented with a piggyback with interface RS-485 or RS-422. Optional interface is implicitly assigned to CH1. Interface RS-232 is assigned to CH1 automatically by connecting the cable TXK 646 51.06. Together with connecting interface RS-232, the optional interface (if fitted) is disconnected from CH1. For selection of the interface type, especially function of the superior device is decisive, type of interface of its serial communication channel, connection distance, transmission speed and level of disturbances.

4.4.1.1 Interface RS-232

Interface RS-232 ensures conversion of output signals of TTL level to level defined by the specification V.28 (EIA RS-232), and of input signals according to V.28 to the TTL level. It allows for connection of two end devices in the duplex mode. It is suitable for connection realised in short distance in an environment with low level of electromagnetic disturbances.

For the communication, PLC's of the TC600 series use only binding circuits of signals TxD (Transmit Data), RxD (Receive Data), CTS (Clear To Send), and RTS (Request To Send) of the standard RS-232 interface.

· · · · · · · · · · · · · · · · · · ·	4)
Transmission speed	max. 230.4 kBd ¹⁾
Cable length	max. 15 m ²⁾
Voltage of outputs TxD, RTS for level 1	typ8 V against GND ($R_1=5 \text{ k}\Omega$)
Voltage of outputs TxD, RTS for level 0	typ. +8 V against GND (R⊫5 kΩ)
Voltage of inputs RxD, CTS for level 1	min3 V against GND
	max25 V against GND
Voltage of inputs RxD, CTS for level 0	min. +3 V against GND
	max. +25 V against GND
Impedance of inputs RxD, CTS	5 kΩ

¹⁾ The maximum transmission speed is limited by the maximum allowed transmission speed of the set mode of the communication channel.

²⁾ The maximum cable length may only be used provided that the maximum transmission speed is reduced.

To program the PLC, communication channel CH1 is used

Interface RS-232 of CH1 is activated after connection of the interconnecting cable TXK 646 51.06

Interface RS-232 is used for two-point connection

Parameters of the RS-232 interface

Interface RS-485 is used for multi-point connection

4.4.1.2 Interface RS-485

Interface RS-485 ensures conversion of output signals of the TTL level to level defined by the specification V.11 (X.27, EIA RS-485), and input signals according to V.11 to the TTL level. Parameters of symmetric binding circuits of the RS-485 interface allow for multi-point connection of end devices in the half-duplex mode. It is suitable for connection realised in medium distance in an environment with higher level of electromagnetic disturbances.

For the communication, PLC's of the TC600 series use binding circuits of signals TxD (Transmit Data), RxD (Receive Data). Signal RTS (Request To Send) is used internally for control of the transmitter activation.

Parameters of the	Transmission speed	max. 230.4 kBd ¹⁾
RS-485 interface	Cable length	max. 1200 m ²⁾
	Sensitivity of differential inputs RxD+, RxD-	±200 mV
	Input resistance of differential inputs RxD+, RxD-	min. 12 kΩ
	Voltage of differential inputs	min. 0.2 V
	RxD+, RxD- for level 1	max. 12 V
	Voltage of differential inputs	min0.2 V
	RxD+, RxD- for level 0	max7 V
	Voltage of differential outputs	min. 1.5 V (R _I =75Ω)
	TxD+, TxD- for level 1	max. 5 V (lo=0)
	Voltage of differential outputs	min1.5 V (R _I =75Ω)
	TxD+, TxD- for level 0	max5 V (Io=0)
	Difference of the output voltage value for levels 0 and 1	max. ±0.2 V
	Output current	max. ±250 mA

¹⁾ The maximum transmission speed is limited by the maximum allowed transmission speed of the set mode of the communication channel.

²⁾ The maximum cable length may only be used provided that the maximum transmission speed is reduced.

Interface RS-422 is used for two-point connection

4.4.1.3 Interface RS-422

Interface RS-422 of PLC's of the TC600 series ensures conversion of output signals of the TTL level to level defined by the specification V.11 (X.27, EIA RS-422), and input signals according to V.11 to the TTL level. Parameters of symmetric binding circuits of the RS-422 interface allow for two-point connection of end devices in the duplex mode. It is suitable for connection realised in medium distance in an environment with higher level of electromagnetic disturbances.

For the communication, PLC's of the TC600 series use only binding circuits of signals TxD (Transmit Data) and RxD (Receive Data) of the RS-422 interface.

Parameters of the	Transmission speed	max. 230.4 kBd ¹⁾
RS-422 interface	Cable length	max. 1200 m ²⁾
	Sensitivity of the differential input RxD+, RxD-	±200 mV
	Input resistance of the differential input RxD+, RxD-	min. 12 kΩ
	Voltage of the differential input	min. 0.2 V
	RxD+, RxD- for level 1	max. 12 V
	Voltage of the differential input	min0.2 V
	RxD+, RxD- for level 0	max7 V
	Voltage of the differential output	max. 5 V (lo=0)
	TxD+, TxD- for level 1	2.3 V (R _I =100 Ω)
	Voltage of the differential output	max5 V (Io=0)
	TxD+, TxD- for level 0	-2.3 V (R _I =100 Ω)
	Difference of the output voltage value for levels 0 and 1	max. ±0.2 V
	Output current	max. ±60 mA

¹⁾ The maximum transmission speed is limited by the maximum allowed transmission speed of the set mode of the communication channel.

²⁾ The maximum cable length may only be used provided that the maximum transmission speed is reduced.

4.4.2 Serial Communication Channel 2 (CH2)

CH2 is designed for general use

CH2 serves especially for connection of intelligent peripheries with a serial input or output of data to the PLC, and for mutual interconnection of PLC's. It can operate in several modes:

Mode PC - connection of a superior system, usually a PC Mode PLC - interconnection of PLC's or regulators for mutual transfer of data

Mode **MAS** - data collection from subordinate PLC's or regulators in the EPSNET network

Mode **uni** - general user channel for universal use

Setting of the required mode is given in Article 4.5, detailed description of the modes is given in the handbook *Serial Communication of Tecomat Programmable Logic Controllers, TXV 001 06.02.*

CH2 interface is optional (see Article 2.5). Parameters of the interface are given under item 4.4.1.

4.4.3 Serial Communication Channel 3 (CH3)

CH3 is an optional part of the PLC. It can be complemented only in types without analog outputs. It serves especially for connection of intelligent peripheries with a serial input or output of data or connection of an external control board, mutual interconnection of PLC's or connection of a PLC to a superior system. It can operate in several modes:

Mode **PC** - connection of a superior system, usually a PC

- Mode **PLC** interconnection of PLC's or regulators for mutual data transfer
- Mode **MAS** data collection from subordinate PLC's or regulators in the EPSNET network
- Mode uni general user channel for universal use

Setting of the required mode is given in Article 4.5, detailed description of the modes is given in the handbook *Serial Communication of Tecomat Programmable Logic Controllers TXV 001 06.02.*

CH3 interface is dependent on the type of the communication piggyback (see Article 2.5). Interface parameters are given under item 4.4.1.

CH3 is designed for general use

4.5 Setting of CPU Parameters

CPU parameters are set in the setting mode (mode SET). To set and display parameters, the PLC front board is equipped with buttons SET and MODE and a one-place seven-segment LED display.

In the SET mode, all data are displayed in the rotational way, that is, number 123 is displayed in such a way that digits 1, 2, 3 are lighted gradually on the display, then there is a delay, and the whole sequence is repeated. Every character is displayed for about 0.5 s and is separated from the following character by a delay which ensures recognition of two identical characters displayed one after another (for example, displaying of the number 111).

Switching to the SET mode can be performed by pressing buttons SET and MODE simultaneously while the PLC power supply is on. Buttons SET and MODE are held pressed until the triple dash \equiv appears on the display. In general it holds that by the SET button we change setting of the parameter, and by the MODE button we move through individual parameters. Pressing of the button is indicated by lighting of the decimal point on the display.

The SET mode may be terminated any time by simultaneously pressing the buttons SET and MODE. We again hold the buttons SET and MODE pressed until the triple dash \equiv appears on the display. State of parameters is saved upon termination of the mode in the power-independent memory of parameters, and the PLC switches to the HALT mode or some of error messages may possibly be signalled.

Adjustable parameters

SET mode

Mode SET

Displaving of

Entrance in the SET

Termination of the

parameters

mode

Tab. 4.1 Adjustable CPU parameters (ordered from the left to the right and in the rows)

Object to be set	Adjustable parameters					
channel CH1	-	address	speed	delay of re- ply	CTS detec- tion	
	off	-	-	-	-	
	mode PC	address	speed	delay of re- ply	CTS detec- tion	
channels	reg. PLC	address	speed	-	-	
CH2 and CH3 ¹⁾	mode MAS	-	speed	transport delay	CTS detec- tion ²⁾	
	reg. uni	-	-	-	-	
Program source memory	off					

¹⁾ Only BM's fitted with the communication piggyback contain channel CH3.

²⁾ CTS detection in the MAS mode cannot be set for CH3.

4.5.1 Setting of Parameters of Serial Communication Channels CH1, CH2, CH3

Setting of the serial channel mode

Channel CH1 has fixed-set mode PC which cannot be changed. In this channel, the parameter serial channel mode is not set.

In setting the parameter serial channel mode for channels CH2, CH3, a message of the following type is shown on the display

[2-off

with the following meaning:

- **C** setting of the serial channel mode
- 2 number of the channel being set

off - the mode being set

Serial channels may operate in the following modes:

off - channel is off (no other channel parameter is set)

[2-off

PC - connection of a superior system (a PC or an active operation board)

PLC - interconnection with other PLC's or regulators in the EPSNET multimaster network with fast data exchange

C - P C

MAS - data collection from subordinate PLC's or regulators in the EPSNET network

$$C - D A S$$

uni - general user channel for universal use

[2-001

By the SET button we move through individual modes. By pressing the MODE button we save the set mode and move to setting of another parameter

Setting of the serial channel address

When setting the parameter **serial channel address**, a message of the following type is shown on the display

with the following meaning:

- A setting of the serial channel address
- 2 number of the channel being set
- 0 the set address

Address may take a value from 0 to 99. By shortly pressing the SET button, we increase its value by 1, by pressing and holding the SET button (for about 1s) we increase its value by 10. By pressing the MODE button, we save the set value and move to setting of another parameter.

Address is set only for modes **PC** and **PLC**. In the uni mode, setting of the address is a part of the initialisation table in the user program.

When setting the parameter serial channel communication speed, a message of the following type is shown on the display

52-19_2

S

with the following meaning:

- setting of the serial channel communication speed

- 2 number of the channel being set
- **19_2** set speed in kb/s (the underscore is a substitute for the decimal point)

The speed may take values defined in advance according to table 4.2. Speed not available in the given mode of the given channel, is not offered when browsing by the SET button. By pressing the MODE button, we save the set value and move to setting of another parameter.

The speed is set only for modes **PC**, **PLC** and **MAS**. In the uni mode, speed setting is a part of the initialisation table in the user program.

Setting of the serial channel communication speed

Speed	Channel mode	Speed	Channel mode
0.3 kb/s	PC,MAS	28.8 kb/s	PC,PLC,MAS
0.6 kb/s	PC,MAS	38.4 kb/s	PC,PLC,MAS
1.2 kb/s	PC,MAS	57.6 kb/s	PC,PLC,MAS
2.4 kb/s	PC,MAS	76.8 kb/s	PLC
4.8 kb/s	PC,MAS	115.2 kb/s	PLC
9.6 kb/s	PC,PLC,MAS	172.8 kb/s	PLC
14.4 kb/s	PC,PLC,MAS	230.4 kb/s	PLC
19.2 kb/s	PC,PLC,MAS		

When setting the parameter reply delay (in the PC mode) or transport

delay (in the MAS mode), a message of the following type is shown on the

Tab. 4.2 List of available transmission speeds of CH1, CH2 and CH3 in various modes

Setting of the reply delay and transport delay

Reply delay

Transport delay

F5-10

display

with the following meaning:

t - setting of the reply delay

2 - number of the channel being set

10 - set delay/transport delay in ms

By shortly pressing the SET button, we increase the value of the delay/transport delay by 1, by pressing and holding the SET button (for about 1s) we increase its value by 10. By pressing the MODE button we save the set value and move to setting of another parameter.

Optional reply delay serves for solution of situations when the superior system sending the message, cannot switch in time from transmission mode to receiving mode, and thus it cannot receive the PLC's reply. By extending the reply delay the superior system gains time for preparation necessary to start receiving of a reply.

The delay time is set in ms and may take values from 0 to 99 ms. Value 0 means that the minimum reply delay shall correspond with the time necessary to transmit 1 byte, thus it depends on the set speed. Values 1 to 99 give the delay in milliseconds and are not dependent on the communication speed.

The reply delay is set only for mode **PC**.

Optional transport delay serves for solution of situations when the PLC in the role of the superior system is waiting for reply from a subordinate PLC for longer than 0.5 s for the reason of delay on the transmission line, caused by modems etc.

Transport delay is set in multiples of 100 ms and may take values from 0 to 6 s. Value 0 means that the superior PLC waits for the reply for the maximum of 0.5 s (time of cycle of the subordinate PLC may not exceed this value). Values 1 to 60 give the transport delay of 0.1 to 6 s which is added to the value 0.5 s. Values 61 to 99 set the maximum transport delay of 6 s.

The transport delay is set only for mode **MAS**.

Setting of the CTS signal detection

When setting the parameter **CTS signal detection**, a message of the following type is shown on the display

with the following meaning:

- **CTS** setting of the CTS signal detection
- 2 number of the channel being set
- on detection on

Detection of the CTS signal may be either off or on. By pressing the SET button we change the setting, by pressing the MODE button we save the set value and move to setting of another parameter.

When detection of the CTS signal is on, before transmission of the reply the PLC tests state of the CTS signal after setting the RTS signal. The reply is transmitted only if the CTS signal has the same value as the RTS signal. This mode is suitable for communication via modems. The set reply delay holds in this mode too, it is thus ensured that PLC shall not reply before the delay elapses even if the CTS signal is already set.

When CTS signal detection is off, PLC controls the RTS signal but does not take into consideration state of the CTS signal.

Detection of the CTS signal can be set for the **PC** mode of all channels and for the **MAS** mode for channel CH2. For channels CH2 and CH3 in the uni mode, detection of the CTS signal can be set using the initialisation table in the user program.

Default setting of parameters

Parameters of CH1 are implicitly set by the producer to the following values: mode - PC, address - 0, speed - 19.2 kb/s, delay - 0, CTS detection - off

CH2 and CH3 are implicitly off.

4.5.2 Management of the user program source memory

When setting parameters of the source memory, a message of the following type is shown on the display

EP-oFF

with the following meaning:

EP- setting of the user program source memory

off - memory off (default value)

The source memory may be either off or on. By pressing the SET button we change the setting, by pressing the MODE button we save the set value and move to setting of another parameter.

When the parameter is set to the off value, after the PLC switches to the RUN mode, program stored in the user program memory is run. When the parameter is set to the on value, after the setting mode is ended and in every subsequent turning on of the PLC power supply, program from the source memory is first moved to the user program memory, and this program is then run in the RUN mode. The function serves especially for backing of power-dependant memory of the user program.

5. Input and Output Unit

5.1 Basic Functions

The majority of input and output circuits of the PLC is realized on the input and output unit. Individual types of the series differ in the type of the used input and output unit or in modification of the unit fitting with circuits of binary and analog inputs and binary transistor and relay outputs.

5.1.1 Binary Inputs

Binary inputs serve for connection of two-state signals of the controlled object to the PLC. To increase functional reliability, every input is galvanically separated by an optical element from internal circuits and is equipped with a filter. If the input is excited (closed), this is signalled by lighting of the LED diode. Inputs are organized in groups with one common connector. A group of signals may be connected in one or the other polarity.

Inputs DI1 to DI3 of modules TC603 to TC607 can be used for basic function identical with other inputs or for realization of the PLC special functions.

	TC601 TC621	TC602 TC622	TC603 TC623	TC604 TC624	TC605 TC625	TC606 TC626	TC607
Total number of inputs	12	20	12	16	12	16	20
Arrangement	1x8,	2x8,	1x8,	2x8	1x8,	2x8	2x8
(no. of groups x no. of inputs)	1x4	1x4	1x4		1x4		1x4
	TC631	TC632	TC633	TC634			
Total number of inputs	8	8	16	-			
Arrangement (no. of groups x no. of inputs)	2x4	2x4	4x4				
Group common conductor	plus or minus						
Galvanic separation from other electric circuits	yes						
Nominal voltage			24	V-, 24 '	V~		
Voltage for log. 0			max.	12 V-, 1	11 V~		
			(max. 1	4 V-, 13	.5 V~) ¹)	
Voltage for log. 1			min.	16 V-, 1	5 V~		
		(min. 18	.5 V-, 17	7.5 V~) Î	1)	
			max.	30 V-, 3	30 V~		
Current for log. 1			ty	′p. 10 m	A		
Delay from log. 0 to log.1	typ. 4 ms						
Delay from log. 1 to log.0	typ. 4 ms						
Pulse overload capacity of			m	ax. 250	V		
the input		(pul	se width	i 100 μs	, period	1 s)	

¹⁾ Value valid for inputs DI0 to DI3 of modules TC603 to TC607 and TC623 to TC626

Parameters of binary inputs

5.1.2 Binary Transistor Outputs

Binary transistor outputs serve for control of two-state action and signalling elements, which require high count and el. closing speed. To increase functional reliability, every output is galvanically separated by an optical element from internal circuits and is protected against short circuit, overvoltage and reversing of polarity.

When connecting an external power supply of outputs, closing of individual outputs is signalled by lighting of the LED diode. By lighting, the common LED diode marked as BLK, signals blocking of outputs in the still (open) state.

Outputs are organized in groups with one common connector.

	TC601 TC621	TC602 TC622	TC603 TC623	TC604 TC624	TC605 TC625	TC606 TC626	TC607
Total number of outputs	8	16	4	-	-	4	20
Arrangement (no. of groups x no. of outputs)	1x8	2x8	1x4			1x4	2x8 1x4
	TC631	TC632	TC633	TC634			
Total number of outputs	8	-	-	-			
Arrangement (no. of groups x no. of outputs)	1x8						
Group common conductor				plus			
Galvanic separation from other electric circuits				yes			
Operational voltage of out- puts	9.6 V- to 28.8 V-						
Current of outputs	max. 1 A						
Current of the common conductor	max. 6 A max. 4 A				6 A 4 A		
Residual current in el. opening			ma	ax. 300	μA		
El. closing time			m	ax. 400	μS		
El. opening time			m	ax. 400	μS		
Protection against short circuit				yes			
Limitation of the initial peak current			t	yp. 7.5 /	4		
Disconnecting time of the initial peak current	typ. 4 ms						
Limitation of short circuit current	typ. 4 A						
Protection against overload	yes						
Current limitation	typ. 4 A						
Protection against revers- ing of polarity	yes 1)						
Servicing of inductive load	external						

¹⁾ The circuit is brought in non-active state, loads are closed, current will flow through the circuit protective diode.

Parameters of transistor outputs

5.1.3 Binary Relay Outputs

Binary relay outputs serve for control of two-state action and signalling elements of the controlled object, supplied by alternating voltage or voltage higher than the allowed range of closed voltage of transistor outputs. Outputs are realized by the closing voltage-free contact relay led out independently or in a group with one common connector.

Closing of every output is signalled by lighting of the LED diode. The common LED diode marked as BLK, signals by lighting blocking of outputs in the still (open) state.

TC601 TC602 TC603 TC604 TC605 TC606 TC621 TC622 TC623 TC624 TC625 TC626 Total number of outputs 4 10 10 8 --2x4, Arrangement 1x4 2x4, 2x4 (no. of groups x no. of outputs) 2x1 2x1 TC631 TC632 TC633 TC634 -8 --2x4 Galvanic separation from yes other electric circuits Contact parameters Closed voltage max. 250 V ≃ **Closed current** max. 1 A max. 250 VA Closed alternating output max. 24 W for voltage 24 V Closed direct-current output max. 43 W for voltage 48 V max. 57 W for voltage 250 V Current through the group max. 4 A common conductor Closing and opening time typ. 5 ms Oscillation time typ. 1 ms min. 20 x 10^6 closings Mechanical life Servicing of inductive load external Protection of the contact external against overload Dielectric resistance of the 1 kV~ open contact Dielectric resistance between 2.2 kV~ relay contacts and non-live PLC parts Dielectric resistance between 3.75 kV~ relay contacts and SELV circuits 3.75 kV~ Dielectric resistance between contact groups¹⁾

¹⁾ Including contacts led out independently

Parameters of relay outputs

5.1.4 Analog Inputs of TC605, TC606, TC625, TC626 Modules

Analog inputs serve for connection of up to four analog signals of the controlled object to the PLC. They are intended especially for processing of analog signals with normalized current or voltage level. Input circuits are galvanically connected with internal PLC control circuits.

Inputs are arranged in a group with one common connector of the analog ground. Every input can be set individually by a jumper for the voltage or current signal source. The measurement range is set by a program. Type of input and the measurement range can be selected for every input independently of other inputs.

Format of input data

Value of the input variable is passed in the FS format (Full Scale). Value 0 of the input data corresponds with the lower limit of the measurement range, the maximum value of the input data 4095 corresponds with the upper limit of the measurement range. Exceeding of the converter range is not signalled. Conversion to technical units is performed on the user program level. The FS format provides the highest possible resolution.

Parameters of analog	rameters of analog uts		TC605, TC606 TC625, TC626	
1C605, 1C606,	Number of input channels	-	4	
10025, 10020	Arrangement		1x4	
	(no. of groups x no. of inputs)			
	Group common conductor	mir	านร	
	Galvanic separation from inter- nal electric circuits	n	0	
	Input binary representation	12 bits ι	insigned	
	Conversion time of 4 channels	4 r	ns	
	Input type	current or voltage		
	Voltage inputs			
	Measurement range/ resolution (1 LSB)	0 V to +10 V/ 0 V to +2 V/	$\doteq 2.44 \text{ mV}^{-1}$ $\doteq 0.49 \text{ mV}^{-2}$	
	Input resistance	>10	MΩ	
	Recommended internal resis- tance of the signal source	<10 kΩ		
	Current inputs			
	Measurement range/ resolution (1 LSB)	0 mA to +20	mA/ ≐4.9 μA	
	Input resistance	100) Ω	
	Input current	max. s	50 mA	
	Input voltage	max. 5 V		

LSB (Least Significant Bit)

¹⁾ 1 LSB =
$$\frac{10V}{4095}$$

²⁾ 1 LSB = $\frac{2V}{4095}$

Analog Inputs of the TC634 Module 5.1.5

Analog inputs serve for connection of up to eight analog signals of the controlled object to the PLC. They are intended especially for measurement of temperatures using passive resistance temperature scanners, and for processing of analog signals with normalized current or voltage level. Input circuits are galvanically connected with the PLC internal control circuits.

Inputs are fixed-configured as differential ones. Every input can be set individually using a jumper for direct-current voltage or current signal source. Measurement range and format of the input variable value are set in a program. Input type, measurement range and format of the value of input data can be selected for every input independently of other inputs.

To supply power to passive resistance detectors, an internal power supply providing specific current 1 mA is available, which is switched in measurements automatically to one of the two output clips.

The module ensures filtering off of the disturbance component of input signals, protection of input circuits, conversion of the analog voltage or current input level to the binary value, and conversion of the value into the chosen format.

Parameters of analog	Number of input channels	8
inputs of TC634	Arrangement of inputs	8 differential
	Method of A/D conversion	sigma-delta modulation
	Input filtration	digital filter 50 Hz
	Calibration	automatic at the PLC initialization and at every change of the measure- ment range
	Conversion time of one channel	60 ms
	Reconfiguration time of one channel ¹⁾	180 ms
	Total measurement time ²⁾	variable according to configuration
	Input response time ³⁾	60 ms
	Binary representation of the input	16 bits
	Galvanic separation from internal electric circuits	no
	Galvanic separation from non-live PLC parts	yes
	Input type	current
	(can be selected by a jumper)	voltage
		voltage - passive resistance scanners of temperature

1) Reconfiguration time of one channel is time necessary to change and calibrate the measurement range and conversion of one channel. It is applied at transferring among different input types.

2) Total measurement time is the sum of times necessary for conversion or reconfiguration of all declared input channels

3) Response time of the input is time which the input signal needs to reach 100% of its final value. If the signal change is faster than the response time of the input, the signal is reduced by the input filter.

Switching of the current source allows for connection of two detector strings with impedance up to 8 k Ω

Parameters of inputs for TC634 resistance temperature scanners	Scanner type (can be selected by a program) Measurement range Resolution Format of input data Total measurement error Temperature drift Input resistance Resistance of the signal source	Pt100 $W_{100} = 1.385$ Pt100 $W_{100} = 1.391$ Ni1000 $W_{100} = 1.617$ Ni1000 $W_{100} = 1.500$ general 0 to 630 Ω general 0 to 2520 Ω see table 5.1a see table 5.2a see table 5.3a see table 5.3a see table 5.3a See table 5.3a
	Current of the power supply for sup- plying of scanners Load resistance of the current supply ²⁾	1 mA max. 8 kΩ
	 Greatest voltage difference measure ule may not exceed this value. The given load may be connected to ply (loutA, loutB). 	ed among all input clips of the mod- both output clips of the current sup-
Parameters of TC634 current inputs	Measurement range (can be selected by a program) Resolution Format of input data Total measurement error Temperature drift Input resistance Input current Input voltage	0 mA to +20 mA +4 mA to +20 mA see table 5.2b see table 5.1b see table 5.3b see table 5.3b 25.2Ω max. 50 mA max. 5 V
Parameters of TC634 voltage inputs	Measurement range (can be selected by a program) Resolution Format of input data Total measurement range Temperature drift Input resistance Resistance of the signal source Input voltage ¹⁾	$\begin{array}{c} 0 \ \mbox{V to } +10 \ \mbox{V} \\ 0 \ \mbox{V to } +2 \ \mbox{V} \\ \mbox{see table 5.2b} \\ \mbox{see table 5.3b} \\ \mbox{see table 5.3b} \\ \mbox{see table 5.3b} \\ \mbox{>} 10 \ \mbox{M}\Omega \\ \mbox{max. 10 k}\Omega \\ \mbox{max. \pm 12 \ \mbox{V} \\ \mbox{ured among all input clips of the mo-} \end{array}$
Formats of input data Format FS	Value of the input variable is passed input data is selected in a program. In the FS format (Full Scale), value lower limit of the measurement range, 65535 corresponds with the upper lim ceeding of the range of the converter i nical units is performed on the user pro the highest possible resolution	d in one of three formats. Format of 0 of input data corresponds with the the maximum value of input data hit of the measurement range. Ex- s not signalled. Conversion to tech- gram level. The FS format provides
Technical units	In the Technical units format, conv passed in °C, Ω , μ A or mV. Exceeding	erted value of the input variable is g of the range is signalled by value

\$7FFF, underflow of the range is signalled by value \$-7FFF (\$8001). Detailed data on signalling of overflow and underflow of the range for individual types of inputs - see notes to table 5.1.

In the PID format, value of the input variable is passed, converted to the format compatible with PID instructions of Tecomat programmable logic controllers. The value can be interpreted as percentage expression of the full measurement range. Exceeding of the range is signalled by the value \$7FFF. Detailed data on signalling exceeding of the range for individual input types - see notes to table 5.1.

Tab. 5.1a. Format of input data of TC634 resistance temperature scanners

	Data format					
Scanner type/	FS	Technica	l units	PID ³⁾		
measurement range		tenths of °C ¹⁾²⁾	tenths of $\Omega^{3)}$			
Pt100, W100 = 1.385	0 to 65535	-2000 to +8500				
-200 to +850 °C						
Pt100, W100 = 1.391	0 to 65535	-2000 to +8500				
-200 to +850 °C						
Ni1000, W100 = 1.617	0 to 65535	-600 to +2000				
-60 to +200 °C						
Ni1000, W100 = 1.500	0 to 65535	-600 to +2000				
-60 to +200 °C						
0 to 630 Ω	0 to 65535		0 to 6300	0 to 10000		
0 to 2520 Ω	0 to 65535		0 to 25200	0 to 10000		

¹⁾ At conversion to the format of °C tenths, correction of non-linearity of scanners is realized as well according to ČSN IEC 751 (idt EN 60751:1995).

- ²⁾ For the marked format, value \$7FFF signals interruption of the scanner, value \$-7FFF (\$8001) signals short circuit of the scanner.
- ³⁾ For the marked format, exceeding of the upper limit of the range is signalled by value \$7FFF.

Tab.	5.1b.	Format	of input	data of	TC634	current	and	voltage	inputs
------	-------	--------	----------	---------	-------	---------	-----	---------	--------

	Data format					
Measurement	FS Technical units			PID		
range		μΑ	mV	tenths of mV		
0 to +20 mA	0 to 65535	0 to 20000 ¹⁾			0 to 10000 ¹⁾	
+4 to +20 mA	0 to 65535	4000 to 20000 ²⁾			0 to 10000 ²⁾	
0 to +10 V	0 to 65535		0 to 10000 ³⁾		0 to 10000 ³⁾	
0 to +2 V	0 to 65535			0 to 20000 ⁴⁾	0 to 10000 ⁴⁾	

¹⁾ For the marked format, exceeding of the range at current higher than 22 mA is signalled.

- ²⁾ For the marked format, exceeding of the range at current higher than 22 mA is signalled, and underflow of the range at current lower than 3.5 mA.
- ³⁾ For the marked format, exceeding of the range at voltage higher than 10.1 V is signalled.
- ⁴⁾ For the marked format, exceeding of the range at voltage higher than 2.1 V is signalled.

Format PID

Format of input data of resistance temperature scanners Resolution of input data

Resolution of input data of resistance

Resolution of input data of current and voltage inputs

Resolution means the smallest detectable change of the input variable expressed in technical units. It represents the value of the least significant bit of input data (LSB).

Tab. 5.2a. Resolution of input data of TC634 resistance temperature scanners

Resolution of input		Data format				
data of resistance	Scanner type	FS	Technic	PID		
temperature scanners			tenths of °C	tenths of Ω		
	Pt100, W100 = 1.385	0.016021 °C/ LSB	0.1 °C/ LSB			
	Pt100, W100 = 1.391	0.016021 °C/ LSB	0.1 °C/ LSB			
	Ni1000, W100 = 1.617	0.0039673 °C/ LSB	0.1 °C/ LSB			
	Ni1000, W100 = 1.500	0.0039673 °C/ LSB	0.1 °C/ LSB			
	0 to 630 Ω	9.6131 mΩ/ LSB		0.1 Ω/ LSB	0.01 %/ LSB	
	0 to 2520 Ω	38.452 mΩ/ LSB		0.1 Ω/ LSB	0.01 %/ LSB	

Tab. 5.2b Resolution of input data of TC634 current and voltage inputs

Magaziranant	Data format					
range	FS	Technical units			PID	
lange		μA	mV	tenths of mV		
0 to +20 mA	0.30518 μA	1 μA /LSB			0.01 % /LSB	
+4 to +20 mA	0.24414 μA	1 μA /LSB			0.01 % /LSB	
0 to +10 V	0.15259 mV		1 mV /LSB		0.01 % /LSB	
0 to +2 V	0.030518 mV			0.1 mV /LSB	0.01 % /LSB	

Tab. 5.3a. Accuracy of measurement of inputs for TC634 resistance temperature scanners

Accuracy of measurement of inputs for resistance temperature scanners

Scanner type	Maximum error (25 °C)	Temperature drift (0 to 50 °C)
Pt100, W100 = 1.385	±0.5 °C	±0.011 °C/ °C
Pt100, W100 = 1.391	±0.5 °C	±0.011 °C/ °C
Ni1000, W100 = 1.617	±0.4°C	±0.009 °C/ °C
Ni1000, W100 = 1.500	±0.4°C	±0.009 °C/ °C
0 to 630 Ω	±2 Ω	±40 mΩ/ °C
0 to 2520 Ω	±8 Ω	±70 mΩ/ °C

Tab. 5.3b Accuracy of measurement of TC634 current and voltage inputs

	Measurement range	Maximum error (25 °C)	Temperature drift (0 to 50 °C)
e	0 to +20 mA	±400 μA	±8 μΑ / °C
	+4 to +20 mA	±400 μA	±8 μΑ / °C
	0 to +10 V	±200 mV	±4 mV / °C
	0 to +2 V	±40 mV	±800 μV / °C

Accuracy of measurement of current and voltage inputs

5.2 Special Functions

Basic BM functions of TC603 to TC607 can be extended by special functions.

Special functions use standard-fitted inputs, or possibly PLC outputs, but their attendance requires more complex shell algorithms or complementation of the basic technical equipment of the input and output unit. These serving algorithms are realized by the system program, thus servicing performed by the user program remains simple.

Special functions are complemented to selected BM types per order (see Article 2.5). Always one special function may be complemented only.

5.2.1 Interrupt Inputs

Properties of interrupt inputs

Interrupt inputs allow for fast access to user programs for servicing of time critical operational states of the controlled object, and processing of fast changes of input signals processing of which by standard binary inputs is not possible.

Change of state of binary inputs DI0, DI1, DI2 or DI3 is done by the interruption process P42 which may be used to service the state. At the same time, flags are set determining source of the interrupt in the STAT state word. Activation of the interruption process from individual inputs can be controlled by setting the relevant bits of the CONT control word. In every input, it is possible to individually set the signal edge that activates the interrupt.

Interrupt inputs do not disturb neither limit basic functions of inputs DI0 to DI3 described under item 5.1.1.

Parameters of		TC601, TC602	TC603 to TC607	
Interrupt inputs	Number of interrupt inputs	-	4	
	Voltage for log. 0 (opening of the circuit)	max. 14V-, 13.5V~		
	Voltage for log. 1min. 18.5 V-, 1(closing of the circuit)max. 30 V-, 3		/-, 17.5 V~ √-, 30 V~	
	Delay from log. 0 to log.1	max. 5 μs		
	Delay from log. 1 to log.0	max. 5 μs		
	Width of the input pulse	min. 30 μs		
	Interrupt period see item 10.5.8			
	Response time of the PLC	see item 10.5.8		

For other parameters see item 5.1.1.

5.2.2 Counter of Type 3

Properties of the type 3 counter

Counter of type 3 is a unidirectional 16 bit counter of external events equipped with pre-selection, counting (CLK) and resetting input (RESET). The counter can operate as a freely running counter (in the range of 0 to 65535) or self-filling counter (in the range of 0 to pre-selection).

The binary input DI0 is used as the CLK input, binary input DI1 is used as the RESET input. When the RESET input state corresponds with log. 1 (closed input), the counter counts ascending edges of signals on the CLK input. When the RESET input state corresponds with log. 0 (open input), the counter is reset permanently. Overflow of the counter range or reaching of the pre-selection will evoke interruption process P44 of the user program. At the same time, setting of relevant bits in the STAT state word of the counter. Reset and blocking of the counter can be also done from within the user program by setting the relevant bit in the CONT control word of the counter.

Use of binary inputs as the counter inputs does not disturb neither limit their basic function described under item 5.1.1.

Parameters of the type 3 counter

	TC601, TC602	TC603 to TC607	
Number of counters	-	1	
Nominal voltage	24	V-	
Voltage for log. 0 (opening of the circuit)	max.	14 V-	
Voltage for log. 1	min. 1	8.5 V-	
(closing of the circuit)	max. 30 V-		
Range	16 bits (0 to 65535)		
Delay from log. 0 to log.1	max. 5 μs		
Delay from log. 1 to log.0	max. 5 μs		
Input frequency / resolution	max. 30 kHz / 3 pulses		
capability	(10 kHz / 1 pulse)		
Interrupt period	min. 10 ms		
Pulse width	min. 30 μs		

For other parameters see item 5.1.1.

Admeasurement of Position by the Incremental Encoder 5.2.3

The function of admeasurement by the incremental encoder is designed for processing of incremental encoder signals with outputs with an open collector.

In the admeasurement, it is operated with signed arithmetics in the range of long (4 bytes) between limits -2147483648 (8000 0000h) to +2147483647 (7FFF FFFFh) with 0 in between. It allows for admeasuring with resolution of the movement direction, setting of one pre-selection for every movement direction, resolution of position towards pre-selections and searching out of the reference point. After reaching of a pre-selection, overflow or underflow of the range, relevant bits are set in the STAT state word and the interruption process P44 is evoked. Control of admeasurement is performed through the CONT state word.

To connect the encoder, binary inputs DI0 (direct output of trace 1 of incremental encoder), DI1 (direct output of trace 2 of incremental encoder), and DI3 (direct output of the zero pulse of incremental encoder) are used.

Use of binary inputs for connection of incremental encoder does not disturb neither limit their basic function described under item 5.1.1.

Circuits parameters		TC601, TC602	TC603 to TC607	
for incremental encoder connection	Number of encoders	-	1	
	Nominal voltage	24 V-		
	Galvanic separation from other electric circuits	yes		
	Voltage for log. 0 (opening of the circuit)	max.	14 V-	
	Voltage for log. 1	min. 18.5 V-		
	(closing of the circuit) max. 30 V-		30 V-	
	Current for log. 1	typ. 10 mA		
	Delay from log. 0 to log.1	max. 5 μs		
	Delay from log. 1 to log.0	max. 5 μs		
	Input frequency / resolution capability	max. 30 kHz (2.5 kHz)	z / 12 pulses / 1 pulse)	
	Pulse width	min. 30 μs		
	Interrupt period	min. 10 ms		
	Range of the admeasured	32	bits	
	variable	(- 2 147 483 648 to + 2 147 483 647		

For other parameters see item 5.1.1.

Incremental encoder admeasurement properties

The function allows for measurement of the signal period at the BM input DIO or measurement of the phase shift of two signals at BM inputs DIO and function DI1. Measured values express the number of cycles of the internal clock signal between two descending edges of the measured signal (measured signals). By converting the values in the user program, it is possible to obtain values in time units. Time of the cycle of the internal clock signal is 30.5175 μs. Use of binary inputs for measurement of the period or phase shift does not disturb neither limit their basic function described in Article 5.1.1. Parameters of TC601, TC602 TC603 to TC607 measurement circuits Possibility of function compleyes mentation 24 V-Nominal voltage Voltage for log. 0 max. 14 V-(opening of the circuit) Voltage for log. 1 min. 18.5 V-(closing of the circuit) max. 30 V-Delay of input from log. 0 to max. 5 µs log.1 Delay of input from log. 1 to max. 5 µs log.0 Input frequency 1 Hz to 1 kHz Pulse width min. 30 us

Measurement of the Signals Period and Phase Shift

For other parameters see Article 5.1.1.

TXV 138 08.02

5.2.4

6. Packaging

Individual BM's and EM's are packaged together with instructions according to the internal packaging regulation into boxes provided with a fixing insert. Outside packaging is realized according to the order extent and way of transport, in a transport cover provided with transport tags and other data necessary for the transport.

7. Transport

Transport from the producer is performed in a way agreed upon at ordering of the product. Transport via the customer's own means must be performed using roofed transport means, in a position given on the tag present on the cover. The box must be stored in such a way so that no unprompted movement and damage of the outside cover can occur. The product must not be exposed to direct effect of weather conditions in the course of the transportation. The transport may be realized under temperatures -25 °C to 70 °C, relative humidity of 5 % to 95 % (non-condensing), and pressure >70 kPa.

8. Storage

Storage of the product is allowed only in clean areas without conductive dust, aggressive gases and vapours, under temperatures of -25 °C to 70 °C, relative humidity 5%, and pressure >70 kPa. At storage, sudden changes in temperature neither formation of dew on the product may occur. Long-term storage of the product under temperatures close to the upper limit of the allowed temperature reduces capacity of the backing battery. Most suitable storage temperature is 20 °C.

9. Installation

9.1 Principles of Proper Installation

Tecomat PLC's of the TC600 series are built-in devices designed for being mounted in closed cases. From the viewpoint of correct function of the system, it is necessary to choose the size and design of the case so that by the construction arrangement, it is possible to limit as much as possible the effect of especially power parts of the device on the PLC. Limitation of the disturbing effect can be achieved by suitable dislocation of parts of the equipment, by their proper interconnection and elimination of inductive loads.

In general the following principles apply:

- from the viewpoint of disturbances and cooling, it is more suitable to use a metal case than a plastic one
- the PLC should be place if possible in an area spatially separated from powerful closing elements of the controlled technology
- conductors should be laid in cable troughs on a defined basis, formation of bights should be prevented
- parallel running of conductors of the power supply, analog signals, PLC inputs and outputs with conductors of the power alternating part of the distribution should not be realized unnecessarily
- shielding of leading-in cables of analog inputs and outputs should be connected with the frame by the shortest connection possible, formed directly by the shielding plied apart
- cover of modules (a protective connector) should be connected as close as possible with the non-live part of the case or by the shortest possible independent connection with the protective connector of the case, the connection should be realized by a conductor with the minimum cross section of 2.5 mm²

• inductive loads should be serviced in the place of origination of the disturbance

Principle of various ways of servicing the inductive load, aids for the design of RC disturbances elimination elements, overview of sets of disturbances elimination elements supplied by the PLC producer and other recommendations are given in the handbook *Design of Tecomat Programmable Logic Controllers, TXV 001 08.01.*

9.2 Ensuring of the Required Operational Temperature

In cases without forced inside air circulation, the PLC must be placed in such a way so that the distance between the bottom and top side of the PLC and inside sides of the case is at least 100 mm. If this cannot be ensured by good unprompted air circulation, it is necessary to ensure air circulation by building in a ventilator. The maximum allowed air temperature entering the regulator is 55 °C. The PLC itself participates in the output losses by the maximum of 13 W (20 VA) of the power input, typically the loss of 0.25 W at every closed binary input and 0.2 W at every closed transistor output. Losses at closed relay outputs are included the PLC power input.

9.3 The Mounting

The PLC is mounted in vertical position on the U bar, ČSN EN 50022 (idt EN 50022:1977). Outside proportions of the PLC BM, EM and EM/2 are apparent from Figs. 9.1, 9.2 and 9.3.

Fig. 9.1 Mechanic proportions of PLC BM of the TC600 series

Fig. 9.2 Mechanic proportions of PLC EM of the TC600 series

Fig. 9.3 Mechanic proportions of PLC EM/2 of the TC600 series

EM and EM/2 are placed always on the right side from the BM. EM (EM/2) are connected mutually as well as with the BM by a band cable which is part of the EM (EM/2). Cable socket is connected into a socket plug on the right side of the BM (EM/2). After connecting the cable, modules on the bar are moved to their close proximity. Possible ways of extension are given in Figs. 9.4 to 9.7.

Fig. 9.4 BM extension by one EM

Fig. 9.6 BM extension by two EM/2

Fig. 9.7 BM extension by one EM/2 and one EM

- 1 Basic module (BM)
- 2 Extension module (EM)
- **3** Half extension module (EM/2)
- 4 Connection cable

9.4 Arrangement of Connecting of Terminal Boards

Fig. 9.8 Arrangement of Connecting Terminal Boards of TC601 BM and TC621 EM (below)

Fig. 9.9 Arrangement of Connecting Terminal Boards of TC602 BM (above) and TC622 EM (below)

- 1 terminal boards **A**, **B** of binary inputs
- 2 terminal board **D** of binary transistor outputs
- 3 terminal board E of binary relay outputs
- 4 terminal board P of optional analog outputs or CH3
- 5 terminal board K of optional CH1 interface
- 6 socket L of CH1 interface RS-232
- terminal board N of optional CH2 interfaceterminal board M of the PLC power supply
- 9 socket plug R for connection of the EM
- 10 connector for connection of the protective conductor
- 11 fuse of the power supply converter
- 12 socket for connection to the BM

Fig. 9.11 Arrangement of Connection Terminal Boards of TC604 BM (above) and TC624 EM (below)

12 socket for connection to the BM

- 1 terminal boards **A**, **B** of binary inputs
- 2 terminal board C of analog inputs
- 3 terminal board **D** of binary transistor outputs
- 4 terminal boards E, F, G, H of binary relay outputs
- 5 terminal board **P** of optional analog outputs of CH3
- 6 terminal board K of optional CH1 interface
 7 socket L of CH1 interface RS-232
- 8 terminal board **N** of optional CH2 interface
- 9 terminal board **M** of the PLC power supply
- 10 terminal board **R** for connection of the EM
- 11 connector for connection of the protective conductor
- 12 fuse of the power supply converter
- **13** socket for connection to the BM
- Fig. 9.13 Arrangement of Connection Terminal Boards of TC606 BM (above) and TC626 (below)

- 5 socket L of CH1 interface RS-232
- 6 terminal board N of optional CH2 interface
- terminal board \mathbf{M} of the PLC power supply 7
- socket plug R for connection of the EM 8
- connector for connection of the protective conductor 9
- 10 fuse of the power supply converter

- 1 terminal board C of binary transistor outputs 2
- 3 socket for connection to the BM
- socket plug for connection of the EM or EM/2 4
- 5 connector for connection of the protective conductor

Fig. 9.15 Arrangement of Connection Terminal Boards of TC631 EM/2

3 socket plug for connection of the EM or EM/2 4

1

2

connector for connection of the protective conductor 5

Fig. 9.16 Arrangement of Connection Terminal Boards of TC632 EM/2

socket for connection to the BM 2

1

- 3 socket plug for connection of the EM or EM/2
- connector for connection of the protective conductor 4

Fig. 9.17 Arrangement of Connection Terminal Boards of TC633 EM/2

- 1 terminal board A of analog inputs AI0 to AI3
- terminal board B of analog inputs AI4 to AI7 2
- 3 socket for connection to the BM
- socket plug for connection of the EM or EM/2 4
- connector for connection of the protective conductor 5

Fig. 9.18 Arrangement of Connection Terminal Boards of TC634 EM

9.5 Connection of the PLC Inputs and Outputs

With the exception of the protective grounding connector and the CH1 RS-232 interface, PLC inputs and outputs are connected using removable terminal boards which are inserted into the appropriate socket plugs of inputs and outputs. The screw part of the terminal board is constructed for connection of a full conductor with cross section up to 1.5 mm² or a wire with cross section up to 1 mm². The minimum recommended cross section of the full conductor is 0.2 mm², of the wire 0.5 mm². Terminal boards are a part of the PLC additional package.

Connection terminal boards are not protected against exchange by any coding element, check the connection before putting them into operation!

9.5.1 Connection of the Protective Connector

The PLC protective connector must be interconnected with the inside protective connector of the case. Interconnection must meet requirements of ČSN 33 2000-5-54 (mod IEC 364-5-54:1980). From the viewpoint of disturbances, in cases with the metal mounting board it is suitable to connect the protective terminal board with the mounting board by the shortest connection possible. The protective connector is marked with the label 417-IEC-

(÷ 5019-a

9.5.2 PLC Power Supply

Power supply of the PLC, input and output circuits, must be in the overvoltage category II according to ČSN 33 0420 (eqv IEC 664:1980, IEC 664A:1981).

The power supply must meet conditions of the SELV supply according to ČSN 33 2000-4-41 (mod IEC 364-4-41:1992).

Between the primary and secondary winding of the transformer, a Cu shielding foil must be wound up, connected with the inside protective terminal board of the case or the winding must be arranged spatially in such a way so that the mutual capacity between the windings is minimized. It is suitable to insert switches into the supply lead which make work on program debugging, maintenance and possible repairs easier.

The power supply voltage of the PLC, $24 V \sim \pm 20\%$, $50 - 60 Hz \pm 5\%$ or $24 V - \pm 20\%$, is connected to connectors M1 and M2 of the terminal board marked as POWER INPUT. In connection of the direct-current supply, voltage polarity does not matter. Permanent exceeding of the tolerance upper limit may cause breaking of the voltage protective element of the PLC converter. For dimensioning of the supply, it is necessary to consider the maximum input of 13 W (20 VA), which also contains input of coils of the relay of binary relay outputs.

Switches of input circuits may be supplied from the same power supply as the BM internal converter. Input of the closed binary input is typically 0.25 W (0.25 VA). For connection of the binary inputs supply see item 9.5.3.

Circuits closed by binary outputs must be supplied from an independent power supply or at least from an independent transformer winding. The supply must be dimensioned according to the concrete input of the loads. Input of the output transistor circuit is typically 0.2 W for current of 1 A. For connection of the binary outputs power supply see items 9.5.4 and 9.5.5.

PLC power supply can also be used for supplying of binary inputs

9.5.3 Connection of Binary Inputs

PLC binary inputs are led out to connectors of terminal boards marked as DIGITAL INPUTS. Input switches are connected between the input connector and the common connector of the group. In Fig. 9.17, scheme of connection of switches and the power supply to one group of inputs of TC601 to TC607 (TC621 to TC626) is indicated.

Fig. 9.17 Example of connection of switches to binary inputs of the PLC of the TC600 series

Supply voltage of a group of switches may be connected in arbitrary polarity, within the group individual inputs must be poled identically.

For fitting and marking of terminal boards of binary inputs of individual PLC types see Article 9.4.

9.5.4 Connection of Binary Transistor Outputs

Transistor switches of binary outputs are led out to connectors of terminal boards marked as DIGITAL OUTPUTS. In Fig. 9.18, scheme of connection of loads and the power supply to one of the groups of outputs of TC601 (TC621), TC602 (TC622) is indicated. Transistor outputs of other types of the series are connected in the similar way as well.

Fig. 9.18 Example of connection of loads to binary transistor outputs of the PLC of the TC600 series

For fitting and marking of terminal boards of binary transistor outputs of individual PLC types see Article 9.4.

9.5.5 Connection of Binary Relay Outputs

Contacts of the relay of binary outputs are led out to terminal boards marked as DIGITAL OUTPUTS. Fig. 9.19 shows scheme of connection of loads to relay contacts led out to the terminal board in the group, and of independently led out contact of TC604 (TC624), TC606 (TC626). Relay outputs of other types of the series are connected similarly.

Fig. 9.19 Example of connection of loads to binary relay outputs of the PLC of TC600 series

For fitting and marking of terminal boards of binary relay outputs of individual PLC types see Article 9.4.

9.5.6 Connection of Analog Inputs of TC605, TC606, TC625, TC626

Analog inputs are led out to connectors of the terminal board marked as ANALOG INPUTS. In Fig. 9.20, scheme of connection of current and voltage signal supplies to analog inputs of TC605 (TC625), TC606 (TC626) is indicated.

Fig. 9.20 Example of connection of current and voltage signals to analog inputs of the PLC of the TC600 series

Connection of a relevant jumper modifying the voltage input to the current one, must correspond with the current signal supply connected to the input. Disconnected jumper corresponds with the voltage input, connected jumper corresponds with the current input. Jumpers are accessible through openings in the regulator cover. Setting of jumpers for the required input type is shown on the label close to the jumpers.

Connector C6 connected with the controller cover, is intended for connection of the shielding of lead in conductors. If the shielding is connected with the device frame in another place, for example to the input terminal board of the distribution board, it is no more connected with the C6 connector. Examples of the installation realization in the distribution board are contained in the handbook *Design of Tecomat Programmable Logic Controllers, TXV 001 08.01.*

For fitting of terminal boards of analog inputs of individual PLC types see Article 9.4.

9.5.7 Connection of TC634 Analog Inputs

Analog inputs of the TC634 module and the internal current supply are led out to terminal boards marked as ANALOG INPUTS. Fig. 9.21 shows scheme of connection of current and voltage signal supplies to analog inputs AI0-AI3, Fig. 9.22 shows scheme of connection of resistance temperature scanners to inputs AI4-AI7.

Type of the analog input is set by a jumper

Fig. 9.22 Example of connection of resistance temperature scanners to the TC634 analog inputs

Type of the analog input is set by a vo jumper co

Every input must be set individually by the jumper for the direct-current voltage or current signal supply. Jumpers are placed above corresponding couples of input connectors, and are accessible through openings in the controller cover. Disconnected jumper corresponds with the voltage input, connected jumper corresponds with the current input. For passive resistance temperature scanners, voltage input type is set (the jumper is disconnected).

9.5.8 Connection of Analog Outputs

Optionally fitted BM analog outputs of TC601 to TC607 are led out to connectors P1 to P10 of the terminal board marked as OPTIONAL I/O.

Lead out of analog outputs of the OT-13 piggyback

Connector	Signal	Note
P1	AO0	analog output 0
P3	AO1	analog output 1
P5	AO2	analog output 2
P7	AO3	analog output 3
P2, P4, P6, P8, P9, P10	AGND	common analog ground

In Fig. 9.23, scheme of connection of loads to the OT-13 piggyback analog outputs is indicated.

Fig. 9.23 Connection of loads to the OT-13 piggyback analog outputs

Connector	Signal	Note
P1	AO0	analog output 0
P2	AO4	analog output 4
P3	AO1	analog output 1
P4	AO5	analog output 5
P5	AO2	analog output 2
P6	AO6	analog output 6
P7	AO3	analog output 3
P8	AO7	analog output 7
P9, P10	AGND	common analog ground

Lead out of analog outputs of the OT-14 piggyback

In Fig. 9.24, scheme of connection of loads to the OT-14 piggyback analog outputs is indicated.

Fig. 9.24 Connection of loads to the OT-14 piggyback analog outputs

Examples of the installation realization in the distribution board are contained in the handbook *Design of Tecomat Programmable Logic Controllers*, *TXV 001 08.02*.

For fitting of terminal boards of analog outputs of individual PLC types see Article 9.4.

9.5.9 Connection of the CH1 Interface

CH1 RS-232 interface Interface RS-232 of CH1 is designed especially for connection of a computer of the PC class performing the function of a programming device. Binding circuits of the interface are led out to the 9-pole socket Dsub (CONNECTOR L) marked as SERIAL CHANNEL 1/RS-232. The connection is realized by the cable TXK 646 51.06 ended on the PC side by the 9-pole Dsub socket.

If the optional CH1 interface is fitted, by connecting the cable TXK 646 51.06, signals of CH1 will be disconnected automatically from the optional interface.

Signals of the CH1 RS-232 interface

Lead out	Signal	Signal type	Use
L2	RxD	input	data signal
L3	TxD	output	data signal
L5	GND	signal ground	
L7	RTS	output	controlling signal ¹⁾
L8	CTS	input	controlling signal ¹⁾
L9	232DIS	input	CH1 interface switch

¹⁾ Use of the signal is described in the handbook *Serial Communication of Tecomat Programmable Logic Controllers, TXV 001 06.01.* Still level of the signal corresponds with the value of logical 1.

Optional CH1 RS-485 interface

Lead out of binding circuits of piggybacks MR-04, MR-09 of CH1 Binding circuits of the interface are led out to connectors K1 to K6 of the terminal board marked as SERIAL CHANNEL 1.

Connector	Signal	Signal type	Use
K1		frame	connection of the shielding
K2, K4	RxD-/TxD-	input/output	data signal
K3, K5	RxD+/TxD+	input/output	data signal
K6	GND	signal ground	

Interconnection is realized by a couple of twisted shielded conductors. In general, it holds that for higher communication speeds and greater lengths of cables, it is necessary to use higher cross section of conductors. For reduction of reflections, the line is impedance-adjusted by terminators on both ends of the line. In some cases, it is necessary to interconnect signal grounds to balance their potentials. In Fig. 9.25, scheme of interconnection of the RS-485 interface at the marginal and internal equipment of the network is indicated.

Fig. 9.25 Interconnection of two CH1 interfaces RS-485 of the PLC of TC600 series

Binding circuits of the interface are led out to connectors K1 to K6 of the terminal board marked as SERIAL CHANNEL 1.

Connector	Signal	Signal type	Use
K1		frame	connection of the shielding
K2	TxD-	output	data signal
K3	TxD+	output	data signal
K4	RxD-	input	data signal
K5	RxD+	input	data signal
K6	GND	signal ground	

Interconnection is realized by two couples of shielded twisted conductors. In general, it holds that for higher communication speeds and greater lengths of cables, it is necessary to use greater cross section of the conductors. For reduction of reflections, the line is impedance-adjusted by terminators on the side of the receivers. In some cases, it is necessary to interconnect the signal grounds to balance the potentials. In Fig. 9.26, scheme of interconnection of two RS-422 interfaces is indicated.

Optional CH1 RS-422 interface

Lead out of binding circuits of the piggyback MR-17 of CH1

Fig. 9.26 Interconnection of CH1 interfaces RS-422 of the PLC of TC600 series

9.5.10 Connection of the CH2 Interface

Optional CH2 RS-232 Bindin interface terminal b

Lead out of binding circuits of the piggyback MR-02 of CH2 Binding circuits of the interface are led out to connectors N1 to N6 of the terminal board marked as SERIAL CHANNEL 2.

Lead out	Signal	Signal type	Use
N1		frame	connection of the shielding
N2	CTS	input	controlling signal ¹⁾
N3	RTS	output	controlling signal ¹⁾
N4	TxD	output	data signal
N5	RxD	input	data signal
N6	GND	signal ground	

¹⁾ Use of the signal is described in the handbook *Serial Communication of Tecomat Programmable Logic Controllers, TXV 001 06.02.* Still level of the signal corresponds with the value of logical 1.

In Fig. 9.27, five-conductor interconnection with the possibility of CTS signal detection is shown.

Fig. 9.27 Five-conductor interconnection of the CH2 interface RS-232 of the PLC of TC600 series

Fig. 9.28 shows three-conductor interconnection of data binding circuits. The dashed line indicates formation of the RTS-CTS loop.

Fig. 9.28 Three-conductor interconnection of the CH2 interface RS-232 of the PLC of TC600 series

Optional CH2 RS-485 interface

Lead out of binding circuits of piggybacks MR-04, MR-09 of CH2 Binding circuits of the interface are led out to connectors N1 to N6 of the terminal board marked as SERIAL CHANNEL 2.

Connector	Signal	Signal type	Use
N1		frame	connection of the shielding
N2, N4	RxD-/TxD-	input/output	data signal
N3, N5	RxD+/TxD+	input/output	data signal
N6	GND	signal ground	

Interconnection is realized in the way described under item 9.5.9.

Binding circuits of the interface are led out to connectors N1 to N6 of the terminal board marked as SERIAL CHANNEL 2.

Connector	Signal	Signal type	Use
N1		frame	connection of the shielding
N2	TxD-	output	data signal
N3	TxD+	output	data signal
N4	RxD-	input	data signal
N5	RxD+	input	data signal
N6	GND	signal ground	

Interconnection is realized in the way described under item 9.5.9.

Optional CH2 RS-422 interface

Lead out of binding circuits of the piggyback MR-17 of CH2 CH3 RS-232 interface

Lead out of binding circuits of the piggyback MR-15 of CH3

9.5.11 Connection of the CH3 Interface

Binding circuits of the interface are led out to connectors P1 to P5 of the terminal board marked as OPTIONAL I/O.

Lead out	Signal	Signal type	Use
P1	TxD	output	data signal
P2	RTS	output	controlling signal 1)
P3	RxD	input	data signal
P4	CTS	input	controlling signal 1)
P5	GND	signal ground	

¹⁾ Use of the signal is described in the handbook *Serial Communication of Tecomat Programmable Logic Controllers, TXV 001 06.02.* Still level of the signal corresponds with the value logical 1.

Binding circuits of the interface are led out to connectors P6 to P10 of

Interconnection is realized in the way described under item 9.5.10.

CH3 RS-485 interface

Lead out of binding circuits of the piggyback MR-14 of CH3

Connector	Signal	Signal type	Use
P6, P8	RxD+/TxD+	input/output	data signal
P7, P9	RxD-/TxD-	input/output	data signal
P10	GND	signal ground	

Interconnection is realized in the way described under item 9.5.9.

9.5.12 Connection of Interrupt Inputs

the terminal board marked as OPTIONAL I/O.

Interrupt inputs are connected identically as common binary inputs (see item 9.5.3).

9.5.13 Connection of the Type 3 Counter

Source of counted events and the controlling signal are connected between the common connector A1 (COM1) and connectors A2 (DI0) and A3 (DI1) in the way illustrated in the scheme in Fig. 9.29. In the case that the RESET input is not used, it must be serviced by connection to voltage corresponding with log. 1.

9.5.14 Incremental Encoder Connection

Incremental encoder is connected between the common connector A1 (COM1) and connectors A2 (DI0) to A4 (DI2) in the way illustrated in the scheme in Fig. 9.30.

- signal 1 direct output of trace 1
- signal 2 direct output of trace 2
- signal 3 direct output of the zero pulse
- Fig. 9.30 Connection of the incremental encoder with outputs with the open PNP collector (on the left) and NPN collector (on the right) to the PLC of TC600 series

9.5.15 Connection of Inputs for Measurement of the Period and Phase Shift

Measurement inputs are connected identically as common binary inputs (see item 9.5.3).

10. Attendance

10.1 Instructions for Safe Attendance

When the power supply is on, it is not allowed to disconnect and connect supplying terminal boards neither to connect and disconnect individual conductors of the terminal boards.

When programming controlling PLC algorithms, the possibility of an error in the user program cannot be excluded the result of which may be unexpected behaviour of the controlled object the consequence of which may be origination of breakdown situation and in the extreme case also endangering of persons. In attendance to the PLC, especially in the testing stage and debugging of new user programs with the controlled object, it is unconditionally necessary to be concerned with greater carefulness.

The producer is not responsible for damages caused by improper attendance or incorrect algorithm of the user program.

10.2 Putting into Operation

When putting the PLC into operation for the first time, it is necessary to meet the following procedure:

- check correctness of the connection and voltage value of the PLC power supply
- check interconnection of the PLC protective connectors with the main protective connector of the distribution board or case
- check correctness of the connection and voltage value of the power supply of input and output circuits
- turn on the PLC power supply

10.3 PLC Initialization

Ĺ

After the power supply is turned on, the PLC transfers to the starting sequence. The starting sequence is used for testing of the program and technical equipment of the PLC and setting of the PLC to the defined initial state.

In the course of the starting sequence, version of the system program equipment is gradually shown on the display, for example:

PLC binary outputs are blocked in the still state in the course of the testing (the BLK signal is lighted in the field of binary outputs) and analog outputs are set to zero.

The starting sequence may be terminated by transferring to the RUN mode and displaying

by transferring to the HALT mode and displaying

by transferring to the SET mode (see Article 4.5) or transferring to the HALT mode with displaying of the error message

E , E or full error code, for example E - B D - D P - D D - D D .

10.4 Operational Modes

The PLC may operate in three basic modes.

The RUN mode is a common operational mode in which values of input signals are scanned, operations given by the user program algorithm are performed, and PLC outputs are set. The PLC transfers in the RUN mode automatically after proper termination of the starting sequence. In the course of the mode, letter G is shown on the display.

The HALT mode is an operational mode in which the user program is not run and the PLC is in a defined state. The PLC transfers to the HALT mode automatically when a critical error is evaluated during the starting sequence or in the course of control and after termination of the SET mode.

If the PLC transfers to the HALT mode from the starting sequence, binary outputs remain blocked in the still state, analog outputs remain set to zero and code of the error message is shown on the display.

If the PLC transfers in the HALT mode after termination of the SET mode, binary outputs remain blocked in the still state, analog outputs remain set to zero and letter H or an error message are is shown on the display. Mode HALT evoked by termination of the SET mode can be terminated either by the superior system or by turning off and on of the PLC power supply.

If the PLC transfers to the HALT mode in the course of control, binary outputs are set in the still state and blocked, analog outputs are frozen in the state in which they were in the moment of transferring to the HALT mode, and an error message is shown on the display.

For transfer to the HALT mode controlled by the user see item 10.4.1.

The SET mode serves for setting of communication parameters, setting of the time circuit, and control of activation of the source user program. Entrance in the mode is controlled by the attendance persons at turning on of the PLC power supply. In the course of the mode, binary outputs are blocked in the still state, and analog outputs are set to zero. After termination of the SET mode, the PLC transfers automatically to the HALT mode. Detailed description of setting of the PLC parameters is given in Article 4.5.

10.4.1 Change of Operational Modes

Transfer between RUN and HALT modes controlled by the attendance persons is possible only using the superior system equipped with an integrated development environment for programming of the Tecomat PLC's or with a monitoring and controlling program. Transfer between the modes has practical foundation only in the phase of debugging of the user program. In general, it can be said that transfer between the modes if a device is connected, especially modification of the PLC activity at transfer between the modes, requires perfect knowledge of the controlled object as well as of the PLC, and careful consideration of possible consequences.

When changing the PLC operational modes, some activities are performed on the standard basis, and some can be performed optionally. In the case that the change of the PLC mode is done using the PLC development environment, optional activities at changing of the mode are a part of the development environment menus.

10.4.2 Activities Performed at Changing of the PLC Mode on the Standard Basis

In transfer from the HALT to RUN mode, the following is performed:

- test of the user program integrity
- check of software configuration given in the user program (see item 10.5.2)
- running of the user program solving

In transfer from the RUN to HALT mode, the following is performed:

- stopping of the user program solving
- setting of outputs in a defined state

Transfer from the

Transfer from the

HALT to RUN mode

Mode RUN

Mode HALT

Mode SET

If a critical error occurs in the course of activities performed at transfer between the modes, the PLC sets the HALT mode, shows on the display the error code, and expects removal of the error cause.

Do not in any case replace stopping of control using the HALT mode by function of the button CENTRAL STOP.

10.4.3 Optionally Performed Activities at Change of the PLC Mode

At transfer from the HALT mode to RUN, it is possible to optionally perform the following:

- resetting of the PLC error
- warm or cold reboot
- blocking of outputs at solving of the user program

At transfer from the RUN mode to HALT, it is possible to optionally perform the following:

- resetting of the PLC error
- setting of the PLC outputs to zero

At resetting of the PLC error, the whole PLC error stack is reset.

The request for blocking of the PLC outputs causes the program to be solved with disconnected binary outputs. Blocking of the outputs is indicated by the BLK LED diode in the field of binary outputs.

At setting of the outputs to zero, all images of the PLC binary outputs are set to zero.

10.4.4 Restarts of the User Program

Restart means such a PLC activity, the purpose of which is prepare the PLC for solving of the user program. Under normal circumstances, restart is performed after turning on of the power supply, and at every change of the user program.

The systems distinguish two types of restart, warm and cold. Warm restart allows for retaining of the values in the remanent part of the scratchpad. Cold restart is always performed with full memory initialization.

During restart, the following is performed:

- test of integrity of the user program
- resetting of the whole PLC scratchpad
- resetting of the remanent zone (only at cold restart)
- setting of the remanent zone (only warm restart)
- initialization of system registers S
- initialization and checking of PLC inputs and outputs

When the user program is run without a restart, only test of integrity of the user program is performed and checking of the PLC inputs and outputs.

After being turned on, the PLC performs the restart type chosen by the user. If damage of data found in the remanent zone of the scratchpad memory is evaluated, PLC performs cold restart without regard to the chosen restart type.

Depending on the performed restart, the planning unit of user processes P operates as well. If you have performed warm restart at transfer from the HALT to RUN mode, after transferring to the RUN mode the user process P62 is solved first (if programmed). At cold restart, after transferring to the RUN mode the user process P63 is solved first (if programmed). If only one of the processes P62, P63 is programmed, then this process is performed in the case of warm as well as cold restart. If the process P62 neither P63 is programmed, then process P0 is solved first after transfer to the RUN mode.

Programming of the xPRO environment allows for change of the program during PLC operation. Here it is necessary to keep in mind that during

Options at transfer from HALT to RUN

Options at transfer from RUN to HALT

Activities performed during restart

Running of the program without restart Restarts after turning on

User processes at restart

program during PLC operation

Change of the

recording of the new program, solving of the program is stopped without blocking of outputs. This state may last even several seconds!

10.5 Programming and Debugging of the PLC Program

PLC programming Programming of control algorithms and testing of correctness of the written programs for TECOMAT PLC's is performed using computers of the PC standard. For connection with the PLC, the serial channel of these computers is used. Diskette with examples and the xPRO development environment in the version xPRO Lite and xPROm is delivered with every PLC. Examples of PLC programs contain instructions for attendance of various PLC units. xPRO development The xPRO integrated development environment is available in the folenvironment lowing versions: xPRO full version with the hw key for professional work xPRO Lite freely distributable version without the hw key freely distributable version intended for checking of the xPROm technology operation with exclusion of the possibility of interventions in the PLC user program The xPRO development environment has the following properties: integrated environment Turbo Vision including the editor possibility to work with several files at the same time, every one of them having its own window compiler into the machine code of processors of all series symbolic names of labels and operands automatic assignment of variables generation of the symbols table and cross references creation of macro-instructions backward compilation of the program built-in simulator of the TECOMAT PLC full use of the PLC debugging means automatic generation of configuration according to the connected PLC contact plan (relay line schemes) with partial lighting of connection paths in the debugging mode integrated sensitive help system containing the whole programmer's handbook control using the mouse or the keyboard with the possibility to use both the program menus (pull down menus) as well as the direct selection realized by pressing of a key combination (hot keys)

Configuration of constants for setting of services provided during the PLC operation

10.5.1 Configuration Constants in the User Program

Configuration constants are automatically generated during compilation of the user program, and they form its non-separable part. They carry information on the required PLC mode and its use. Constants can be set using menus of the xPRO integrated compiler environment before the compilation itself.

Configuration constants contain the following services:

- type of restart after turning on of the PLC power supply This determines whether after turning on of the power supply, warm or cold restart will be performed (see item 10.4.4). Cold restart is the default setting.
- time of issuing the first warning of threat of exceeding of the maximum allowed cycle time

If the cycle of processing the user program lasts longer than the time defined by this constant, PLC system services set the bit S2.7 as a flag that in processing of the program, the set time has been exceeded in this cycle, and at the same time the soft error code is set in the system register S34 and S48 to S51. Default set value is 150 ms.

- time of guarding the maximum allowed cycle time If the cycle of processing of the user program lasts longer than the maximum allowed cycle time, PLC announces critical error of exceeding the cycle time, blocks the outputs and interrupts cycling running of the user program. This constant defines the longest possible time during which the controlled object may remain without an action intervention. The default set value is 250 ms, the recommended maximum value is 500 ms.
- determining of the extent of backup of the user program in EEPROM Defines whether the whole user program is backed including tables T or whether the user program is backed without the tables T and tables T remain in the original version in backed RAM (suitable in cases of modification of the tables by the user program). Backing of the whole user program is the default setting.
- number of backed registers R (remanent zone)
 Setting of the number of backed registers R values of which will be saved in the case of the PLC power supply failure, ensured by the checking character, and retrieved in the case of warm restart of the PLC. Registers are saved starting from register R0, state of the registers after the last fully terminated cycle of solving of the user program is backed.

Default set value is 0.

10.5.2 Software Configuration

Software (sw) configuration of inputs and outputs describes the PLC set, and forms a non-separable part of the user program. Before running of solving of the user program, this description is compared with reality found out during the PLC starting sequence (the so called hardware configuration). It allows for perfect checking of readiness of the whole PLC for the control before running the program. At the same time, the user gains the possibility to practically arbitrarily assign placement of images of inputs and outputs in zones X, Y, R, and gradually activate inputs and outputs at debugging of the program without the necessity of physical disconnection or connection of the terminal boards.

In the xPRO program, sw configuration is entered using the directive #unit. Structure of the directive is identical with other Tecomat PLC directives. Some parameters intended for description of more extensive system, have the character of a constant in the TC600 series.

General structure of the directive is as follows:

Conora	
#unit MOE INI	DUL, ADR, TYP, POC_IN, POC_OUT, Z_IN, Z_OUT, AKT, TAB
MODUL ADR	 always 0 for the TC600 series always 0 for BM binary and analog inputs and outputs always 1 for binary inputs and outputs and analog inputs of the first EM/2 always 2 for binary inputs and outputs and analog inputs of the second EM/2
	 always 2 for EM binary inputs and outputs and analog inputs always 2 for the CH2 serial channel always 3 for the CH3 serial channel
TYP	 type of inputs or outputs
	\$10 - serial channel CH2 or CH3
	Parameters MODUL, ADR, TYP of serial channel 2 (3) can be entered together in the symbolic way CH2 (CH3) \$80 - EM/2 binary inputs or outputs (TC631, TC632)
	\$90 - EM/2 binary inputs or outputs (1C633)
	\$A0 - EM, BM binary inputs or outputs
	the BM and EM symbolically as Digit_600, for EM/2 Digit_63x (TC631, TC632) and Digit_633 (TC633)
	\$D0 - analog inputs or outputs
	Parameter TYP of analog inputs or outputs can be entered form BM, EM and EM/2 symbolically as Analog_600_
POC_IN	- number of input bytes
POC_001	- number of output bytes
	- placement of the first output byte in the scratchpad
2_001	The parameter is entered absolutely, for example Y0, R128
	or symbolically
AKT	- activation of servicing of inputs or outputs
	Parameter is entered symbolically
	X_On - activation of servicing of inputs
	X_Off - servicing of inputs is not activated
	Y_On - activation of servicing of outputs
	Y_Off - servicing of outputs is not activated
	On - simultaneous activation of servicing of inputs as
	well as outputs
	orr - servicing of inputs neither outputs is activated

Software and hardware configuration INITAB - address of the table containing the initialization data Parameter is entered symbolically, for example IniCH2, or absolutely, for example T0 (names used in the following examples of declarations are not mandatory). Entering of the parameter for CH2, CH3, analog inputs and some special functions (see further) is mandatory. The parameter is not entered for binary inputs and outputs.

Declaration of special functions Another possibility of the sw configuration is declaration of the PLC special functions. Special function use standard-fitted PLC inputs and outputs, however their servicing requires more complicated shell algorithms or complementation of the basic technical equipment of the input and output unit. These servicing algorithms are realized by the system, thus servicing by the user program remains simple.

The xPRO program contains the function for automatic generation of sw configuration according to the connected PLC type and its further editing. This enables the user to have the sw configuration created exactly according the real technical equipment or create a basis for the user's own declaration of inputs, outputs, and functions of the PLC set.

If no sw configuration is entered in the user program, the program will be solved only above the PLC scratchpad memory and the PLC inputs and outputs will not be serviced. Binary outputs will remain blocked in this case and analog outputs will remain set to zero.

Automatic generation of the sw configuration

Solving of the user program with disconnected inputs and outputs

10.5.3 Servicing of Binary Inputs

Declaration of BM binary inputs	BM binary inputs are assigned to the scratchpad memory together with binary outputs by the directive $\#unit$ with general structure according to 10.5.2.
Example of declaration for TC601 BM	<pre>#unit 0, 0, Digit_600, 2, 1, X0, Y0, On</pre>
Example of declaration for TC602 BM	<pre>#unit 0, 0, Digit_600, 3, 2, X0, Y0, On</pre>
Example of declaration for TC603 BM	<pre>#unit 0, 0, Digit_600, 2, 1, X0, Y0, On ; binary inputs and transistor and relay outputs</pre>
Example of declaration for BM of TC604, TC605, TC606	<pre>#unit 0, 0, Digit_600, 2, 2, X0, Y0, On ; binary inputs and relay outputs</pre>
Example of declaration for TC607	<pre>#unit 0, 0, Digit_600, 3, 3, X0, Y0, On ; binary inputs and transistor outputs</pre>
Declaration of EM binary inputs	EM binary inputs are assigned to the scratchpad memory together with binary outputs by the directive $\#unit$ with general structure according to 10.5.2.
Example of declaration for TC621 EM	<pre>#unit 0, 2, Digit_600, 2, 1, Xn, Yn, On ; binary inputs and transistor outputs</pre>
Example of declaration for TC622 EM	<pre>#unit 0, 2, Digit_600, 3, 2, Xn, Yn, On ; binary inputs and transistor outputs</pre>
Example of declaration for TC623 EM	<pre>#unit 0, 2, Digit_600, 2, 1, Xn, Yn, On ; binary inputs and transistor and relay outputs</pre>
Example of declaration for EM of TC624,	<pre>#unit 0, 2, Digit_600, 2, 2, Xn, Yn, On ; binary inputs and relay outputs</pre>
10625, 10626	Placement of images of inputs (parameter Xn) and outputs (parameter Yn) depends on the type and fitting of the BM or possibly on the type of EM/2 of the PLC set.
Declaration of EM/2 binary inputs	EM/2 binary inputs are assigned to the scratchpad memory together with binary outputs (TC631, TC632) or individually (TC633) by the directive #unit with general structure according to 10.5.2.
Example of declaration for TC631 EM/2	<pre>#unit 0, ADR, Digit_63x, 1, 1, Xn, Yn, On ; binary inputs and transistor outputs</pre>
Example of declaration for TC632 EM/2	<pre>#unit 0, ADR, Digit_63x, 1, 1, Xn, Yn, On ; binary inputs and relay outputs</pre>
Example of declaration for TC633 EM/2	<pre>#unit 0, ADR, Digit_633, 2, 0, Xn, 0, On</pre>

Servicing of binary inputs

Structure of binary inputs zone

Declaration of binary

Servicing of binary

outputs

outputs

Binary inputs of BM, EM and EM/2 occupy in the inputs image in the scratchpad 1 to 3 bytes depending on the module type (parameter of the directive $\#unit POC_{IN} = 1$, 2 or 3). State of signals at the PLC inputs is overwritten in the cycle loop in the scratchpad zone with the initial address defined by the parameter z_{IN} of directive #unit.

Zone of binary inputs in the scratchpad has the following structure:

		L
		r١
		v

it	.7	.6	.5	.4	.3	.2	.1	.0	_
	DI7	DI6	DI5	DI4	DI3	DI2	DI1	DI0	Z_IN
	DI15	DI14	DI13	DI12	DI11	DI10	DI9	DI8	Z_IN+1
					DI19	DI18	DI17	DI16	Z_IN+2

Besides the way given above, binary inputs are accessible by direct reading of instructions LD with the operand U and the physical input address. For structure of the physical address see item 10.5.12.

10.5.4 Servicing of Binary Outputs

Binary outputs are assigned to the scratchpad memory together with binary inputs by the directive #unit with general structure according to 10.5.2. For examples of declaration see 10.5.3.

Binary outputs of BM, EM and EM/2 occupy in the outputs image in the scratchpad 1, 2 or 3 bytes depending on the module type (parameter of the directive $\#unit POC_OUT = 1$, 2 or 3). Setting of the outputs is done in the cycle loop according to the state of the outputs image with the initial address defined by the parameter z_OUT of directive #unit.

Zone of binary outputs in the scratchpad has the following structure:

Structure of binary

outputs zone

bit .7 .5 .3 .2 .0 .6 .4 .1 DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 Z OUT DO14 DO13 DO12 DO15 DO11 DO10 DO9 DO8 Z_OUT+1 DO19 DO18 DO17 DO16 Z_OUT+2 Besides the way of outputs control given above, binary outputs are accessible by direct writing of instructions WR with the operand U and the physical output address. For structure of the physical address see item 10.5.12. Checking of overload PLC's of the TC600 series allows for program-checking of outputs overload. This state is signalled at bit S35.1: of binary outputs S35.1 = 0- outputs are in correct state S35.1 = 1- overload of outputs When S35.1 = 1, the soft PLC error is also evoked with the code 40 00 50 A0, signalled in S34 and S48 to S51. 10.5.5 Servicing of Analog Inputs Analog inputs of BM, EM and EM/2 are assigned to the scratchpad Declaration of analog memory by the directive #unit with general structure according to 10.5.2. inputs Parameter INITAB of the directive is mandatory. In the case that the BM is fitted with the piggyback OT-13 or OT-14, analog inputs are declared to-

gether with the BM analog outputs.

Example of declaration for BM of TC605 and TC606	#unit 0	, 0,	Analog	g_600_	_, 8, ;	0, X2 analc	8, 0, og inp	On, I outs	niAI	
Example of declaration for EM of TC625 and TC626	#unit 0 Place rameter type of E	, 2, ment Yn) de M/2 of	Analog of imag epends f the P	g_600_ ge of in on the LC set	_, ⁸ , ; nputs (e type	0, x2 analc param and f	e, 0, og inp neter X itting c	On, I outs (n) or p of the l	niAI oossibly BM, or	y of outputs (pa- possibly on the
Example of declaration forTC634 EM/2	<pre>#unit 0, ADR, Analog_600_, 16, 0, Xn, X_On, Ini634</pre>							34		
	Modu towards signed to Xn) depe first EM/ ages of i	le add the BN the s nds of 2 of th nputs	Iress (p M. Add second n the ty ne PLC and ou	oarame ress 1 EM/2 /pe an set. I tputs c	eter AE is ass . Place d fitting n auto of BM,	DR) de signed ement g of th matic EM/2 s	pends to the of the e BM, genera and EN	on pla first f imag or pos ation o I form	acemer EM/2, a e of in ssibly c f sw c a cont	nt of the module address 2 is as- puts (parameter of the type of the onfiguration, im- inuous series.
Servicing of analog	Analo	g inpu	its of T	C605	and T	C606	BM, ar	nd of T	rC625	and TC626 EM,
inputs of	occupy 8	bytes	s in the	e input	s imag	je in th	ne scra	atchpa	d (para	ameter of the di-
TC605, TC606 and	rective #	unit	POC_	IN =	8). Bi	nary re	eprese	ntation	n of the	e inputs state is
10625, 10626	overwritt		ne cyc	le loop		ne scra dirocti		d zone	with tr	ne initial address
Structure of analog	Zone	of ana	alog inp	buts in	the sci	ratchpa	ad has	the fo	llowing	structure:
inputs zone of										1
10605, 10606	Al0	.7	.6	.5	.4	.3	.2	.1	.0	Z_IN
anu 10025, 10626						.11	.10	.9	.8	Z_IN+1

.5

.5

.6

.6

AI1

AI3

.7

.7

.4

.4

.3

.11

.3

.11

.2

.10

.2

.10

.1

.9

.1

.9

.0

.8

.0

.8

Setting of analog
inputs range of
TC605, TC606
and TC625, TC626

Besides the way of control given above, analog inputs are accessible by
direct reading of instructions LD with the operand U and physical input ad-
dress. For structure of the physical address see item 10.5.12.

Range of analog inputs is set in the initialization table with the name defined by the parameter INITAB of directive #unit. The table contains 1 byte with the following meaning:

.7	.6	.5	.4	.3	.2	.1	.0	
				range AI3	range Al2	range Al1	range Al0	

value of the appropriate bit 0 = voltage range 0 to +10 V value of the appropriate bit 1 = voltage range 0 to +2 V For the current range of 0 to 20 mA, the appropriate bit is set to value 1.

Example of analog inputs initialization table o TC605, TC606 and TC625, TC626 #table byte IniAI = %00000011

;range of inputs AI0, AI1 0 to 2 V ;range of inputs AI2, AI3 0 to 10 V

Z_IN+2

Z_IN+3

Z_IN+6 Z_IN+7 Servicing of TC634 analog inputs

TC634 analog inputs occupy 16 bytes in the inputs image in the scratchpad (parameter of the directive #unit POC_IN = 16). Binary representation of the inputs state is overwritten in the cycle loop into the scratchpad zone with the initial address defined by the parameter Z_IN of directive #unit.

Structure of TC634 analog inputs zone

Zone of analog inpu	its in the scratch	nnad has the f	ollowing structure.
		ipau nas trie i	onowing structure.

									_
AI0	.7	.6	.5	.4	.3	.2	.1	.0	Z_IN
	.15	.14	.13	.12	.11	.10	.9	.8	Z_IN+1
Al1	.7	.6	.5	.4	.3	.2	.1	.0	Z_IN+2
	.15	.14	.13	.12	.11	.10	.9	.8	Z_IN+3

AI7	.7	.6	.5	.4	.3	.2	.1	.0	Z_IN+14
	.15	.14	.13	.12	.11	.10	.9	.8	Z_IN+15

TC634 analog inputs are not accessible by direct reading of instruction LD with the operand U and the physical input address.

Type of inputs, the measurement range and format of input data of Setting of type of inputs, measurement TC634 analog inputs is set in the initialization table with the name defined by the parameter INITAB of directive #unit. The table contains 8 items of the type word with the following meaning:

	#table	word	Ini634	= CONT	Ο,	;setting	of	input	AIO
מר				CONT	1,	;setting	of	input	AI1
				CONT	2,	;setting	of	input	AI2
				CONT	3,	;setting	of	input	AI3
				CONT	4,	;setting	of	input	AI4
				CONT	5,	;setting	of	input	AI5
				CONT	б,	;setting	of	input	AIG
				CONT	7	;setting	of	input	AI7

Structure of the	TI	he C	ONT	cont	rol w	ord h	nas th	ne fol	lowin	ig str	uctur	e:				
TC634 control word	.15	.14	.13	.12	.11	.10	.9	.8	.7	.6	.5	.4	.3	.2	.1	.0
CONT	AK	-	-	-	-	-	V1	V0	SN3	SN2	SN1	SN0	TP3	TP2	TP1	TP0

TP0-TP3	selection of scanner type or range
SN0-SN3	selection of input type
V0-V1	format of input data
AK	channel activation
	0 = channel off
	1 = channel on

ranges and formats of input data of TC634

Structure of the TC634 initializatio table

Valid values of the TC634 control word

The following table gives allowed values of the CONT control word with the corresponding selections:

CONT	Input type	Scanner/range type	Format of input data ¹⁾			
\$8020	Resistance	Pt100, W100 = 1.385	0 to 65535			
\$8120	temperature	-200 to +850 °C	-2000 to +8500 [0.1°C]			
\$8022	scanners	Pt100, W100 = 1.391	0 to 65535			
\$8122		-200 to +850 °C	-2000 to +8500 [0.1°C]			
\$8027		Ni1000, W100 = 1.617	0 to 65535			
\$8127		-60 to +200 °C	-600 to +2000 [0.1°C]			
\$8029		Ni1000, W100 = 1.500	0 to 65535			
\$8129		-60 to +200 °C	-600 to +2000 [0.1°C]			
\$8030	Resistance	0 to 630 Ω	0 to 65535			
\$8130	scanners		0 to 6300 [0.1 Ω]			
\$8230			0 to 10000			
\$8032		0 to 2520 Ω	0 to 65535			
\$8132			0 to 25200 [0.1 Ω]			
\$8232			0 to 10000			
\$8040	Current	0 to 20 mA	0 to 65535			
\$8140			0 to 20000 [µA]			
\$8240			0 to 10000			
\$8042		4 to 20 mA	0 to 65535			
\$8142			40000 to 20000 [µA]			
\$8242			0 to 10000			
\$8080	Voltage	0 to 10 V	0 to 65535			
\$8180			0 to 10000 [1 mV]			
\$8280			0 to 10000			
\$8082		0 to 2 V	0 to 65535			
\$8182			0 to 20000 [0.1 mV]			
\$8282			0 to 10000			

¹⁾ For details see item 5.1.5

The following example gives declaration of the TC634 module connected according to Figs. 9.21 a 9.22.

Example of TC634 declaration	<pre>#table word Ini634 = \$8140, ;AI0 - 0 to 20mA/µA \$8142, ;AI1 - 4 to 20mA/µA \$8180, ;AI2 - 0 to 10V/mV \$8182, ;AI3 - 0 to 2V/0,1mV \$8120, ;AI4 - Pt100, W100 = 1.385/0,1°C \$8122, ;AI5 - Pt100, W100 = 1.391/0,1°C \$8127, ;AI6 - Ni1000, W100 = 1.617/0,1°C \$8129 ;AI7 - Ni1000, W100 = 1.500/0,1°C</pre>
	#unit 0, 1, Analog_600_, 16, 0, R0, X_On, Ini634 ; TC634 in position 1. EM ; data from R0

Declaration of optional analog outputs

Declaration of the piggyback OT-13 and OT-14 in BM of TC601 to TC604

10.5.6 Servicing of Analog Outputs

In the case of fitting the optional piggyback OT-13 or OT-14, the sw configuration of BM standard-fitted inputs and outputs is complemented in the way which depends on the BM type.

In BM of TC601 to TC604, the sw configuration is complemented by the new directive #unit for the piggyback OT-13 or OT-14. Example of the directive:

Placement of image of outputs (parameter Yn) depends on the BM type (is linked to image of binary outputs).

In BM of TC605 and TC606, the directive #unit of analog inputs and outputs is complemented by parameters for the piggyback OT-13 or OT-14. Examples of the extended directive:

#unit 0, 0, Analog_600_, 8, 4, X2, Yn, On, IniAI
; analog inputs of BM
; and analog outputs of OT-13
#unit 0, 0, Analog_600_, 8, 8, X2, Yn, On, IniAI
; analog inputs of BM
; and analog outputs of OT-14

Placement of image of outputs (parameter Yn) depends on the BM type (is linked to the image of binary outputs).

BM analog outputs occupy 4 or 8 bytes in the image of outputs in the scratchpad, depending on the type of the fitted piggyback (parameter of the directive $\#unit POC_OUT = 4 \text{ or } 8$). Setting of the outputs according to the binary representation of levels written in images of outputs is done in the cycle loop. Initial address of the zone in the scratchpad is defined by the parameter Z_OUT of directive #unit

Zone of images of analog outputs in the scratchpad has the following structure:

Besides the way of outputs control given above, analog outputs are accessible by direct writing of instructions WR with the operand U and the physical output address. For structure of the physical address see item 10.5.12.

10.5.7 Servicing of Serial Channels

Declaration of CH1 is not performed.

CH2 is assigned to the scratchpad memory by the directive #unit with general structure according to 10.5.2.

CH3 is declared in the case that the optional piggyback MR-14 or MR-15 is fitted, and in the same way as CH2.

Automatically generated sw configuration contains the directive #unit for CH2 and CH3 only after previous writing of the directive by the user.

Declaration of the piggyback OT-13 and OT-14 in BM of TC605, TC606

Structure of analog outputs zone

Servicing of analog

outputs

Declaration of serial channels CH1, CH2, CH3

Example of CH2 and

CH3 declaration for BM of TC601 to

TC606

Servicing of CH1, CH2, CH3 depends on the set mode. CH1 has fixedset mode PC, channels CH2 and CH3 have selectable modes (see Article 4.4 and 4.5). Detailed description of the modes including the servicing table is given in the handbook *Serial Communication of Tecomat Programmable Logic Controllers, TXV 001 06.02.*

10.5.8 Servicing of Interrupt Inputs

Declaration of Declaration of interrupt inputs is done by the directive #unit with general structure according to item 10.5.2. Parameter INITAB of the directive is interrupt inputs mandatory. The initialization table serves for definition of edges of signals which evoke the interrupt request (IRQ). #table byte IniTable = item 1, Structure of the ;DIO control item 2, ;DI1 control initialization table item 3, ;DI2 control item 4 ;DI3 control Items 1 to 4 may have the following values: 0 - without IRQ 1 - IRQ allowed from the ascending signal edge 2 - IRQ allowed from the descending signal edge 3 - IRQ allowed from both signal edges 0 ;without IRO #def NO Declaration example #def UP 1 ;IRQ from the ascending signal edge #def DOWN 2 ;IRQ from the descending signal edge #def ALL 3 ;IRQ from both signal edges #table byte IniIRQ = all, ;IRQ from both edges of input 0 up, ;IRQ from ascending edge of input 1 down, ;IRQ from descending edge of input2 no ;without IRQ from input 3 #unit 0, 0, IntIn_600_, Xn, Yn, On, IniIRQ Parameter TYP, POC_IN, POC_OUT of the directive #unit is input symbolically as IntIn_600_ or numerically \$20, 1, 1. Placement of the state and control word (parameters xn, yn) depends on the BM type (on occupation of the scratchpad by images of inputs and outputs). Servicing of interrupt Interrupt inputs occupy 1 byte in the scratchpad in the image of inputs inputs (state word) and 1 byte in the image of outputs (control word). State word The STAT state word serves for distinguishing of the interrupt source. Flags of the interrupt in the state word are set before running of the P42 interrupt process. The state word placed in the scratchpad at the address defined by parameter *z*_IN of directive #unit has the following structure: STAT STAT STAT STAT Z_IN .3 .2 .1 .0 STAT.0 - interrupt from input DI0 = 1 STAT.1 = 1 - interrupt from input DI1 STAT.2 = 1 - interrupt from input DI2 STAT.3 = 1 - interrupt from input DI3 Control word The CONT control word serves for allowing or prohibiting an interrupt from individual inputs in the course of the program execution. It is accepted by the system after it is written to the scratchpad. The control word placed in the scratchpad at the address defined by parameter z_OUT of directive

#unit has the following structure:

						OONT	OONT	OONT	OONT	
		-	-	-	-	CONT .3	.2	CONT .1	.0	Z_00.1.
	CON CON CON CON	T.0 T.1 T.2 T.3	- inter - inter - inter - inter 0 = in 1 = in	rrupt allo rrupt allo rrupt allo rrupt allo nterrupt allo nterrupt a	owed fror owed fror owed fror owed fror orohibited allowed	n input [n input [n input [n input [d	DI0 DI1 DI2 DI3			•
PLC response time	PLC response time is the sum of all times with which processing of the interrupt is loaded since the rise of the interrupt request at the PLC input to closing of the output closing element. Response time is affected not only by the PLC properties, but also by the way of processing in the user program. For better clarity, the following description contains also comparable parameters and the time diagram of processing of the input signal of standard binary inputs.									
Definition of times	t _{min} t _{IH} , t _{IL} t _{VP} t _{P42} t _{OC} t _C - t _{KC}	 For better clarity, the for rameters and the time diagonal binary inputs. t min - minimum width or level of the input - min. 30 μs for interaction for standard binary program cycle t_{IH}, t_{IL} - input delays Signal delay at para - max. 5 μs for interaction the significant program cycle finishing sary to finish us moment. In the PID) or user instrastruction execution - max. 10 ms if serving of the max. 5 ms if serving the struction extruction execution - max. 10 ms if serving the service - not applied if serving the service - not applied if serving the service - max. 5 ms if serving the service - not applied if serving the service - not applied if serving the service - not applied if serving the service - cycle lasting time of the service - cycle lasting time of the and structure of the not applied if serving time of the service - max. 2550 ms if serving the until the cycle chronization of the not applied if service - max. 2550 ms if serving time until the cycle - max. 10 ms if serving time until the cycle - max. 2550 ms if serving time until the cycle - max. 2550 ms if serving time until the cycle - max. 10 ms if serving time until the cycle - max. 10 ms if serving time until the cycle - max. 2550 ms if serving time until the cycle - max. 2550 ms if serving time until the cycle - max. 10 ms if serving time until the cycle - max. 10 ms if serving time until the cycle - max. 10 ms if serving time until the cycle - max. 10 ms if serving time until the cycle - max. 10 ms if serving time until the cycle - max. 10 ms if serving time until the cycle - max. 10 ms if serving time until the cycle - max. 10 ms if serving time until the cycle - max. 10 ms if serving time until the cycle - max. 10 ms if serving time until the cycle - max. 10 ms if serving time until the cycle - max. 10 ms until -			If the input pulse (minimum lasting time of signal) arrupt inputs ry inputs, at the minimum the lasting time of issing through the input filter. Institute inputs standard binary inputs the interrupt e IRQ evaluation to running of the P42 process the interrupt e IRQ evaluation to running of the P42 process to of the cycle loop (max. 4 ms) and time nerest arrupt inputs standard by the time necessary to of the cycle loop (max. 4 ms) and time nerest case of some special instructions (for examuctions (for example TER_ID05), time for the n may reach up to 10 ms. vicing according to Figs. 10.1 and 10.2 vicing according to Figs. 10.1 and 10.2 vicing according to Figs. 10.1 and 10.2 vicing according to Figs. 10.1 and 10.2 is program cycles following one after e of the cycle loop depends on the task ex- ne user program cycle depends on the task ex- ne user program. vicing according to Figs. 10.1 and 10.2 servicing according to Figs. 10.4 de end cle end expresses situation which arrives at e program response with the user program cy- tricing according to Fig. 10.3 e program response with the user program cy- tricing according to Figs. 10.1 e program response with the user program cy- tricing according to Figs. 10.1 e program response with the user program cy- tricing according to Figs. 10.1 e program response with the user program cy- ericing according to Figs. 10.1 e program response with the user program cy- ericing according to Figs. 10.1 e program response with the user program cy- ericing according to Figs. 10.1 e program response with the user program cy- ericing according to Figs. 10.1 e program response with the user program cy- ericing according to Figs. 10.1 e program terms and the program cy- ericing accor					e of one ne of the process. ry to the e neces- d at the example or the in-
t _{OH}, t _{OL} - output delay

Closing time or opening time of the output switch

- typ. 4 ms for relay outputs
- max. 400 μ s for transistor outputs
- t _{OP} time of the program response (see further text)

t OA - time of the programmable controller response (see further text)

Time diagram in Fig. 10.1 illustrates the shortest possible response time of the programmable controller t $_{OA}$ to change of signal at the interrupt input. In the P42 process, identification of the interrupt source is performed and servicing of the interrupt by writing to the output physical address (see item 10.5.12). Allowing of the interrupt from the ascending signal edge is assumed. Response time of the programmable controller is the sum of the following times:

$$t_{OA} = t_{IH} (t_{IL}) + t_{VP} + t_{P42} + t_{OH} (t_{OL})$$

It is apparent from the times definition that the user may affect the programmable controller response by the program structure and by selection of the output switch type. For example, if the user instruction is placed as the first or last instruction in the P0 process, in time t _{VP} the sum of times t _{OC} a t _{USI} may be applied. Exceeding of the allowed time of the interrupt process (t _{P42} > 5 ms) is evaluated by the diagnostic system as a serious error of the user program (see Chapter 11).

Fig. 10.1 Response time of the programmable controller to change of the signal at the interrupt input at processing of the response in the P42 process and writing to the output physical address

Programmable controller response asynchronous to the program cycle Response of the programmable controller synchronized with the program cycle Time diagram in Fig. 10.2 gives prolongation of the response time of the programmable controller to change of the signal at the interrupt input at synchronization of the response with the user program cycle. In the P42 process, identification of the interrupt source is performed and servicing of the interrupt by writing to the scratchpad. Response time of the programmable controller is in this case the following sum of times:

Fig. 10.2 Response time of the programmable controller to change of the signal at the interrupt input at processing of the response in the P42 process and writing to the scratchpad

Response of the programmable controller at processing of the standard binary input signal Time diagram in Fig. 10.3 illustrates prolongation of the response time of the programmable controller to change of the signal when standard binary inputs are used (interrupt inputs in the basic mode). Response time of the programmable controller is in this case the following sum of times:

 $t_{OA} = t_{IH} (t_{IL}) + t_{KC} + 2t_{OC} + t_{C} + t_{OH} (t_{OL})$

Fig. 10.3 Response time of the programmable controller to change of the signal at the standard binary input

Interrupt period

To determine the IRQ period, that it, the interval between two IRQ's from the signal at one interrupt input, it is necessary to realize that the IRQ from signals at individual interrupt inputs are asynchronous towards the program cycle, and at the same time they may be asynchronous towards one another. If the IRQ is not to be lost, it must hold that:

T
$$_{\text{IRQ}} \ge \sum t _{\text{OP IRQ}}$$

T_{IRQ} - interrupt period

t OP IRQ - maximum response time of the program to the allowed IRQ from one edge of one signal

Meeting of this condition is illustrated in Fig. 10.4. Allowing of interrupt from the ascending as well as descending edge of the signal at DI0 is assumed, and of the ascending edge of the signal at input DI1 and descending edge of the signal at inputs DI2 and DI3.

Fig. 10.4 Relation among the interrupt period, number of allowed interrupts, and response time of the program to individual interrupts

Processing of concurrent IRQ's To service concurrence of IRQ's from several asynchronous signals, the PLC is equipped with the IRQ buffer register. If the requirement of the minimum interrupt period is not met, the stack may overflow and the IRQ may be lost. This state is signalled by the error message with the code 22 00 00 00 in registers S34 and S48 to S51. Gradual processing of IRQ's and prolongation of the response time of the program is illustrated in Fig. 10.5.

Fig. 10.5 Gradual processing of concurrent IRQ's

Prolongation of the user program cycle

When using interrupt inputs, it is necessary to keep in mind that evoking of interrupt processes causes prolongation of the program cycle time which may even lead to exceeding of the maximum allowed cycle time. type 3 counter

10.5.9 Servicing of the Type 3 Counter

Declaration of the counter is performed by the directive #unit with the Declaration of the general structure according to item 10.5.2. Parameter INITAB of directive is mandatory. The initialization table serves for identification of the counter type. It contains one item only, constant 5.

#table byte IniCNT = 5 ;1 x unidirectional counter Declaration example #unit 0, 0, Count_600_, 3, 3, Xn, Yn, On, IniCNT

Parameter TYP of directive #unit is input symbolically Count_600_ or numerically \$30. Placement of the state and control word (parameters xn, Yn) depends on the BM type (on occupation of the scratchpad by images of inputs and outputs).

In the scratchpad memory, the counter occupies 3 bytes in image of inputs, and 3 bytes in image of outputs.

Servicing of the type 3 counter Image of inputs

The STAT state word is stored in the image of inputs and the current state of the counter. If the interrupt is allowed, image of inputs is updated before the P44 process is executed, if the interrupt is prohibited, it is updated in the cycle loop. Zone with the initial address defined by the parameter *z*_IN of directive #unit has the following structure:

-	-	-	-	STAT .3	STAT .2	STAT .1	STAT .0	Z_IN
Less significant byte of the counter value								Z_IN+1
More significant byte of the counter value							Z_IN+2	

The state word STAT.0 = 1 - reaching of the maximum counter range (65535) in this cycle STAT.1 = 1 - reaching of the pre-selection in this cycle STAT.2 = 1 - reaching of the maximum counter range The bit is set to zero by the zero level of the RESET signal or from the ascending edge of bit CONT.4 STAT.3 = 1 - reaching of the pre-selection The bit is set to zero when the counter overflows, by zero level of the RESET signal or from the ascending edge of the CONT.4 bit STAT.4 - state of the RESET input Image of outputs contains the CONT control word and the value of the Image of outputs counter pre-selection. State of bits CONT.5 to CONT.7 is accepted by the system after writing to the scratchpad, state of other bits in CONT as well as the pre-selection value, is accepted in the cycle loop, or at termination of the P44 interrupt process, respectively. Zone with the initial address defined

								-
CONT	CONT	CONT	CONT	-	-	-	CONT	Z_OUT
.7	.6	.5	.4				.0	
Less significant byte of the counter pre-selection								Z_OUT+1
More significant byte of the counter pre-selection								Z_OUT+2

by parameter **z_OUT** of directive #unit has the following structure:

	CONT.	0 - blockir 0 = blo 1 = co	ng of the counter ocking of the counter unter running
	CONT.	4 - resetti Chang counte (while zero is	ng of the counter e of the bit state from 0 to 1 performs reset of the er and setting to zero of all bits of the STAT state word in state 1, the counter is not reset). Setting of the bit to done by the user.
	CONT.	5 - contro 0 = fre	of the counter mode ely running counter filling counter with pro-selection
	CONT.	6 - allowir 0 = int 1 - int	of interrupt from reaching of the maximum range errupt prohibited
	CONT.	7 - allowir 0 = int 1 = int	or of interrupt from reaching of the pre-selection errupt prohibited errupt allowed
Counter pre-selection	To c filling n ter ano	determine the r hode and diffe ther of the free	ninimum value of the counter pre-selection in the self- rence of values of two pre-selections following one af- ly running counter, the following relationship holds:
			$n \ge \frac{f [Hz]}{100}$
	n f	 value/differe frequency of 	nce of values of the pre-selection signal at the CLK input.
Servicing within the P44 process	For process evoking time w	servicing with s must not exc g of interrupt hich may eve	in the P44 process it holds that time of the interrupt ceed 5 ms. It is also necessary to keep in mind that processes causes prolongation of the program cycle in lead to exceeding of the maximum allowed cycle
Physical addressing of the counter	time. Rea and cout the cout	ding of the sta unter pre-selec nter physical a	te word, counter value, and writing of the control word tion can be performed by reading from and writing to ddress.
	LD LD	U\$3000 UW\$3001	;reading of the STAT state word ;reading of the counter state
	WR WR	U\$3080 UW\$3081	<pre>;writing of the CONT control word ;writing of the counter pre-selection</pre>
The physical address has no automatic bond to	By r the cou outputs	eading from th inter, the corre in the scratch	e physical address or writing to the physical address of esponding change of the value in image of inputs or bad memory does not happen!
the scratchpad	In th the cou In th	ne case of phy rse of the cyclone ne case of physic	sical reading, value in image of inputs is corrected in a loop. sical writing, it is necessary to ensure the correction in
	the scr	atchoad by the	user program otherwise in the cycle loop the counter

will be set according to the original value in image of outputs.

Fig. 10.6 Time diagram of the freely running counter

Fig.10.7 Time diagram of the self-filling counter with pre-selection

10.5.10 Incremental Encoder Servicing

Declaration of admeasuring is performed by the directive #unit with general structure according to item 10.5.2.

Declaration example #unit 0, 0, IRC_600, Xn, Yn, On

Parameter TYP, POC_IN, POC_OUT of directive #unit is input symbolically as IRC_600 or numerically \$40, 5, 9. Placement of the state and control word (parameters xn, yn) depends on the BM type (on occupation of the scratchpad by images of inputs and outputs).

Admeasuring occupies the total of 14 bytes in the PLC scratchpad memory, 5 bytes in the image of inputs and 9 bytes in the image of outputs.

In the image inputs, the STAT state word is stored and the actual state of the admeasured value. If interrupt is allowed, image of inputs is updated before the start of the P44 process, or in the cycle loop if interrupt is prohibited. Zone with the initial address defined by the parameter z_{IN} of directive #unit has the following structure:

STAT	STAT	STAT	STAT	STAT	STAT	STAT	STAT	Z_IN
.7	.6	.5	.4	.3	.2	.1	.0	
	Least significant byte of the admeasured value							
								Z_IN+2
								Z_IN+3
Most significant byte of the admeasured value							Z_IN+4	

The state word	STAT.0 = 1	- overflow of the maximum admeasurement range in this cy- cle (values 7FFF FFFFh)
	STAT.1 = 1	- underflow of the minimum admeasurement range in this cy- cle (values 8000 0000h)
	STAT.2 = 1	- reaching of pre-selection for the ascending direction in this cycle
	STAT.3 = 1	- reaching of pre-selection for the descending direction in this cycle
	STAT.4	 immediate movement direction 0 = ascending (from lower values to the higher ones) 1 = descending (from higher values to the lower ones)
	STAT.5	 flag of the mode of the reference point look up 0 = passive mode 1 = active mode
	STAT.6	 reaching of pre-selection for the ascending direction 0 = admeasured value below pre-selection 1 = admeasured value above pre-selection The bit is set to zero at overflow of the maximum admeasurement range.
	STAT.7 =	 reaching of pre-selection for the descending direction 0 = admeasured value above pre-selection 1 = admeasured value below pre-selection The bit is set to zero at underflow of the minimum admeasurement range.
The admeasured value	Admeasu encoder sigr of the num example, in sions, additio	rement registers every edge of the phase-shifted incremental hals, that means that the admeasured value is the quadruple ber of pulses of the generated incremental encoder's . For one incremental encoder loop with division into 1250 scale divi- tion of the admeasured value is 5000.

Servicing of admeasurement Image of inputs

Declaration of

admeasuring

Image of outputs Image of outputs contains the CONT control word, pre-selection of the admeasured value for the ascending direction, and pre-selection of the admeasured value for the descending direction. State of bits CONT.6 and CONT.7 is accepted immediately after their writing to the scratchpad, state of other bits in CONT as well as of the pre-selections is accepted in the cycle loop, or upon termination of the P44 interrupt process, respectively.

	CONT	CONT	-	-	-	-	CONT	CONT	Z_OUT	
	.7 Least si	.6 gnificant	t byte of	pre-sel	ection fc	or the as	.1 	.0 direc-	Z_OUT+1	
		tion								
	Most sig	gnificant	byte of	pre-sele tio	ection fo n	or the as	cending	direc-	Z_OUT+4	
	Least sig	nificant	byte of	pre-sele tio	ection fo n	r the de	scendinę	g direc-	Z_OUT+5	
	Most sig	nificant	byte of	pre-sele tio	ction for n	the de	scending	g direc-	Z_OUT+8	
The control word	CONT.0 CONT.1 CONT.6	- mo Ch up ze po of va - ad Ch of no - allo me	ode of the ange of of the r ro is dor int, the the required ange of the adm t reset. owing of easurem = interru	ne reference state of eference state of STAT.5 Jest, cau the STA ement ref state of neasured f interrup nent range	ence poi f the bit e point (e user. I is set. T uses sett AT.5 bit. eset f the bit d value. pt from o ge	nt look t from 0 t zero pu During lo The first ting to z from 0 t During	up to 1 evol lse). Set bok up o zero pul ero of th to 1 evol state 1, v or unde	kes requ tting of tl of the ref lse after ne adme kes setti admeas erflow of	est for look ne bit to erence accepting asured ng to zero urement is the ad-	
	CONT.7	1 = - allo on 0 = 1 -	= interru owing o s = interru - interru	pt allow f interru pt prohi	ed pt from ı bited	reaching	g of one	of the p	re-selecti-	
Pre-selection of the admeasured value	Pre-selections for both admeasurement directions may take arbitrary combinations of positive as well as negative values. For determining of the minimum difference of two pre-selection values following one after another, the following relationship holds:									
	$n \ge \frac{f [Hz]}{400}$									
	n - (f - 1 in	differenc frequenc crement	ce of two cy of the cal enco	o pre-sel increm der and	lection v ental en the mov	alues fo coder si vement s	ollowing gnal (giv speed)	one afte ven by d	r another ivision of	
Servicing in the P44 process	In serv cess must ing of inte which mag	ricing in t not exc errupt pr y even le	the P44 ceed 5 r rocesses ead to e	proces ns. It is s cause xceedin	s, it hold also neo s prolon g of the	ds that the the sessary agation of maximum maxim	he time to keep of the p um allov	of the in in minc orogram ved cycle	terrupt pro- l that evok- cycle time, e time.	

Function declaration	10.5.11 Measurement of the Signal Period and Phase Shift The function declaration is performed by the directive #unit with general structure according to item 10.5.2.
Declaration example	<pre>#unit 0, 0, Period_600, Xn, X_On ;measurement of the TC600</pre>
Servicing of the function	Both measurement modes occupy in the image of inputs of the PLC scratchpad memory 2 bytes at address defined by the parameter x_n of directive $\#unit$. A content of the image is updated in the user program cycle loop. In measurement of the signal period, these 2 bytes have the meaning of the number of cycles of the internal clock signal per 1 period of the measured signal. In measurement of the phase shift, they have the meaning of the number of cycles of the internal clock signal between two descending edges of the measured signals.

24V Graphic illustration of DI1 time of the period and 0V phase shift 24\ DI0 0VТ tε Т signal period time at BM input DI0 phase shift of signals at BM inputs DI1 and DI0 t⊧ Measurement mode Control of the measurement mode is done by a program using the image control of the binary output DO0 of BM (by image Yn.0). If the bit Yn.0 = 0, measurement of the signal period is performed at input DI0 of BM, if the bit Yn.0 = 1, measurement of the phase shift of signals between inputs DI1 and DI0 of BM is performed. Physical output DO0 of BM can be used only for indication of the function mode. Period measurement In signal period (frequency) measurement, it is possible to measure the signal within the frequency of about 1 Hz to 1 kHz. The measured number of cycles of the clock signal then reaches values of 32767 to 33. The value 65535 signals exceeding of the measurement range (it corresponds with the input signal frequency lower than 1 Hz, or possibly with a non-connected input). For conversion of the number of cycles of the internal clock signal to the time information, the following relationship holds: T [µs] = n x 30.5175 Т signal period time at input DI0 of BM n contents of two bytes of the scratchpad determined by the parameter xn of directive #unit In the case of measurement of a sine alternating signal period, doubling of frequency occurs at the input circuits (two-directional rectifying) and the measured period value corresponds with the half of its real value at input DI0 of BM. #program period Example of the period rectification #unit 0, 0, Digit_600, 2, 2, X0, Y0, On ; binary inputs #unit 0, 0, Period_600, X2, X_On ;period meter #def Time XW2 ;signal period in clock cvcles #def cons1 30.5175 ;const. of conversion cycles -> µs #def cons2 0.000001 ;const. of conversion μs -> s#reg float Period, ; signal period in µs Frequency ;signal frequency in Hz P 0 0 LD WR Y0.0 ;period measurement ; LD Time UWF MUF cons1

;period in µs

Period

WR

;

LD 1 UWF Period LD MUF cons2 DIF WR ;frequency = 1 / period Frequency E 0

Phase shift measurement

Measurement of the phase shift is used for signals with the same frequency. The time difference between descending edges of two different signals connected to inputs DI1 and DI0 of BM is measured. The measured

T[µS] number of cycles of the clock signal then reaches values of 1 to $\frac{1}{30.5175}$.

For conversion of the number of cycles of the internal clock signal to the time value, the following relationship holds:

$$t_{F}[\mu s] = n \times 30.5175$$

- t _F phase shift of signals at inputs DI1 and DI0 of BM
- contents of two bytes of the scratchpad determined by the paramen ter xn of directive #unit

In the case of measurement of phase shift of alternating signals, it is necessary to rectify the signals in single wave.

Example of the phase shift measurement	#prog ; #unit #unit	gram pha 0, 0, 0, 0,	ase Digit_600, 2, Period_600, X2	2, X0, X 2, X_On	Y0, On ;binary inputs ;phase meter
	, #def	Time X	W2	;	signal phase shift in clock
	#def	cons1	30.5175	;const.	of conversion cycles -> μs
	#reg ;	float	Phase	;signal	phase shift in µs
	P 0				
		LD	1		
		WR	Y0.0	;phase :	shift measurement
	;				
		LD UWF	Time		
		MUF	consl		
		WR	Phase	;phase :	shift in µs
	Е О				
Physical addressing	Re	ading o	f the immediate v	value of t	the meter of frequency and phase

LD

shift can be done by reading with the physical address:

UW\$5000 ;reading of the value of the meter ; of frequency or phase shift

Structure of the

physical address

10.5.12 Phys	sical Addresses	of Inputs	and Outputs
--------------	-----------------	-----------	-------------

Physical address of binary and analog inputs and outputs has the following structure:

address upper byte						address lower byte							
A15 A14 A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0
A15 to A12	- type of input and output (fixed-given) 1000 (\$8) - binary inputs and outputs 1001 (\$9) - binary inputs and outputs												
A11 to A8	1010 (\$A) - binary inputs and outputs 1101 (\$D) - analog inputs and outputs other combinations are reserved												
	- module type 0 - BM 1 - first EM/2 2 - second EM/2 or EM												
A7	- address type 0 - input address 1 - output address												
A6 to A0 The physic	- nu al ad	mbe	r of tl s is	ne in entei	put o red i	r out	put F	PLC b	yte ter t	he l	lone	erand	l (or

Use of the physical address in the U operand

Physical address

has no automatic

bond to the

scratchpad

A6 to A0 - number of the input or output PLC byte The physical address is entered immediately after the U operand (or UW, respectively), always in the hexadecimal form.

LD	U\$A000	;direct reading of state of 8 bin. inputs
		;(byte 0)
LD	UW\$A000	;direct reading of state of 16 bin.
		; inputs (byte 0,1)
WR	UW\$A080	; direct writing of the value of 16 bin.
		;outputs (byte 0,1)

By reading from the physical address or writing to the physical address of inputs and outputs, the corresponding change of value in image of inputs or outputs in the scratchpad memory does not happen!

In the case of physical reading, value in image of inputs is corrected in the course of the cycle loop, and usually this is faulty (however, it must to be taken into account).

In the case of physical writing, it is necessary to ensure correction in the scratchpad by the user program, otherwise in the cycle loop the outputs will be set according to the original value in the image of outputs.

Another possibility is to turn off servicing of PLC outputs in the software configuration in the compiler at compilation of the user program (item of the directive #unit) and service the outputs exclusively by direct writing using the U operand and the physical address.

10.6 Testing of Input and Output Signals

For testing of input and output signals connected to the PLC, it suffices to create an empty program containing only sw configuration of the tested PLC and instructions P0 and E0 which create an empty basic process. Afterwards it is possible to observe states of the connected inputs using debugging means of the development environment and set arbitrary values at the PLC outputs. This very simple but very efficient procedure is recommended to be used before debugging of one's own user program as in this way the whole route from input elements (end switches, ...) through inputs and to the PLC scratchpad memory is verified in advance, as well as backwards, from the scratchpad memory through outputs and to the action elements. Errors arisen from connecting of the PLC to the controlled object can be removed in this way, finding of which is usually much more complicated in the phase of debugging of the control program.

Procedure for testing of correct connection of input and output signals

10.7 Instruction Set

The set of instructions and system services of PLC's of the TC600 series is compatible with other Tecomat PLC's. The central unit of the D series contains the extended instruction set which, besides instructions of the reduced and standard instruction set, contains instructions designed form the most efficient PLC's.

The following are parts of the reduced instruction set:

- bit logical operations
- basic operations of counters and timers
- basic organizational instructions and transfers in the program
- comparison in the extent of a word
- one-loop control

Compared to the reduced instruction set, the standard instruction set contains the following in addition:

- logical operations in the extent of a byte and word
- extended operations of counters, timers, shift registers
- arithmetic instructions, conversions and comparison in the extent of a word
- extended organizational instructions, transfers in programs
- table instructions above tables in the user memory which allow for optimum realization of even very complicated combination and sequence function blocks, decoders, time and sequence controllers, sequence generators, furthermore they make easier realization of diagnostic functions, recognition of error states, sequence records of events, protocols about the process, diagnostic messages of the type "black box"
- table instructions above the space of variables allow for operation with indexed variables, realization of the delay line, long shift registers, conversions to the code "1 of n", selection of variables, step controllers, records of events and various stack structures
- · instructions of the sequence controller
- instructions realizing the set of logical operations, including counting of ones bits in the operand of the word type. In this way it is possible to easily realize the majority and general threshold functions, parity functions (MOD 2), and arbitrary symmetric functions
- 8 user stacks and instructions for their switching which allow for transfer of more parameters among functions which do not follow immediately one after the other, storing of the immediate state of the stack, etc.
- automatic conversion of the length of operands and intermediate results in combination of bit, byte and word instructions or logical instructions with arithmetic ones
- system variables in which the system time is realized, system time units and their edges, communication variables, flag and command variables, system messages
- multiprogramming (multi-loop control) including interrupt processes which contributes to shortening of the response time as well as to easier programming
- user instructions USI which realize in the optimum way (on the level of the microprocessor instructions) complex tasks (special communication, regulation, time-critical user tasks)

Compared to the standard instruction set, the extended instruction set contains the following in addition:

- logical operations in the long extent
- arithmetic instructions, conversions and comparisons in the long extent
- conditional jumps according to the comparison flags
- arithmetic instructions in the format with the floating point
- extended table instructions with tables of large extent
- table instructions with structuralized access
- instructions of the PID regulator

Reduced instruction set

Standard instruction

Extended instruction

set

set

Full description of the instruction set is given in the handbook Instruction Set of Tecomat PLC, TXV 001 05.02

11. Diagnostics and Removal of Faults

The PLC diagnostic system

The Tecomat PLC diagnostic system is a part of the standard sw and hw equipment of the PLC's. It is active starting from turning on of the PLC power supply and operates independently of the user. The main function is ensuring of error-free and accurately defined function of the PLC in any situation. The system continuously follows vitally important parts and functions of the PLC and ensures servicing of an error state immediately in the moment of its occurrence and informs about the fault.

In the case a fault arises within the PLC, the diagnostic system must especially eliminate the possibility of origination of breakdown states in the technology connected to the PLC.

Another task of the diagnostic system is to make easier removal of the arise fault to service workers or to the user, respectively.

Besides basic functions, the diagnostic system notifies the user of any possible erroneous manipulations or procedures at the PLC attendance due to which working with the PLC becomes easier and more efficient.

11.1 Conditions for Proper Function of the Diagnostics

The basic condition for error-free function of the PLC and proper operation of its diagnostics is proper functions of the power supply and of the central unit.

After turning on of the supply, basic checking of the system kernel is performed within the initialization. If an error of the EPROM or RAM system memory is found, the diagnostic system cannot continue in its operation. This state is signalled by lighting the letter E or t on the display.

11.2 Indication of Errors

The central unit is equipped with the main error stack which contains 8 last error codes announced by the diagnostics of the whole PLC and a local stack containing 8 last error codes announced by the diagnostics of servicing of inputs, outputs, and communication through the serial channels.

Full error code in the main error stack is 4 bytes long. The first byte gives the basic error code (it determines the group of faults), the following 3 bytes give close specification of the error.

Full error code in the local error stack is 2 bytes long. The first byte gives the basic error code (it determines the group of faults), the second byte gives closer specification of the error.

Contents of both error stacks are available from the xPRO development environment. Codes of serious errors are shown on the display at the moment of their evaluation in the format:

E - label followed with the full error code in hexadecimal form 80

- basic error code

09 00 00 - closer error specification

11.3 Serious Errors

In the case of the rise of a serious error, the diagnostic system blocks the outputs first, interrupts execution of the user program, and then it identifies the arisen fault. The full error code is shown on the display and stored in the main error stack.

Indication of such an error can be cancelled by a command from the superior system or by turning off and on of the PLC power supply.

Error stacks

Indication of errors

PLC behaviour in the case of a serious error

The following abbreviations and terms are used in the overview of error codes:

- PC address of instruction in which the error occurred (program counter)
- AM activation of inputs and outputs:
 - \$40 = activation of inputs
 - \$80 = activation of outputs
 - \$C0 = activation of inputs and outputs
- AJ upper byte of the physical address of inputs and outputs at which the error occurred
 - \$12 = serial channel CH2

\$13 = serial channel CH3

- \$81 = binary inputs and outputs of the first EM/2 (TC631, TC632)
- \$82 = binary inputs and outputs of the second EM/2 (TC631,
- TC632)
- \$91 = binary inputs and outputs of the first EM/2 (TC633)
- 92 = binary inputs and outputs of the second EM/2 (TC633)
- \$A0 = BM binary inputs and outputs
- \$A2 = EM binary inputs and outputs
- \$D0 = BM analog inputs and outputs
- D1 = analog inputs of the first EM/2

\$D2 = analog inputs of the second EM/2 or EM

Map of the user program

- main control structure generated by the compiler.

Numerical codes are given in the hexadecimal form.

11.3.1 User Program Errors

Errors of storage of the user program

- 80 01 00 00wrong length of the user program map in the EEPROM
source memory80 02 00 00wrong ensuring character (CRC) of the user program map in
the EEPROM source memory
- 80 03 00 00 wrong ensuring character (CRC) of the whole program in the EEPROM source memory
- 80 04 00 00 user program is not in the EEPROM source memory Fault in the EEPROM source memory has occurred, the user program is designed for another series of central units or it has not been recorded in the EEPROM at all. It is necessary to load a new user program in EEPROM or disconnect the EEPROM memory and load the user program in the RAM memory.
- 80 05 00 00 wrong length of the user program map in RAM
- 80 06 00 00 wrong ensuring character (CRC) of the user program map in RAM
- 80 07 00 00 wrong ensuring character (CRC) of the whole program in RAM

A fault in the memory has occurred. It is necessary to load a new user program in RAM.

80 08 00 00 editing intervention in the user program while the EEPROM source memory has been connected

If the EEPROM memory is connected, after turning on the system its contents is loaded in the RAM memory of the central unit. The central unit checks integrity of the program copy from EEPROM. In the case of editing intervention, it announces the error Editing intervention, and it is necessary to disconnect the EEPROM memory or re-program it. If the editing intervention has been unwanted, it is sufficient to turn off the PLC and turn it on again, and the original program will be loaded from EEPROM.

	80 09 00 00	the program has been compiled for another series of central units
		The compiler was set for another series of central units. It is necessary to select the correct series of central units in the compiler menu (the series is marked by a capital letter in the name of the central unit) and compile the user program again. If the compiler was set correctly, then this compiler is designed for higher version of the system sw than the ver- sion fitted in the central unit of your PLC. This dissonance must be removed either by using an older version of the compiler or by exchanging of the system sw in the CPM.
	80 0A 00 00	attempt to program a non-existent EEPROM
		The memory is not fitted or is disconnected.
	80 0B 00 00	programming of EEPROM was unsuccessful
	80 0C 00 00	failure of the RTC real time circuit
		The real time circuit is not functions the consequence of which is failure of all time functions of the PLC. The most likely fault is discharge of the backing battery which must be exchanged. If the backing battery is not discharged, an ex- pert repair of the central unit is necessary.
	80 0F 00 00	memory of CPU parameters cannot be programmed
	80 0F 01 00	memory of CPU parameters cannot be retrieved
Programming errors	80 10 PC PC	overflow of the stack of return addresses
		The maximum number of nested subprograms has been exceeded. Nesting means calling of another subprogram from within the subprogram being already executed.
	80 11 PC PC	underflow of the stack of return addresses
		Return instruction from a subprogram (RET, RED, REC) was not preceded by calling of the subprogram (CAL, CAD, CAC, CAI).
	80 12 PC PC	non-zero stack of return addresses after the process termi- nation
		In the user program, there is a different number of instruc- tions of calling of the subprogram (CAL, CAD, CAC, CAI) than return instructions from the subprogram (RET, RED, REC).
	80 13 PC PC	label not declared
		The instruction of jump or calling with a label number has been used which is not used anywhere in the user program.
	80 14 PC PC	the label number is greater than the maximum value
		Number of label of an instruction of jump or calling is greater than the greatest number of label used in the user program.
	80 15 PC PC	table T not declared
		Table T used in this instruction has not been input in the user program. It must be added.
	80 16 PC PC	unknown instruction code
		The used instruction is not implemented in this central unit.
	80 17 PC PC	irregular user instruction USI
		The user instruction is intended for another series of central units or its structure is broken.
	80 18 PC PC	the requested user instruction USI does not exist
		The requested user instruction USI is not connected to the user program.

	80 19 PC PC	error of BP instructions nesting
		The BP instruction cannot be used in processes P50 to P57 (calling of the debugging process P5n in another P5m process).
	80 1A PC PC	process for servicing of the BP is not programmed
		The debugging process P5n called by the BP instruction is not programmed. It is necessary to add it to the user pro- gram.
	80 1B PC PC	wrong configuration of table T
		The checksum of values of table T used by this instruction does not agree. The user program must be loaded again.
	80 30 00 00	exceeding of the maximum cycle time
		The cycle time has been longer than the input value.
	80 31 00 00	exceeding of the maximum interrupt process time
		Execution time of the interrupt process has exceeded 5 ms or the cycle time has been exceeded in the course of the interrupt process execution (see error 80 30 00 00).
	11.3.2 Error:	s in the Peripheral System
Errors of sw	81 00 30 AJ	
configuration	30 AJ	exceeding of the number of bytes in the PLC
		Greater number of bytes has been input in the user program sw configuration than the PLC actually occupies. This entry must be corrected and the corrected program must be loaded in the PLC again.
	81 00 31 AJ	
	31 AJ	initialization table is missing
		Initialization table is missing in the user program, which is necessary for servicing of some types of the PLC inputs and outputs (for example, analog inputs, special functions, etc.). This table must be added to the user program and the cor- rected program must be loaded in the PLC again.
	81 00 32 AJ	
	32 AJ	unknown servicing
		The central unit cannot service this type of the PLC inputs or outputs. The system program must be exchanged for a newer version (the version number can be found out either in the xPRO program or from the PLC display after turning on of the power supply).
	81 00 33 AJ	
	33 AJ	odd number of bytes for analog inputs
		In the user program sw configuration, an odd number of bytes has been input for analog inputs which is not allowed because one input takes two bytes. This entry must be cor- rected and the corrected program must be loaded in the PLC again.
	81 00 34 AJ	
	34 AJ	wrong number of bytes of the initialization table
		The initialization table has a different number of bytes than its servicing requires. The table must be corrected and the corrected user program must be loaded in the PLC again.
	81 00 35 AJ	
	35 AJ	overfilling of the initialization zone

		A part of memory in the central unit reserved for initializa- tion data of the given type of inputs or outputs has been overfilled.
	81 00 36 AJ	
	36 AJ	number of the initialization table is greater than the maxi- mum allowed value
		Number of the initialization table is greater than the central unit allows. The table number must be corrected and the corrected program must be loaded in the PLC again.
	81 00 37 AJ	
	37 AJ	wrong configuration of the initialization table
		The checksum of values of the initialization table does not agree for this type of inputs or outputs. The user program must be loaded again.
	81 EM 38 AJ	
	38 AJ	wrong entry in the initialization table
		There is a wrong entry in the initialization table. At initiali- zation of serial channels, this is usually due to exceeding of the maximum allowed value of a parameter (for example, length of the transmitted data).
Errors of inputs and	81 00 40 AJ	
outputs during	40 AJ	inputs did not report themselves
operation		PLC inputs stopped to report themselves. The likely cause is a fault at the address decoder of the input and output unit or the connection with the CPU is faulty.
	81 00 41 AJ	
	41 AJ	outputs did not report themselves
		PLC outputs stopped to report themselves. The likely cause is a fault at the address decoder of the input and output unit or the connection with the CPU is faulty.
	81 00 43 AJ	
	43 AJ	use of non-existent inputs or outputs
		Servicing of non-existent inputs or outputs has been run. The most likely cause lies in co-operation of the superior PC's programming software and the PLC central unit.
Errors of hw	81 00 61 00	
configuration	61 00	overflow of the zone for inputs configuration
	81 00 61 01	
	61 01	overflow of the zone for outputs configuration
		These errors are caused by too large number of types of in- puts or outputs written in the sw configuration in the user program. The maximum numbers are 16 types of inputs and 16 types of outputs including special functions.
	82 06 AM AJ	error of configuration
		A declared type of inputs or outputs has not been found.

11.4 Other Errors

In the case of origination of some of other errors which do not essentially affect the control itself, the diagnostic system only identifies the arisen fault, announces the basic error code in the S34 register, and the full error code in registers S48 to S51, and control of the process runs further. The information can be used for user treatment of these errors.

The error can also be found by reading of the error stack into the superior system (PC).

11.4.1 Errors of Serial Communication

This group of errors is written only to the local stack without the possibility of evaluation by the user program.

10 05 11 05 11 06 11 07 11 09 11 0A 11 0B 11 0C 11 0C 11 0C 11 0F 11 0F 11 10 11 11 11 12 11 13 11 14 12 07 13 08 14 0A 14 11 15 0B 15 12 18 0E 18 13	wrong start delimiter SD parity error LE parity error at SD2 LER parity error at SD2 DA parity error at SD2 SA parity error at SD2 FC parity error at SD2 RB parity error at SD2 DAT parity error at SD2 DAT parity error at SD2 CHS parity error at SD2 ED parity error at SD2 DA parity error at SD1 SA parity error at SD1 SA parity error at SD1 FC parity error at SD1 CHS parity error at SD1 CHS parity error at SD1 ED parity error at SD1 different value of LE and LER - SD2 different value of SD and SDR - SD2 extended address SA - cannot be processed- SD1 error of receiving flag FCF in control byte FC - SD2 error of receiving flag FCF in control byte FC - SD1 wrong checksum CHS - SD2 wrong checksum CHS - SD1
19 0F 19 14	wrong end delimiter ED - SD2 wrong end delimiter ED - SD1 These errors are caused by excessive disturbances of the serial communication. They cause loss of the message and the consequence of their more frequent occurrence is even disconnection of the communication.
	Error 10 05 or some of errors of group 11 may arise on the one-time basis at establishment of communication with the superior system in the middle of a message being transmit- ted by this system. If such errors no more occur in the course of further communication, everything is correct. Errors from the CH2 serial channel have the value of the second byte increased by 20 (for example, error 10 25, etc.).
20 FC	wrong control byte in combination with a global address
2X RB	unknown communication function (X is the value of the control byte FC - 3, 4, 5, 6, 9, C, D, E, F)
	The PLC does not know the requested communication func- tion. The system program must be exchanged for a newer version (version number can be found either in the xPRO program or on the PLC display after turning on of the power supply).

11.4.2 System Errors

Using registers S34 and S48 to S51, these errors can be treated as needed by the user program.

System errors 07 00 00 00 error at checking of the remanent zone

The backed part of the scratchpad, the so called remanent zone, has wrong checksum. Cold restart will be performed. The cause is a fault in backing of the RAM user memory on the central unit, the most likely fault is at the backing battery.

Errors of the serial communication protocol

08 00 00 00	exceeding of the first limit of guarding the cycle time
	The cycle time has been longer than the set warning value.
	wrong eveters time of the DTC sizewit

09 00 00 00 wrong system time of the RTC circuit The current time must be written from the superior system.

11.4.3 User Program Errors

These errors can be treated as needed in the user program either by eliminating the cause by checking input parameters before executing of the given instruction or by treating the consequence. 10 00 00 00 division by zero

Programming errors

Divisor in the division instruction equal to 0.

- 11 00 00 00 initial index for WMS instruction lies outside of table T
 - WMS instruction has a wrong parameter and therefore it will not be executed.
- 12 00 00 00 initial index for LMS instruction lies outside of table T LMS instruction has a wrong parameter and therefore it will not be executed.
- 13 00 00 00 table instruction above the scratchpad has exceeded its range

Table defined by the table instruction above the scratchpad has exceeded its range. Instruction will not be executed.

- 14 00 00 00 source block of data defined outside of the range Source block of data for the move instruction has been defined outside the range of the scratchpad, data or table. Instruction will not be executed.
- 15 00 00 00 target block of data defined outside of the range Target block of data for the move instruction has been defined outside the range of the scratchpad or table. Instruction will not be executed.

11.4.4 Errors in the Peripheral System

- 22 00 00 00 overflow of the internal stack from interrupt inputs
- 40 00 50 00 overloaded outputs

11.5 Solution of Communication Problems with the Superior System

Connection of the PLC to a superior system, usually a PC, is a necessity as every PLC must be programmed. Possible problems and way of their analysis is indicated on the following lines.

Checking of the PLC **1. Is the power supply led to the PLC?**

No Correct the situation. Yes \downarrow

2. Has the PLC passed the starting sequence and is in the RUN mode or HALT?

(see Article 10.3) **No** An error has occurred in testing of the system kernel, communication is not possible, it is necessary to repair the PLC. **Yes** \downarrow

3. Do you want to program the PLC using the xPRO development environment?

No Continue at item 5.

- Yes ↓
- 4. Do you use channel CH1 for programming?

No CH1 must be used for the PLC programming, correct the situation.

Yes Continue at item 6.

- 5. Do you use channel CH1 for connection?
 No Continue at item 10.
 Yes ↓
- 6. Do you use the standard-fitted CH1 RS-232 interface for communication?

No Continue at item 9.

Yes ↓

- 7. Do you use CH1 output at connector L?
 - **No** CH1 RS-232 interface is led out to connector L, correct the situation.

Yes ↓.

- Do you use the interconnection cable TXK 646 51.06?
 No Check connection of your cable.
 Yes Continue at item.
- 9. Do you use CH1 output at terminal board K?

No CH1 optional interface is led out to terminal board K, correct the situation.

- Yes Continue at item 11.
- **10.** Do you use CH2 output at terminal board N?
 - No CH2 interface is led out to terminal board N, correct the situation. Yes \downarrow .
- 11. Are parameters of the relevant channel set properly?
 - **No** Set the parameters (see Article 4.5)
 - **Yes** In the case of using CH1 RS-232 or CH2, continue at item 14. In the case of using the CH1 optional interface \downarrow
- 12. Is the interface converter applied?
 - No Continue at item 14

Yes ↓

Checking of the serial

interface converter

- 13. Is the interface converter equipped with indication of the power supply and state of signals?
 - No Consider all following possibilities.
 - Yes, no signal diode is lighted.

Power supply of the converter is not on or the converter is damaged.

Yes, only POWER is lighted.

Error in the PLC or in the cable between the PC and the converter. Continue at item 14.

Yes, during the data transmission, only TxD blinks, RTS is lighted either permanently or is not lighted at all.

Fault of the RTS signal between the PC and the converter or the PC does not support control of the RTS signal necessary for the RS-485 interface (for RS-232 and RS-422 it is not necessary).

If the software of the PC does not support the RTS signal, it is necessary to set the converter in the mode of automatic switching of the communication direction, and to set sufficient reply delay at the central unit (see Article 4.5).

Development environments xPRO, EPOS and some visualization programs support the RTS signal.

Yes, during the data transmission only TxD and RTS blink.

Fault at the output part of the converter, in the cable between the controller and the PLC, or possibly in the PLC.

Yes, during the data transmission TxD with RTS and RxD blink alternately.

Communication is correct, the fault is in the cable between the controller and the PC or in the PC. Continue at item 14.

Checking of the cable	14. Is the cable inserted in the correct COM socket at the PC? No Correct the situation.
	15 Are proper cables used?
	No Correct the situation check connection of cables of your own pro-
	duction
	Yes ↓
Checking of the PC	16. On which COM channel is the mouse installed and on which
	channel do vou communicate?
	The same one
	Collision of drivers occurs even in the case that the mouse is not
	connected. It is necessary to communicate on another COM or to
	uninstall the mouse driver.
	Mouse on COM1, communication on COM3
	Mouse on COM2, communication on COM4
	Mouse on COM3, communication on COM1
	Mouse on COM4, communication on COM2
	Some programs (for example, xPRO) cannot communicate on a
	channel which shares the same interrupt vector as the mouse
	driver. It is thus necessary to apply a different combination than one
	of those given above. In the xPRO program, in the communication
	options it is possible to set another interrupt vector. However, ex-
	periments of this type are intended for experienced PC users.
	Other combinations \downarrow
Problem of falling-out	17. The whole line is in proper state but the PC does not receive
communication	the reply of the communication fails out often
	operation system with graphical interface (Windows).
	In the xPRO program which operates in the protected mode from version
	2.1, PC serial channel equipped with an equivalent of circuit 16550 with
	buffer stacks is a necessity. Among communication options in the xPRO
	program, we then check the option UART 16550A and select Interrupt -
	standard. With the accession of the Windows 95 operating system, all
	new computers are standard-equipped with these circuits. Older comput-
	ers can be either equipped with an additional board with serial channels
	(xPRO then communicates even on a PC with the 386SX processor) or
	select Interrupt - standard or Interrupt - no interrupt and gradually reduce
	the communication speed (the speed must be obviously reduced at the
	PLC central unit as well). The selection UART 16550A must not be
	checked. Reduction of the communication speed makes sense in PC's
	equipped with the processor 400DA of 400DA2 and better.
	cient speed from transmission to receiving. This problem can be easily
	solved by setting sufficient reply delay at the PLC central unit (see Article
	4.5

12. Removal of Faults

Within the guarantee period, repairs may be performed only by the producer's employee or by a service organization determined on the basis of an agreement.

PLC's of the TC600 series are complex electronic devices fitted with parts for printed mounting and parts sensitive to the electrostatic charge. Therefore the producer recommends to perform post-guarantee repairs only by exchanging the whole units. For localization of the fault, the PLC's are standard-fitted with the diagnostic system. Repairs of the units are performed by the producer.

13. Maintenance

When general conditions for the installation are met, the PLC requires minimum maintenance. Operations in which demounting of a part of the PLC is necessary, are performed always with the PLC power supply, inputs and outputs turned off.

13.1 Demounting of the PLC Parts

The BM cover is formed by the cover of the inputs and outputs board and by the LED display cover. Cover of the inputs and outputs board can be removed after unscrewing 4 fastening screw, the LED display cover can be removed after unscrewing of 2 fastening screws.

EM and EM/2 covers (inputs and outputs boards) can be removed after unscrewing of 4 fastening screws.

The inputs and outputs board can be taken out after unscrewing of 4 fastening screws. In the BM, the board is interconnected with freely demountable insertion connection with the CPU board.

Optional piggybacks are placed on the BM CPU board. To make them accessible, it is necessary to take out the mounting unit formed by the CPU board, the shielding cover and the inputs and outputs board. After removal of the BM covers and after unscrewing of 6 screws on the bottom side of the BM trough, the unit can be taken out by its shifting to the right (the shielding cover is inserted in 2 slots on the left side of the BM trough).

Parts sensitive to the electrostatic charge are used at the PLC units. Follow principles for working with these circuits in manipulation with the units.

13.2 Checking of PE Connectors Interconnection

Resistance between an arbitrary metal part of the PLC and the main protective connector of the case in which the PLC is placed, is measured by the meter of small resistances. Value of the resistance must be \leq 0,1 Ω

13.3 Checking of the Power Supply

The PLC power supply is measured at connectors marked as M1 and M2. The allowed voltage tolerance is 24 V~ \pm 20 %, 24 V- \pm 20 %.

13.4 Checking of Voltage of Binary Inputs

Voltage of binary inputs is measured between the common connector of the group (COM) and connectors of individual inputs (DI).

The allowed voltage tolerance for closing of the input is 15 V~ to 30 V~ or 16 V- to 30 V-. Allowed voltage tolerance for opening of the circuit is 0 V~ to 11 V~ or 0 V- to 12 V-.

Removal of the BM and EM cover

Taking out of the inputs and outputs board Making accessible of BM optional piggybacks Allowed voltage tolerance for closing of fast inputs (DI0 to DI3 of modules TC603 to TC607) is 17,5 V~ to 30 V~ or 18,5 V- to 30 V-. Allowed voltage tolerance for opening of the input is 0 V~ to 13,5 V~ or 0 V- to 14 V-.

13.5 Checking of Voltage of Binary Transistor Outputs

Voltage of binary transistor outputs is measured between connectors UDO and GND of the relevant group of outputs. Allowed voltage range is 9.6 V- to 28.8 V-.

13.6 Battery Exchange

Exchanging of the battery (Panasonic CR2032 or a similar lithium battery of 3 V, 210 mAh, ϕ 20 mm) can be performed without losing of the user program and set parameters in the following way:

- turn off the PLC and inputs and outputs power supply
- remove the BM cover
- disconnect jumper V1 (next to the battery)
- take out the battery (on the upper edge of the CPU board)
- insert a new battery
- connect jumper V1
- screw on the BM cover

When the battery is disconnected (jumper V1 is disconnected), memory of the user program and the RTC circuit are supplied for the period of about 5 minutes from the backing condenser.

Metal instruments which could short-circuit the battery (for example the tweezers, flat pincers etc.) must not be used to insert the new battery. Pay attention to correct polarity.

The recommended interval of the battery exchange is 5 years. For the way of indication of lower battery voltage see Article 4.2.

13.7 Fuse Exchange

The internal fuse of the voltage converter can be exchanged without demounting of the BM cover through a cut-out on the bottom side of the cover. Non-breaking of the fuse is signalled by the lighted green LED diode placed behind the fuse when the regulator power supply is on. Type and value of the fuse are given on the label close to the fuse. Exchange of the fuse is done with the PLC power supply turned off.

13.8 Cleaning

To clean the PLC, no solvents, diluents, alcohols or similar substances may be used. To clean the surface covered by labels, it is possible to use fabric imbued with some diluted detergent cleaning means. Cleaning of dusty units is performed by a stream of air.

14. The Guarantee

Guarantee and reclamation conditions follow the *Commercial Conditions* of *Teco a.s.*.

Technical Equipment of TC600 Programmable Logic Controller

Supplement

July 1999 7th edition

1.1 Setting of CH1, CH2, CH3 serial communication channels parameters

(extension of paragraph 4.5.1. of the basic manual)

Another parameter of CH1, CH2 and CH3 communication channels is introduced for TC600 PLC starting with the 7.4 version system program equipment. It is **parity mode** parameter. This parameter is set as the last parameter of the given channel.

The support of the piggyback MR-14, MR-15 of 1.6 version and higher is necessary for the CH3 channel moreover.

Setting of the parity mode

When setting the **parity mode** parameter the display shows the report of this type:

which has the following meaning:

PAR - setting of parity mode

- 2 number of set cannel
- on parity switched on

Parity can be either switched on or off. In case of switched on parity it is always even parity. By pressing of "SET," key, setting is changed, by pressing of "MODE," the set value is stored and we pass to the following or previous parameter setting.

Parity is standardly switched on. It is switched off only the cases of necessity when it is necessary to communicate over modems, e.g., that do not transmit parity. By switching parity off security of transmitted data is decreased (for details see Serial communication of TECOMAT programmable logic controllers and TECOREG regulators, version 7 and higher, order number TXV 001 06.02 handbook).

Parity mode is set only for PC and MAS modes.